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Preface

From 18 to 20 October 2004, a conference “Singularities and Computer Al-
gebra” was held at the University of Kaiserslautern on the occasion of Gert-
Martin Greuel’s 60th birthday. It was attended by 70 participants from Eu-
rope, Israel, Japan, Canada and the U.S.A. We were particularly happy that
Greuel’s teacher, Egbert Brieskorn, was among them.

Most of the participants have been influenced by Greuel’s work on sin-
gularities and their computational aspects over the last 30 years. Among
them, one could find colleagues and friends from the early years in Göttingen
and Bonn, but also former and present diploma and Ph.D. students of Gert-
Martin Greuel at Kaiserslautern. In particular, each of the invited speakers
could look retrospectively at cooperating in one way or another with Greuel.

The papers of this volume concern ten of the invited lectures, supple-
mented by four articles which are written by participants of the conference
and focus on computational aspects. Most of the contributions are intended
to give an overview on a particular aspect of singularities. They describe the
development of important areas of singularity theory over the past years and
they discuss open questions.

In the lead text, we include a list of the invited lectures and a list of the
participants as well as a picture of the septic with 99 nodes found by Oliver
Labs and Duco van Straten, which has acted as a logo for the conference.
Further, we include an article focussing on Aspects of Gert-Martin Greuel’s
Mathematical Work.

We would like to thank all the people who have contributed to the sucess
of the conference and to this volume.

Christoph Lossen and Gerhard Pfister

(Organizers of the Conference)
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Lê Dung Trang: Singularity Invariants in Versal Deformations

Eugenii Shustin: The Patchworking Construction and Applications to Trop-
ical Enumerative Geometry

Ragnar-Olaf Buchweitz: Free Divisors in the Representation Theory of Al-
gebras

Wolfgang Ebeling: Monodromy

Yuri A. Drozd: Derived Categories of Modules and Coherent Sheaves

Antonio Campillo: Some Aspects and Applications of Singularities in Pos-
itive Characteristic

JonathanWahl: Topology, Geometry, and Equations of Normal Surface Sin-
gularities

Ignacio Luengo: Superisolated Singularities

Kyoji Saito: A Linearization Theorem of the Real Discriminants for Simple

Singularities

Charles T.C. Wall: Transversality in families of mappings

Joseph H.M. Steenbrink: Adjunction Conditions for 1-Forms on Surfaces
in Projective Three-Space

Duco van Straten: Lagrangian Singularities

Bernard Teissier: On the Structure of the Newton Polyhedra of Certain Dis-
criminants

Wolfram Decker: SINGULAR and PLURAL

Frank-Olaf Schreyer: An Experimental Approach to Numerical Godeaux
Surfaces

Cambridge Books Online © Cambridge University Press, 2009



A septic surface S in P3(C) with 99 real nodes. It was discovered in

2004 by O. Labs and D. van Straten using Singular experiments over

small finite fields of prime order. If α ∈ C satisfies 7α3 + 7α+ 1 = 0,
a defining equation for S over Q(α) is the following:

(z + a5w)
�

(z + w)(x2 + y2) + a1z
3 + a2z

2w + a3zw
2 + a4w

3

�2

−x7 + 21x5y2 − 35x3y4 + 7xy6 − 7z
�

x2 + y2
�3
+ 56z3

�

x2 + y2
�2

−112z5
�

x2 + y2
�

+ 64z7 ,

where

a1 := −
12

7
α2 − 384

49
α−

8

7
, a2 := −

32

7
α2 + 24

49
α− 4,

a3 := −4α2 + 24

49
α− 4, a4 := −

8

7
α2 + 8

49
α−

8

7
,

a5 := 49α2 − 7α+ 50.
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Aspects of Gert-Martin Greuel’s

Mathematical Work

Christoph Lossen Gerhard Pfister

This article emanates from the opening speech of the conference “Sin-
gularities and Computer Algebra” which took place on October 18–20,
2004 on the occasion of Gert-Martin Greuel’s 60th birthday. When
preparing the speech, we realized soon that it is impossible to cover
in such a speech Gert-Martin’s complete work which is documented in
more than eighty publications. Not to mention Gert-Martin’s organi-
sational work for the mathematical community.

We decided to illuminate only some cornerstones of Gert-Martin’s
mathematical work: his Ph.D.-Thesis in 1973, his Habilitationsschrift
in 1979, the Singular project, the work on moduli spaces, and the
work on equisingular families.

Ph.D.-Thesis (1973).

In his Diploma Thesis, titled “Zur Picard-Lefschetz-Monodromie isolierter

Singularitäten von vollständigen Durchschnitten”, and his Ph.D.-Thesis, titled
“Der Gauß-Manin Zusammenhang isolierter Singularitäten von vollständigen

Durchschnitten”, G.-M. Greuel develops the theory of the Gauß-Manin con-
nection for isolated complete intersection singularities: Let f : (X, x) → (S, 0)
be a map of germs with the following properties:

• X is an m-dimensional complete intersection,

• S is a k-dimensional complex manifold,

• f is flat,

• x ∈ X0 = f
−1(0) is an isolated singular point,

• the critical set C of f is of dimension k−1.

Then (X0, x) is an isolated complete intersection singular-
ity of dimension n := m− k. We introduce S � := S \D

f

andX
� := X \ f

−1(D
f
), whereD

f
= f(C) ⊂ S denotes the

discriminant of f .
0

x

t

f

S

X

X0 Xt

Cambridge Books Online © Cambridge University Press, 2009



xviii. C. Lossen and G. Pfister

By a result of Hamm (extending a result of Milnor), we may assume that the
restriction f : X �

→ S
� is a locally trivial differentiable fibre bundle whose

fibres are homotopy equivalent to a bouquet of n-spheres. The number of
spheres in the bouquet, which equals dimC H

n(X
t
,C), is called the Milnor

number of the complete intersection germ (X0, x) and denoted by µ(X0, x).
The fibration f : X �

→ S
� induces a vector bundle with fibre H

n(X
t
,C)

over t ∈ S �. Its sheaf of holomorphic sections, Hn= R
n
f∗CX� ⊗CS�

O
S
� , has

a canonical integrable connection ∇ : Hn
→H

n
⊗OS�

Ω1

S
� , ω ⊗ f �→ ω ⊗ df .

The monodromy of this connection is the Picard-Lefschetz monodromy of
f in x, ρC : π1(S

�
, t) → Aut(Hn(X

t
,C)), induced by the action of π1(S

�
, t)

on Hn(X
t
,Z). Greuel’s main result is now the following theorem (extending

Brieskorn’s result for hypersurfaces):

Theorem. The connection ∇ on S � can be extended to a (meromorphic)

regular singular connection on S, the Gauß-Manin connection

∇
X/S

: Hn
DR

(X/S) −→ H
n

DR
(X/S)⊗ Ω1

S
(D

f
)

of coherent O
S
-modules, where Hn

DR
(X/S) is the hypercohomology Rnf∗Ω

•
X/S

of the complex of relative holomorphic differential forms.

