London Mathematical Society Lecture Note Series 324

Singularities and Computer Algebra

Edited by
Christoph Lossen and Gerhard Pfister

CAMBRIDGE UNIVERSITY PRESS

This page intentionally left blank

LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES

Managing Editor: Professor N. J. Hitchin, Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX1 3LB, United Kingdom

The titles below are available from booksellers, or from Cambridge University Press at www.cambridge.org/mathematics
100 Stopping time techniques for analysts and probabilists, L. EGGHE
105 A local spectral theory for closed operators, I. ERDELYI \& WANG SHENGWANG
107 Compactification of Siegel moduli schemes, C.-L. CHAI
109 Diophantine analysis, J. LOXTON \& A. VAN DER POORTEN (eds)
113 Lectures on the asymptotic theory of ideals, D. REES
116 Representations of algebras, P.J. WEBB (ed)
119 Triangulated categories in the representation theory of finite-dimensional algebras, D. HAPPEL
Proceedings of Groups - St Andrews 1985, E. ROBERTSON \& C. CAMPBELL (eds)
Proceedings of Groups - St Andrews 1985 , E. ROBERTSON \& C. CAMPBELL (eds)
Descriptive set theory and the structure of sets of uniqueness, A.S. KECHRIS \& A. LOUVEAU
Descriptive sel and modules, M. PREST
Model theory and
Algebraic, extremal \& metric combinatorics, M.-M
Surveys in combinatorics 1989, J. SIEMONS (ed
Introduction to uniform spaces, I.M. JAMES
Cohen-Macaulay modules over Cohen-Macaulay rings, Y. YOSHINO
Helices and vector bundles, A.N. RUDAKOV et al
Solitons, nonlinear evolution equations and inverse scattering, M. ABLOWITZ \& P. CLARKSON
Geometry of low-dimensional manifolds 1, S. DONALDSON \& C.B. THOMAS (eds)
Geometry of low-dimensional manifolds 2, S. DONALDSON \& C.B. THOMAS (eds)
Oligomorphic permutation groups, P. CAMERON
-functions and arithmetic, J. COATES \& M.J. TAYLOR (eds)
Classification theories of polarized varieties, TAKAO FUJITA
Geometry of Banach spaces, P.F.X. MULLER \& W. SCHACHERMAYER (eds)
Groups St Andrews 1989 volume 1, C.M. CAMPBELL \& E.F. ROBERTSON (eds)
Groups St Andrews 1989 volume 2, C.M. CAMPBELL \& E.F. ROBERTSON (eds)
Topics in varieties of group representations, S.M. VOVSI
Quasi-symmetric designs, M.S. SHRIKANDE \& S.S. SANE
Quasi-symmetric designs, M.S. SHRIKANDE \& S.S. SAN
Surveys in combinatorics, 1991, A.D. KEEDWELL (ed)
Surveys in combinatorics, 1991, A.D. KEEDWELL (ed)
Representations of algebras, H. TACHIKAWA \& S. BRENNER (eds)
Representations of algebras, HA PATERSON (ed)
Boolean function complexity, M.S. PATERSON (ed
Manifolds with singularities and the Adams-Novikov spectral sequence, B. BOTVINNIK
squares, A.R. RAJWADE
Algebraic varieties, GEORGE R. KEMPF
Discrete groups and geometry, W.J. HARVEY \& C. MACLACHLAN (eds)
Lectures on mechanics, J.E. MARSDEN
Adams memorial symposium on algebraic topology 1, N. RAY \& G. WALKER (eds) Adams memorial symposium on algebraic topology 2, N. RAY \& G. WALKER (eds)
Applications of categories in computer science, M. FOURMAN, P. JOHNSTONE \& A. PITTS (eds) Applications of categories in computer science, M. FO
Lower K- and L-theory, A. RANICKI