This result is already contained in his diploma thesis. An important ingredient
of the proof is a proof of the generalized de Rham lemma saying that, for each
holomorphic map h = (h1, . . . , ht) : X → Ck, the morphism

Ωp
X/S

�

t
�

i=1

dh
i
∧ Ωp−1

X/S
−→ Ωp+t

X/S
, [ω] �−→ [dh1 ∧ . . . ∧ dh

t
∧ ω]

is injective for 0 ≤ p < codim
X
Sing(f, h), where (f, h) : X → S × Ck. Here,

X does not need to have an isolated singularity. The de Rham lemma was
later formulated by K. Saito in a more algebraic context, but the first proof
is due to Greuel [1]. Indeed, Greuel proves a much more general statement,
and the proof provides results which were recently used by Gusein-Zade and
Ebeling to compute indices of vector fields.

In his Ph.D. thesis [2], published in [4], Greuel proves that Hn

DR
(X/S) is

locally free for dimS ≤ 2 and that a different extension H
���
DR

(corresponding
to Brieskorns H�� is locally free for arbitrary S (of rank µ(X0, x)). Using these
results and applying the index theorem of Malgrange to the Gauß-Manin
connection, Greuel gets a purely algebraic formula for the Milnor number of
an isolated complete intersection singularity (X0, x) ⊂ (X, x) as above:

Theorem. The Milnor number µ(X0, x) has the following properties:

(1) µ(X0, x) = dimC Ωn
X0,x

/dΩn−1
X0,x

if n > 0, and µ(X0, x) = dimC OX0,x
− 1

if n = 0.
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In particular, the Milnor number depends only on X0 (and not on f).

(2) If dimS = 1, then µ(X0, x) + µ(X, x) = dimC Ωm
X/S,x

= dimC OX,x/C ,

where C denotes the ideal of O
X,x

generated by the entries of the Jaco-

bian matrix ∂(g1, . . . , gr, f)/∂x. Here g1, . . . , gr are supposed to generate

the ideal of X in C{x} = C{x1, . . . , xm}.

In particular, we can compute µ(X0, x) by recursion:

(3) If Xi := V (f1, . . . , fk−i) ⊂ Cm and f
k−i+1 : Xi → S

i
= C, then

µ(X0, 0) =

k
�

i=1

(−1)k−i dimC Ωn+i
Xi/Si,0

=

k
�

i=1

(−1)k−i dimC C{x}
�

C
i
,

where Ci denotes the ideal of C{x} generated by f1, . . . , fi−1 and the

i-minors of the Jacobian matrix ∂(f1, . . . , fi)/∂x.

(4) If X0 = V (f1, . . . , fk) ⊂ Cm is quasihomogeneous, then

µ(X0, 0) = dimC C{x}
�

(C
k
+ �f

k
�) .

Related Publications 1971–1977
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Habilitationsschrift (1979).

Greuel’s Habilitationsschrift, which has the title “Kohomologische Methoden
in der Theorie isolierter Singularitäten”, consists of three parts:
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xx. C. Lossen and G. Pfister

I. The Milnor number and deformations of complex curve singularities.

II. Deformation spezieller Kurvensingularitäten und eine Formel von De-
ligne.

III. Dualität in der lokalen Kohomologie isolierter Singularitäten.

Large Parts of the Habilitationsschrift were written during a one year stay
for research in France at IHES (Bures-sur Yvette) and at the mathematical
institute of the Université de Nice.

In the first part, which has been based on a joint work with R.O. Buch-
weitz (see [11]), again a Milnor number µ(C, 0) is the main object of inves-
tigation. This time for (C, 0) ⊂ (Cn, 0) being an arbitrary reduced complex
curve singularity. Buchweitz and Greuel define this new invariant as

µ(C, 0) := dimC ωC,0/dOC,0,

where ω
C,0 = Extn−1OCn,0

�

O
C,0,Ω

n

Cn,0

�

is the dualizing module of Grothendieck,
extending in this way the notion of the Milnor number of an isolated complete
intersection curve singularity, µ(C, 0) = dimC Ω1

C,0
/dO

C,0.
According to Greuel, the main results of Part I can be summarized by

saying that also the general notion of a Milnor number reflects the topological
nature of curve singularities:

“Obwohl µ für Kurvensingularitäten in Kodimension ≥ 2 keine
topologische Invariante ist, spiegelt sie doch im Wesentlichen

den topologischen Charakter der Singularität wider. Das ist der

gemeinsame Nenner der Hauptresultate des ersten Teils.”

More precisely, Buchweitz and Greuel obtain the following results:

Theorem (Generalized Milnor formula). If (C, 0) is a reduced complex
curve singularity with r branches, then

µ(C, 0) = 2δ(C, 0)− r + 1 ,

where δ(C, 0) = dimC OC,0/OC,0 for (C, 0) → (C, 0) the normalization.

Theorem. Let f : C → D ⊂ C be a good representative of a flat family of

reduced curve singularities. Then, for all t ∈ D,

(1) The fibre C
t
is connected.

(2) µ(C0, 0)−
�

x∈Ct

µ(C
t
, x) = dimC H

1(C
t
,C) .

(3) µ(C0, 0)−
�

x∈Ct

µ(C
t
, x) ≥ δ(C0, 0)−

�

x∈Ct

δ(C
t
, x) .
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(4) µ
t
:=
�

x∈Ct

µ(C
t
, x) is constant in t iff all fibres C

t
are contractible.

Statement (2) shows that the Milnor number is again a measure for the van-
ishing cohomology.

Theorem (µ-constant is equivalent to topological triviality).
Let f : C → D ⊂ C be a good representative of a flat family of reduced curve

singularities with section σ : D → C such that C
t
\ {σ(t)} is smooth for all

t ∈ D. Then the following are equivalent:

(a) µ(C
t
, σ(t)) is constant for t ∈ D.

(b) δ(C
t
, σ(t)) and r(C

t
, σ(t)) are constant for t ∈ D.

(c) f : C → D is topologically trivial.

Theorem (Generalized Zariski discriminant criterion).
Let f : C → D ⊂ C be a sufficiently small representative of a flat deformation

of a reduced complete intersection curve singularity (C, 0). Then the following
are equivalent:

(a) There exists a finite mapping π = (π1, f) : (C , 0) → (C×D, 0) such
that the multiplicity of the discriminant (with Fitting structure) along

{0} ×D is constant for t ∈ D and equal to

�

x∈Ct

�

µ(C
t
, x) + mult(C

t
, x)− 1

�

, t �= 0 .

(b) f : C → D admits a holomorphic section σ : D → C such that C
t
is

smooth outside {σ(t)}, and µ(C
t
, σ(t)) and mult(C

t
, σ(t)) are constant

in t.

Note that condition (b) is stronger than equisingularity, since for a complete
intersection in codimension ≥ 2 constant Milnor number does not imply con-
stant multiplicity.

Part II of the Habilitationsschrift deals with smoothable singularities: Let
(C, 0) ⊂ (Cn, 0) be a reduced complex curve singularity, and let

(C, 0) �

�

i
��

��

(C , 0)

φ flat
��

{0} �

�

�� (S, 0)

be the semiuniversal deformation. Then (C, 0) is called smoothable if there
exists a component E of (S, 0) such that the fibre C

t
over a general point
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t ∈ E is smooth. The component (E, 0) is then referred to as a smoothing
component for (C, 0).

Deligne’s formula (1973) plays an important role in the investigation of
smoothable singularities. It states that for a smoothable reduced complex
curve singularity (C, 0), each smoothing component has the dimension

e(C, 0) := 3δ(C, 0)− dimC Θ
�

Θ
� �� �

=: m1(C, 0)

,

where Θ = HomOC,0

�

Ω1

C,0
,O

C,0

�

, and Θ = HomO

�

n∗Ω
1

C,0
,O
�

for O = n∗OC,0.

And, for each reduced curve singularity (C, 0), the codimension m1(C, 0) can
be computed as m1(C, 0) = r(C, 0) + dimC G

�

G, where G = Aut
�

O

�

I
�

for

some ideal I ⊂ O contained in the conductor, and G ⊂ G the stabilisator of
O
C,0/I.

The main goal in Part II of Greuel’s Habilitationsschrift (published in
[13]) is to extend Deligne’s Formula to not necessarily smoothable singularities
and to express it by means of invariants of (C, 0) that are easier to compute:

Theorem. (1) If (C, 0) is a quasihomogeneous complex curve singularity,

e(C, 0) = µ(C, 0) + t(C, 0)− 1 ,

where t(C, 0) = dimC(ωC,0/mC,0ωC,0) is the Cohen-Macaulay type of

(C, 0).

(2) If (C, 0) is Gorenstein and irreducible, then

e(C, 0) ≤ µ(C, 0) ,

and equality holds iff (C, 0) is quasihomogeneous.

(3) For an arbitrary reduced complex curve singularity (C, 0),

e(C, 0) = µ(C, 0) + t(C, 0)− 1

+dimC HomOC,0

�

Ω1

C,0
,O

C,0

��

HomOC,0

�

O

�

O
C,0

�

− dimC HomOC,0

�

m
C,0,OC,0

��

HomOC,0

�

O

�

O
C,0

�

.

The irreducibility assumption in (2) was later removed (see [17]). While
Deligne’s proof of the formula for the dimension of a smoothing component
was global, a local proof was given as an application of the main result in
[16].

Part III of the Habilitationsschrift (published in [12]) is devoted to the com-
parison of the Milnor and the Tjurina number of an isolated complete inter-
section singularity. The name “Tjurina number” for τ(X, 0) := dimC T

1

X,0
(for
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an arbitrary singularity (X, 0)) was coined by Greuel and introduced in that
paper. If (X, 0) is unobstructed (e.g., a complete intersection), then τ(X, 0)
equals the dimension of the base space of the semiuniversal deformation. Part
III contains the following result:

Theorem. Let (X, 0) be an isolated complete intersection singularity.

(1) If (X, 0) is quasihomogeneous, then µ(X, 0) = τ(X, 0).

(2) If the neighbourhood boundary of (X, 0) is a rational homology sphere
or if dim(X, 0) = 1, then µ(X, 0) ≥ τ(X, 0).

The last statement has been generalized by Looijenga and Steenbrink to ar-
bitrary complete intersection singularities of dimension ≥ 2.

Related Publications 1978–1990

8. Invarianten quasihomogener vollständiger Durchschnitte. Invent. Math. 49,

67–86 (with H.A. Hamm, 1978).

9. Le nombre de Milnor, équisingularité, et déformations de singularités des
courbes réduites. C.R. Acad. Sci. Paris Sér. A Math. 288 35–38 and Sém.

sur les Singularités. Publ. Math. Univ. Paris 7, 13–30 (with R.-O. Buchweitz,
1979-80).

10. Kohomologische Methoden in der Theorie isolierter Singularitäten. Habilita-
tionsschrift, Bonn (1979).

11. The Milnor number and deformations of complex curve singularities. Invent.
Math. 58 241-281 (with R.-O. Buchweitz, 1980).

12. Dualität in der lokalen Kohomologie isolierter Singularitäten. Math. Ann.
250 157–173 (1980).

13. On deformation of curves and a formula of Deligne. In: J.M. Aroca et al:

Algebraic Geometry, La Rábida 1981. Springer LNM 961, 141-168 (1983).

14. On the topology of smoothable singularities. In: P. Orlik: Singularities, Ar-
cata 1981. Proc. Sympos. Pure Math. 40, 535–545 (with J.H.M. Steenbrink,
1983).

15. Einfache Kurvensingularitäten und torsionsfreie Moduln. Math. Ann. 270,

417-425 (with H. Knörrer, 1985).

16. The dimension of smoothing components. Duke Math. Journ. 52, 263–272

(with E. Looijenga, 1985).

17. Numerische Charakterisierung quasihomogener Gorenstein-Kurvensingulari-
täten. Math. Nachr. 124, 123–131 (with B. Martin, G. Pfister, 1985).

18. Constant Milnor number implies constant multiplicity for quasihomogeneous
singularities. Manuscr. Math. 56, 159–166 (1986).

19. Torsion free modules and simple curve singularities. Canad. Math. Soc. Conf.
Proc. 6, 91–94 (1986).
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20. Deformationen isolierter Kurvensingularitäten mit eingebetteten Komponen-
ten. Manuscr. Math. 70, 93–114 (with C. Brücker, 1990).

21. Simple Singularities in Positive Characteristic. Math. Z. 203, 339–354 (with
H. Kröning, 1990).

The SINGULAR Project.

The birth of the Singular project can be dated back to about 1982, when
G.-M. Greuel and the second author tried to generalize K. Saito’s theorem
which states that, for a germ (X, 0) of an isolated hypersurface singularity,
the following conditions are equivalent:

(a) (X, 0) is quasi-homogeneous (that is, has a good C∗-action).

(b) µ(X, 0) = τ(X, 0).

(c) The Poincaré complex of (X, 0) is exact.

Trying to extend this theorem to complete intersection curve singularities,
they only succeeded in proving the equivalence of (a) and (b) (see [17]). They
expected that (b) and (c) are, indeed, not equivalent for general complete
intersection curve singularities. They succeeded in expressing the exactness
of the Poincaré complex as an equality of dimensions of certain O

X,0-modules.
In those days, however, there was no computer algebra system available which
could compute Milnor numbers, Tjurina numbers and the dimensions of the
differential modules in the Poincaré complex. To be able to compute these
numbers, such a system requires an implementation of T. Mora’s tangent cone
algorithm, a modification of Buchberger’s Gröbner basis algorithm designed
for computations over local rings.

Having implemented this algorithm, the expected counterexamples were
found by H. Schönemann and the second author in C.T.C. Wall’s list of
unimodal complete intersection curve singularities: consider

{xy + z
�−1 = xz + yz

2 + y
k−1 = 0}

for 4 ≤ � ≤ k, 5 ≤ k.
Motivated by this success, Greuel and the second author tried to attack

Zariski’s famous multiplicity conjecture by searching for a counterexample.
Starting point was the following result of Greuel, confirming Zariski’s conjec-
ture for families of quasihomogeneous isolated singularities [18]:

Theorem. Let f ∈ C{x1, . . . , xn} be such that the ideal �f� can be generated

by a semiquasihomogeneous polynomial, and let f
t
∈ C{x1, . . . , xn, t} be a µ-

constant deformation of f , then the multiplicity of f
t
is constant (that is,

independent of t for t ∈ C small).
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The method of proof suggested a way to look for possible counterexamples in
the non-quasihomogeneous case. However, since Zariski’s conjecture holds for
curves and semiquasihomogeneous singularities, potential counterexamples
have Milnor number > 1000. For these computations, the existing implemen-
tation of the tangent cone algorithm was not sufficient. Therefore, Greuel, the
second author and H. Schönemann decided to set up such a computer algebra
system with improved algorithms and extended functionality.

The result is nowadays known as Singular which has grown to a ma-
jor specialized computer algebra system used in mathematical research and
teaching, and even in industrial applications (see the article on Singular in
this volume by H. Schönemann and the first author).

The computational complexity provided by the potential counterexam-
ples to Zariski’s conjecture was a big challenge and resulted in sophisticated
strategies for the implementation of Buchberger’s (resp. Mora’s) algorithm.
One can say that the hardness of the problem is one of the main reasons
for Singular to have one of the fastest implementations of a standard basis
algorithm.

Although the search for a counterexample to Zariski’s conjecture failed, it
was not useless. The experiments with Singular suggested a positive answer
to Zariski’s conjecture in another special case, proved in [24]. In general,
Zariski’s conjecture is still open.

Some Publications Related to SINGULAR 1996–2005

22. Standard bases, syzygies and their implementation in Singular. In: Beiträge
zur angewandten Analysis und Informatik. Shaker, Aachen, 69–96 (with H.
Grassmann, B. Martin, W. Neumann, G. Pfister, W. Pohl, H. Schönemann,
T. Siebert, 1994).

23. On an implementation of standard bases and syzygies in Singular. AAECC
7, 235–149 (with H. Grassmann, B. Martin, W. Neumann, G. Pfister, W.
Pohl, H. Schönemann, T. Siebert, 1996).

24. Advances and improvements in the theory of standard bases and syzygies.
Arch. Math. 66, 163–176 (with G. Pfister, 1996).

25. Description of Singular: A Computer Algebra System for Singularity The-
ory, Algebraic Geometry and Commutative Algebra. Euromath Bulletin 2,

161–172 (1996).

26. The normalisation: a new algorithm, implementation and comparisons. In:
Proc. EUROCONFERENCE Computational Methods for Representations of

Groups and Algebras (1.4.-5.4.1997). Birkhäuser (with W. Decker, T. de
Jong, G. Pfister, 1998).

27. Primary decomposition: algorithms and comparisons. In: G.-M. Greuel, B.H.
Matzat, G. Hiss: Algorithmic Algebra and Number Theory. Springer Verlag,

Heidelberg, 187–220 (with W. Decker, G. Pfister, 1998).
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28. Gröbner bases and algebraic geometry. In: B. Buchberger and F. Winkler:

Gröbner Bases and Applications. LNS 251 , CUP, 109–143 (with G. Pfister,
1998).

29. Applications of Computer Algebra to Algebraic Geometry, Singularity The-
ory and Symbolic-Numerical Solving. In: European Congress of Mathemati-

cians, Barcelona, July 10-14, 2000, Vol. II, 169–188 (2000).

30. Computer Algebra and Algebraic Geometry - Achievements and Perspec-
tives. Journ. Symb. Comp. 30, 253–290 (2000).

31. Three Algorithms in Algebraic Geometry, Coding Theory, and Singularity
Theory. In: C. Ciliberto et al: Application of Algebraic Geometry to Coding

Theory, Physics and Computation, Proceedings. Kluwer, 161–194 (with C.
Lossen, M. Schulze, 2001).

32. A Singular Introduction to Commutative Algebra. Springer-Verlag, 605 pp.
(with G. Pfister, and with contributions by O. Bachmann, C. Lossen and
H. Schönemann, 2002).

33. Two-variable identities for finite solvable groups. C.R. Acad. Sci. Paris, Ser.
I 337, 581–586 (with T. Bandman, F. Grunewald, B. Kunyavskii, G. Pfister,
E. Plotkin, 2003).

34. Engel-Like Identities Characterizing Finite Solvable Groups. To appear in
Compos. Math. (with T. Bandman, F. Grunewald, B. Kunyavskii, G. Pfister,
E. Plotkin, 2005).

Applying Computer Algebra Methods in Mathematical

Research.

The publications [33,34] are related to a problem from group theory. The
solution to this problem may serve as a model for how computer algebra
methods may be used for establishing conjectures and for proving theorems
in other fields of mathematics.

The was problem addressed to G.-M. Greuel and the second author by
B. Kunyavskii. It can be stated as follows:

Characterize the class of solvable finite groups G by explicit two-

variable identities.

To explain this problem, note that a group G is Abelian iff the two-variable
identity xy = yx is satisfied for all x, y ∈ G. Moreover, Zorn (1930) proved
that, setting

v1(x, y) :=
�

x, y
�

:= xyx
−1
y
−1

, v
k+1(x, y) :=

�

v
k
, y
�

,

a finite group G is nilpotent iff there exists some n ≥ 1 such that the two-
variable identity v

n
(x, y) = 1 holds for all x, y ∈ G. The identity v

n
(x, y) = 1

is referred to as an Engel Identity.
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The existence of two-variable (but non-explicit) identities for finite solv-
able groups has been proved by R. Brandl and J.S. Wilson (1981,1988).
B. Plotkin suggested that there should be an explicit definition for such a two-
variable identity U

n
(x, y) = 1, using the recursion U

k+1 = [xU
k
x

−1
, yU

k
y
−1].

A key point has been to find an appropriate candidate for U1(x, y). Indeed,
experimenting with Singular such a candidate was found (see [33,34]):

Theorem. Define U
k
inductively by

U1(x, y) := x
−2
y
−1
x, U

k+1(x, y) :=
�

xU
k
(x, y)x−1

, yU
k
(x, y)y−1

�

.

Then a finite group G is solvable iff there exist some n such that the two-

variable identity U
n
(x, y) = 1 holds for all x, y ∈ G.

That solvable groups satisfy the identity above is clear by the definition of
a solvable group. Thus, it remains to show that for a (minimal) non-solvable
finite group no such equality holds. Fortunately, the minimal non-solvable
finite groups have been classified by Thompson (1968): his list consists of

1. PSL(2,F
p
), p ≥ 5 prime,

2. PSL(2,F2p), p prime,

3. PSL(2,F3p), p prime,

4. PSL(3,F3),

5. the Suzuki groups Sz(2p), p prime.

The key observation that allows one to translate B. Plotkins suggestion
to a problem of algebraic geometry is the following1: if x, y ∈ G satisfy

1 �= U1(x, y) = U2(x, y), then U
n
(x, y) �= 1 for all n ∈ Z.

It thus remains to show that for each group in Thompson’s list, there are
elements x, y ∈ G such that 1 �= U1(x, y) = U2(x, y).

It is quite instructive to show how such a problem from group theory
can be translated to a problem in algebraic geometry and how to solve it
with the help of computer algebra. Let us consider here the family of groups
G = PSL(2,F

p
), p ≥ 5 a prime. The next two cases of Thomson’s list can be

handeled similarly, the fourth case is treated by giving an explicit example.
The last case, however, has turned out to be much more difficult, with a sur-
prising complexity and involving in addition deep theorems from arithmetic
geometry.

We represent two elements x and y of G by two matrices of the following
types:

x =

�

t 1
−1 0

�

, y =

�

1 b

c 1 + bc

�

,

1This observation is independent of the choice of U1.
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with b, c, t ∈ F
p
.

Clearly we have y �= x−1 for all (b, c, t) ∈ F3

p
, thus U1(x, y) �= 1. It re-

mains to show that for each choice of p the equation U1(x, y) = U2(x, y) has
a solution (b, c, t) ∈ F3

p
.

The ideal I ⊂ Z[b, c, t] spanned by the entries of U1(x, y)− U2(x, y) is
generated by four polynomials of degree at most 8. For a fixed prime number
p, it defines a curve in the three-dimensional space over F

p
. To prove that

there are F
p
-rational points on the curve we use the the Hasse-Weil-Theorem

as generalized by Aubry and Perret for singular curves: If C ⊆ F
q

n is an irre-

ducible affine curve, defined over F
q
, q = p

m, and if C ⊂ Pn is its projective

closure, then

#C(F
q
) ≥ q + 1− 2p

a

�

C
�√

q − deg
�

C
�

.

To be able to apply the theorem to our situation, we have to show that
the image of the ideal I in F

p
[b, c, t] defines an irreducible curve C over the

algebraic closure F
p
of F

p
. In algebraic terms, we have to show that the image

of I generates a prime ideal of F
p
[b, c, t].

If this is the case, we may compute the degree and the arithmetic
genus of the projective curve C ⊂ P3 via the Hilbert-polynomial which
equals H(t) = 10t− 11. Hence, deg

�

C
�

= 10 and p
a

�

C
�

= 11 + 1 = 12, and
the Hasse-Weil formula gives #C(F

p
) > 0 for all primes p > 593.

As the remaining finitely many cases can be checked directly with a
computer, it remains to prove that for any prime p ≥ 5, the ideal I · F

p
[b, c, t]

is, indeed, a prime ideal.
We have I · F

p
[b, c, t] =

�

I · F
p
(t)[b, c]

�

∩ F
p
[b, c, t], and I · F

p
(t)[b, c] is

generated by two polynomials f1 ∈ F
p
[b, t], f2 ∈ F

p
[b, c, t], as obtained using

Singular and verified by hand later on. Thus, it is enough to prove that
I · F

p
(t)[b, c] is a prime ideal, which is equivalent to showing that f1 is irre-

ducible in F
q
[t, b]. As the polynomial f1 has a small degree (namely 4) in x,

this could be proved by making an Ansatz and showing that the resulting
systems of polynomial equations have no solution over the algebraic closure
(which was done first by the computer, then by hand).

Work on Cohen-Macaulay Modules and Moduli Spaces.

In the joint paper [15] with H. Knörrer, G.-M. Greuel showed that a reduced
plane curve singularity is of finite CM-representation type, that is, its ana-
lytic local ring has only finitely many isomorphism classes of indecomposable
Cohen-Macaulay modules iff it is a simple (ADE-) singularity.

This result has been extended later by Knörrer and Greuel in a joint
paper with R.-O. Buchweitz and F.-O. Schreyer to arbitrary isolated hyper-
surface singularities [41]. It attracted interest by mathematicians working in
representation theory of finite dimensional algebras, and the question came
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up whether the so-called tame–wild dichotomy for finite dimensional algebras
(proved by Y. Drozd) also holds for curve singularities w.r.t. Cohen-Macaulay
modules. During a workshop in Bielefeld in 1990 organized by C.M. Ringel,
Greuel proposed this as a conjecture when he gave a talk about the construc-
tion of moduli spaces of CM modules over a fixed local ring of a reduced curve
singularity. Y. Drozd, who was in the audience, immediately realized that the
sandwiched construction used for the construction of moduli spaces could be
used to reduce the question to a matrix problem.

The tame–wild dichotomy for CM-modules over curve singularities was
finally proved by Greuel and Drozd in a joint paper. Several other joint pa-
pers of Greuel and Drozd were devoted to the classification of tame curve
and surface [47] singularities and their CM-modules. Moreover, in [45], the
tame–wild dichotomy was shown to hold also for singular projective curves
with a particular nice geometric description of the tame curves for which a
classification of all indecomposable vector bundles resp. torsion free sheaves
was achieved.

In the remaining part of this section, we focus on the general approach to
constructing moduli spaces for singularities and related objects developed by
G.-M. Greuel and the second author in the 1980s. This approach basically
consists of the following steps:

1. Fix some rough invariants.

2. Find the worst object among them you want to classify.

3. Consider the versal deformation X → T of the worst object with fixed
invariants.

4. Prove that this family contains all objects you want to classify.

5. Compute the kernel L of the Kodaira-Spencer map of the family.

6. Compute a stratification {T
α
} of T , by fixing suitable invariants such

that the geometric quotient T
α
/L exists.

7. Modulo the action of a finite group, we obtain coarse moduli spaces.

To illustrate this general idea, let us consider an example:

Classify all R = C[[tc, tc+1, . . .]]-modules of rank one with set of
values Γ = {γ0, . . . , γk, c, c+1, . . .}, 0 = γ0 < γ1 < . . . < γ

k
< c .

Following our philosophy, we determine the worst object:

M0 =

k
�

i=1

t
γi + t

cC[[t]] .
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Its versal deformation is given by

MΓ =

k
�

i=1

m
i
· C[λ][[tc, tc+1, . . .]] + t

cC[λ][[t]],

where λ =
�

λ
i,j

�

j+γi /∈Γ
, andm

i
= t

γi +
�

j+γi /∈Γ
λ
i,j
t
j+γi. The Kodaira-Spencer

map is a mapping

ρ : DerC C[λ] −→ Ext1
C[λ][[tc,...]]

(MΓ,MΓ) ,

and t, t
�
∈ T = Spec(C[λ]) define isomorphic modules iff they are in the same

integral manifold of the kernel L of ρ. This kernel is of the form
�

�
C[λ]δ

�
,

with L =
�

�
Cδ
�
an Abelian Lie algebra.

The computation of the moduli spaces as geometric quotients is based on the
following theorem:

Theorem. Let A be a K-algebra, L⊂ Dernil
K
(A) a Lie algebra, δ1, . . . , δn∈L

such that L ⊂

�

n

�=1
Aδ

�
, and let x1, . . . , xn be elements of A such that

det
�

δ
�
(x
j
)
�

is a unit in A and such that for each k-minor M of the first k

columns of
�

δ
�
(x
j
)
�

we have δ(M) ∈
�

j<k
Aδ(x

j
). Then the following holds:

(1) A
L[x1, . . . , xn] = A and x1, . . . , xn are algebraically independent over

AL. In particular, Spec(A) → Spec
�

A
L
�

is a (trivial) geometric quo-

tient.

(2) If, additionally, L = L is a finite dimensional nilpotent Lie algebra of

dimension n, then H
1(L, A) = 0.

This theorem has as consequence the following corollary which is the basis
for the applications:

Corollary. Let A be a Noetherian K-algebra, L ⊂ Dernil
K
(A) a finite dimen-

sional, nilpotent Lie algebra, and let d : A → Hom
K
(L,A) be the differential,

da(δ) = δ(a). Assume that the following holds:

• 0 = Z
k+1(L) ⊂ Z

k
(L) ⊂ . . . ⊂ Z0(L) = L is a finite filtration of L sat-

isfying [L,Z
j
(L)] ⊂ Z

j+1(L).

• 0 = F
−1(A) ⊂ F

0(A) ⊂ F
1(A) ⊂ . . . is a filtration of the K-algebra A

such that δ(F i(A)) ⊂ F
i−1(A) for all i and all δ ∈ L.

• Spec(A) =
�

α
U
α
is the flattening stratification of the modules

HomK(L,A)
�

A · d(F i(A)) , Hom
K
(Z
j
(L), A)

�

π
j
(A · d(A)) ,

where πj : HomK(L,A) → Hom
K
(Z
j+1(L)) denotes the canonical pro-

jection.
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Then U
α
is L-invariant and admits a locally trivial geometrical quotient with

respect to the action of L.

We illustrate the use of this corollary by continuing the example treated
above: in this case, L is Abelian, therefore no Z-filtration is needed.

Let a be the multiplicity of the maximal semigroup Γ0 ⊂ Γ acting on Γ.
Then we define F i(C[λ]) to be the C-vector space generated by all quasiho-
mogeneous polynomials in C[λ] of degree less than (i+ 1) · a. Here, we assign
the degree j to λ

ij
, which makes the vector fields δ

�
homogeneous of degree

−�.
Then the assumptions of the corollary are satisfied for the nilpotent Lie

algebra L(0) :=
�

�≥aCδ
�
⊂ L. Hence, if Spec(C[λ]) =

�

α
U
α
is the flatten-

ing stratification of the modules HomC(L
(0)
,C[λ])/C[λ] · d(F i(C[λ])), then

U
α
→ U

α
/L

(0) is a geometric quotient. Using an H
1-vanishing argument, one

can show that U
α
→ U

α
/L is a geometric quotient, too (see [37] for details).

This quotient turns out to be the moduli space of all modules with a certain
Hilbert function fixed.

Publications on CM-Modules and Moduli Spaces 1993–2003

35. Geometric quotients of unipotent group actions. Proc. London Math. Soc.

67, 75–105 (with G. Pfister, 1993).

36. Moduli spaces for torsion free modules on curve singularities I. Journ. Alg.
Geom. 2, 81-135 (with G. Pfister, 1993).

37. Moduli for Singularities. In: J.-P. Brasselet: Singularities. London Math.

Soc. Lect. Notes 201, CUP, 119–146 (with G. Pfister, 1994).

38. On moduli spaces of semiquasihomogeneous singularities. In: Algebraic ge-
ometry and singularities (La Ràbida, 1991). Birkhäuser Progress in Mathe-

matics 134, 171–185 (with G. Pfister, 1996).

39. Moduli Spaces of Semiquasihomogeneous Singularities with fixed Principal
Part.Journ. Alg. Geom. 6, 169–199 (with C. Hertling, G. Pfister, 1994).

40. Geometric quotients of unipotent group actions II. In: V.I. Arnold, G.-M.
Greuel, J.H.M. Steenbrink: Singularities, The Brieskorn Anniversary Vol-

ume. Birkhäuser, 27–36 (with G. Pfister, 1998).
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(with Y.A. Drozd, 1992).

43. Semicontinuity for representations of Cohen-Macaulay rings. Math. Ann.
306, 371-389 (with Y.A. Drozd, 1996).

44. On Schappert’s characterization of strictly unimodal plane curve singular-
ities. In: V.I. Arnold, G.-M. Greuel, J.H.M. Steenbrink: Singularities, The
Brieskorn Anniversary Volume. Birkhäuser, 3-26 (with Y.A. Drozd, 1998).
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45. Tame and Wild Projective Curves and Classification of Vector Bundles.
Journ. Alg. 246, 1–54 (with Y.A. Drozd, 2001).

46. Vector Bundles on Singular Projective Curves. In: C. Ciliberto et al: Appli-
cation of Algebraic Geometry to Coding Theory, Physics and Computation,

Proceedings. Kluwer, 1-15 (with I. Burban, Y.A. Drozd, 2001).

47. On Cohen-Macaulay Modules on Surface Singularities. Moscow Math. Journ.

3, 397–418 (with Y.A. Drozd, I. Kashuba, 2003).

Work on Equisingular Families

The short paper [48], actually an appendix to a paper of A. Tannenbaum in
Compos. Math. 1984, was, in a sense, the initial point for G.-M. Greuel to start
his own research on equisingular families. Tannenbaum observed that Segre’s
analysis of families with prescribed singularities can be rigorously justified for
curves with at most ordinary nodes and cusps as singularities: Segre associated
his characteristic linear series to H0

�

C, n∗
�N

�

, where �N is a certain locally
free sheaf on the normalization. Correct would have been H0

�

C, I
Z

ea(C)(C)
�

,
where Zea(C) is the zero-dimensional scheme locally defined by the Tjurina
ideal. Indeed, Tannenbaum proved the existence of an exact sequence

0 −→ I
Z

ea(C)(C) −→ n∗
�N −→ T −→ 0 ,

where T is a torsion sheaf supported at the singular locus of C, with stalk
T
x
= 0 if (C, x) is a node or a cusp.
As an addendum, Greuel computed the dimension of T

x
as

dimC T
x
= τ(C, x) + r(C, x)−mult(C, x)− δ(C, x) .

In particular, at a singular point x of C, T
x
is nonzero unless this singular

point is either a node or a cusp.
Greuel’s interest in equisingular families of curves with arbitrary singu-

larities (not just nodes and cusps) was stimulated, and more questions came
up. To describe some of these, we restrict ourselves to the case of plane curves,
using the following definition:

Definition. Let S1, . . . , Sr be (analytic or topological) types of plane curve
singularities. Then we set

V
d
(S1, . . . , Sr) :=







C ⊂ P2

�

�

�

�

�

�

C is a reduced curve of degree d,
having exactly r singular points of
types S1, . . . , Sr







,

respectively V
irr

d
(S1, . . . , Sr) where it is additionally assumed that C is irre-

ducible.
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In a joint work first with U. Karras [49], Greuel showed that the set
V
d
(S1, . . . , Sr) carries a natural structure as a complex space, even for an-

alytic types of arbitrary isolated singularities, given by deformation theory.
Moreover, with U. Karras and then with E. Shustin and the first author,
G.-M. Greuel looked for general numerical criteria answering the following
questions (for V = V

d
(S1, . . . , Sr), resp. V

irr

d
(S1, . . . , Sr)):

• Is V non-empty ?

• Is V smooth (that is, is the characteristic linear series complete) ?

• Is V T-smooth (that is, smooth and of the expected dimension) ?

• Is V irreducible ?

The general method for answering these questions is based on a translation
to a statement about the cohomology of ideal sheaves of zero-dimensional
schemes.

For instance, the T-smoothness property for analytic types translates as

V is T-smooth at C ⇐⇒ H
1
�

J
Z

ea(C)(d)
�

= 0 ,

for Zea(C) ⊂ P2 the zero-dimensional scheme which is locally given by the
Tjurina ideal for a local equation of C. For topological types, Zea(C) has to
be replaced by the zero-dimensional scheme Z

es(C) which is locally given by
the equisingularity ideal in the sense of J. Wahl.

The first criteria obtained have been based on the following vanishing
theorem of Riemann-Roch-type (see [49,50]):

Theorem. Let S be a smooth projective surface, C ⊂ S a reduced curve. Let

F be a torsion-free, coherent O
C
–module having rank 1 on each irreducible

component C
i
of C, i = 1, . . . , s. Then H

1
�

C,F
�

vanishes if

χ(ω
C
⊗O

Ci
)− isod

Ci
(F ,O

C
) < χ(F

Ci
)

for all i = 1, . . . , s. Here, F
Ci

= F ⊗O
Ci
(mod torsion). Moreover,

isod
Ci,x

(F ,G) := min(dimC coker(ϕ
Ci

: F
Ci,x

�→ G
Ci,x

)) ,

where the minimum is taken over all ϕ
Ci
, which are induced by homomor-

phisms ϕ : F
x
→ G

x
.

As a consequence, it was shown in [49,50] that V is T-smooth at C if the total
(equisingular) Tjurina number of C is bounded by a linear function in the
degree of d. The resulting criteria are usually referred to as the 3d-criterion
and the 4d-criterion.
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A slightly weaker 4d-criterion was found before by E. Shustin by different
methods. G.-M. Greuel met E. Shustin at the ICM 1990 in Kyoto (Japan)
where they discussed the different approaches and realized that joining efforts
could result in a major progress in this area.

A major breakthrough in the study of equisingular families was the first
asymptotically proper general sufficient condition for the existence of plane
curves with prescribed (topological types of) singularities obtained in [53]:

Theorem. If S1, . . . , Sr are topological types of singularities, and if

r
�

i=1

µ(S
i
) ≤

1

392
(d+2)2,

then V
irr

d
(S1, . . . , Sr) is non-empty.

This criterion is referred to as being asymptotically proper, since (from the
asymptotical point of view) it differs from the necessary criterion

r
�

i=1

µ(S
i
) ≤ (d−1)2

for non-emptyness only by a constant factor. Later, this factor 1

392
has been

improved to 1

9
, and the statement has been extended to analytic types by

E. Shustin.
For the T-smoothness problem, the linear right-hand side (as in the 3d-

and 4d-criterion) could be replaced by a quadratic function in d, too. So far,
the best known general sufficient criterion has been obtained in [55,56]:

Theorem. Let d ≥ 6. Then V irr

d
(S1, . . . , Sr) is T-smooth at C if

r
�

i=1

γ
ea(C, z

i
) ≤ (d+ 3)2,

�

resp.

r
�

i=1

γ
es(C, z

i
) ≤ (d+ 3)2

�

,

for new invariants γea
≤ (τ + 1)2, γ

es
≤ (τ es + 1)2.

In particular, for families of curves with n nodes and k cusps (resp. for families
of curves with ordinary m

i
-fold points) the sufficient condition reads

4n+ 9k ≤ (d+ 3)2

�

resp. 4 ·#(nodes) +
�

mi>2

2m2

i
≤ (d+ 3)2

�

.

For the irreducibility problem, the best known general sufficient criterion is:
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Theorem. If max
i=1..r

τ
�(S

i
) ≤ (2/5) ·d− 1 and

25

2
·#(nodes) + 18 ·#(cusps) +

10

9
·

�

τ
�(Si)≥3

�

τ
�(S

i
)+2

�2

< d
2
,

then V
irr

d
(S1, . . . , Sr) is non-empty and irreducible.

Here τ � refers to the Tjurina number, resp. to the equisingular Tjurina num-
ber, that is, the codimension of the equisingularity ideal.

In contrast to the conditions for non-emptiness and T-smoothness, this
condition seems not to be asymptotically proper. Indeed, for instance, for
plane curves with r ordinary m-fold points, the known examples of reducible
families (see [56]) satisfy d2 ∼ r ·m

2 while the left-hand side of our criterion
is of type r ·

m
4

4
.
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Exterior Algebra Methods for the

Construction of Rational Surfaces in

the Projective Fourspace

Hirotachi Abo Frank-Olaf Schreyer

Abstract

The aim of this paper is to present a construction of smooth rational
surfaces in projective fourspace with degree 12 and sectional genus
13. The construction is based on exterior algebra methods, finite field
searches and standard deformation theory.

Introduction

This paper is dedicated to Gert-Martin Greuel on the occasion of his sixtieth
birthday. The use of computer algebra systems is essential for the proof of the
main result of this paper. It will become clear that without computer algebra
systems like Singular and Plural developed in Kaiserslautern we could not ob-
tain the main result of this paper at all. We thank the group in Kaiserslautern
for their excellent program.

Hartshone conjectured that only finitely many components of the Hilbert
scheme of surfaces in P4 correspond to smooth rational surfaces. In 1989, this
conjecture was positively solved by Ellingsrud and Peskine [6]. The exact
bound for the degree is, however, still open. This motivates our search for
smooth rational surfaces in P4. Examples of smooth rational surfaces in P4

prior to this paper were known up to degree 11, see [4]. Our main result is
the proof of existence of the following example.

Theorem 0.1. There exists a family of smooth rational surfaces in P4 over

C with d = 12, π = 13 and hyperplane class

H ≡ 12L−

2
�

i1=1

4E
i
−

11
�

i2=3

3E
i
−

14
�

i3=12

2E
i
−

21
�

i4=15

E
i
.

1991 Mathematics Subject Classification. 14J10, 14J26 (secondary: 14Q10)
Key words. Rational surface, monad, exterior algebra, finite field
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in terms of a plane model.

Abstractly, these surfaces arise as the blow up of P2 in 21 points. L and E
i
in

the Theorem denote the class of a general line and the exceptional divisors.

The 21 points lie in special position due to the fact that we need
h0(X,O(H) = 5 and h1(X,O(H)) = 4. Indeed, it will turn out that the
component of the Hilbert scheme corresponding to these surfaces has dimen-
sion 38, hence up to projectivities this is a 38 − 24 = 14 dimensional family
of abstract surfaces. This fits with the fact that the 21 points have to satisfy
a condition of codimension ≤ 20 = 4 · 5, which leaves us with a family of col-
lections of points in P2 of dimension ≥ 2 · 21− 20 = 22. Up to automorphism
of P2 this leads to a family of dimension ≥ 22 − 8 = 14, and hence equality
holds. The great difficulty to find points in P2 in very special positions was
one of the sources, which led Hartshorne to his conjecture.

We construct these surfaces via their “Beilinson monad”: Let V be an
n + 1-dimensional vector space over a field K and let W be its dual space.
The basic idea behind a Beilinson monad is to represent a given coherent
sheaf on Pn= P(W ) as a homology of a finite complex of vector bundles,
which are direct sums of exterior powers of the tautological rank n subbundle
U = ker

�

W ⊗OP(W )→ OP(W )(1)
�

on P(W ). (Thus U � Ω1(1) is the twisted
sheaf of 1-forms. As Beilinson, we will use the notation Ωp(p) for the exterior
powers of U .)

The differentials in the monad are given by homogeneous matrices over
an exterior algebra E =

�

V . To construct a Beilinson monad for a given
coherent sheaf, we typically take the following steps: Determine the type of
the Beilinson monad, that is, determine the vector bundles of the complex,
and then find differentials in the monad.

Let X be a smooth rational surface in P4 = P(W ) with degree 12 and
sectional genus 13. The type of a Beilinson monad for the (suitably twisted)
ideal sheaf of X can be derived from the knowledge of its cohomology groups.
Such information is partially determined from general results such as the
Riemann-Roch formula and the Kodaira vanishing theorem. It is, however,
hard to determine the dimensions of all cohomology groups needed to de-
termine the type of the Beilinson monad. For this reason, we assume that
the ideal sheaf of X has the so-called “natural cohomology” in some range
of twists. In particular, we assume that in each twist −1 ≤ n ≤ 6 at most
one of the cohomology groups Hi(P4

, I
X
(n) for i = 0 . . . 4 is non-zero. This is

an open condition for surfaces in a given component of the Hilbert scheme.
Under this assumption the Beilinson monad for the twisted ideal sheaf I

X
(4)

of X has the following form:

4Ω3(3)
A

→ 2Ω2(2)⊕ 2Ω1(1)
B

→ 3O. (1)
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To detect differentials in (1), we use the following techniques developed re-
cently: (1) the first technique is an exterior algebra method due to Eisenbud,
Fløystad and Schreyer [5] and (2), the other one is the method using small
finite fields and random trials due to Schreyer [9].

(1) Eisenbud, Fløystad and Schreyer presented an explicit version of
the Bernstein-Gel’fand-Gel’fand correspondence. This correspondence is an
isomorphism between the derived category of bounded complexes of finitely
generated S-graded modules and the derived category of certain “Tate reso-
lutions” of E-modules, where S = Sym

K
(W ). As an application, they con-

structed the Beilinson monad from the Tate resolution explicitly. This enables
us to describe the conditions, that the differentials in the Beilinson monad
must satisfy in an exterior algebra context.

(2) Let M be a parameter space for objects in algebraic geometry such
as the Hilbert scheme or a moduli space. Suppose that M is a subvariety
of a rational variety G of codimension c. Then the probability for a point p
in G(F

q
) to lie in M(F

q
) is about (1 : qc). This approach will be successful

if the codimension c is small and the time required to check p �∈ M(F
q
)

is sufficiently small as compared with qc. This technique was applied first
by Schreyer [9] to find four different families of smooth surfaces in P4 with
degree 11 and sectional genus 11 over F3 by a random search, and he provided
a method to establish the existence of lifting these surfaces to characteristic
0. This technique has been successfully applied to solve various problems in
constructive algebraic geometry (see [10], [12] and [1]).

The Singular or Macaulay2 scripts used to construct and to analyse these
surfaces are available at http://www.math.uni-sb.de/~ag-schreyer and
http://www.math.colostate.edu/∼abo/programs.html.

1 The Exterior Algebra Method

Our construction of the rational surfaces uses the “Beilinson monad”. A
Beilinson monad represents a given coherent sheaf in terms of direct sums
of (suitably twisted) bundles of differentials and homomorphisms between
these bundles, which are given by homogeneous matrices over an exterior al-
gebra E. Recently, Eisenbud, Fløystad and Schreyer [5] showed that for a
given sheaf, one can get the Beilinson monad from its “Tate resolution”, that
is a free resolution over E, by a simple functor. This enables us to discuss
the Beilinson monad in an exterior algebra context. In this section, we take a
quick look at the exterior algebra method developed by Eisenbud, Fløystad
and Schreyer.
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