Complex projective geometry, G. ELLINGSRUD et al
Lectures on ergodic theory and Pesin theory on compact manifolds, M. POLLICOTT
Geometric group theory I, G.A. NIBLO \& M.A. ROLLER (eds)
Geometric group theory II, G.A. NIBLO \& M.A. ROLLER (eds)
Shintani zeta functions, A. YUKIE
Arithmetical functions, W. SCHWARZ \& J. SPILKER
Representations of solvable groups, O. MANZ \& T.R. WOLF
Complexity: knots, colourings and counting, D.J.A. WELSH
, K. WALKER (ed)
, H. BENDER \& G. GLAUBERMAN
Locally presentable and accessible categories, J. ADAMEK \& J. ROSICKY
Polynomial invariants of finite groups, D.J. BENSON
Finite geometry and combinatorics, F. DE CLERCK et al
Symplectic geometry, D. SALAMON (ed)
Independent random variables and rearrangement invariant spaces, M. BRAVERMAN
Arithmetic of blowup algebras, WOLMER VASCONCELOS
Microlocal analysis for differential operators, A. GRIGIS \& J. SJÖSTRAND
Two-dimensional homotopy and combinatorial group theory, C. HOG-ANGELONI et al
The algebraic characterization of geometric 4-manifolds, J.A. HILLMAN
Invariant potential theory in the unit ball of C", MANFRED STOLL
Singularities, JEAN-PAUL BRASSELET (ed)
The technique of pseudodifferential operators (ed)
The technique of pseudodifferential operators, H.O. CORDES
Hochschild cohomology of von Neumann algebras, A. SINCLAIR \& R. SMITH
Combinatorial and geometric group theory, A.J. DUNCAN, N.D. GILBERT \& J. HOWIE (eds)
Ergodic theory and its connections with harmonic analysis, K. PETERSEN \& I. SALAMA (eds)
Groups of Lie type and their geometries, W.M. KANF \& L. DIAAR
Vector bundles in algebraic geometry, N.J. HITCHIN, P. NEWSTEAD \& W.M. OXBURY (eds)
Arithmetic of diagonal hypersurfaces over finite fields, F.Q. GOUVÉA \& N. YUI
Hilbert C*-modules, E.C. LANCE
Groups 93 Galway St Andrews I, C.M. CAMPBELL et al (eds)
Generalised Euler-Jacobi inversion formula and asymptotics beyond all orders, V. KOWALENKO et al
Generalised Euler-Jacobi inversion formula and asymptotics beyond all orders, V. KOWALENKO et al
Number theory 1992-93, S. DAVID (ed)
Stochastic partial differential equations, A. ETHERIDGE (ed)
Quadratic forms with applications to algebraic geometry and topology, A. PFISTER
Surveys in combinatorics, 1995, PETER ROWLINSON (ed)
Algebraic set theory, A. JOYAL \& I. MOERDIJK
Harmonces in linear logic, J.-Y GIPARD Y
Advances in linear logic, J.-Y. GIRARD, Y. LAFONT \& L. REGNIER (eds)
Analytic semigroups and semilinear initial boundary value problems, KAZUAKI TAIRA
Computability, enumerability, unsolvability, S.B. COOPER, T.A. SLAMAN \& S.S. WAINER (eds)

```
225
226
*27 conjectures, index theorems and rigidity I, S. FERRY, A. RANICKI & J. ROSENBERG (eds)
228 Ergodic theory of }\mp@subsup{\boldsymbol{Z}}{}{d}\mathrm{ actions, M. POLLICOTT & K. SCHMIDT (eds)
229 Ergodicity for infinite dimensional systems, G. DA PRATO & J. ZABCZYK
230 Prolegomena to a middlebrow arithmetic of curves of genus 2, J.W.S. CASSELS & E.V. FLYNN
231 Semigroup theory and its applications, K.H. HOFMANN & M.W. MISLOVE (eds)
232 The descriptive set theory of Polish group actions, H. BECKER & A.S. KECHRIS
233 Finite fields and applications, S. COHEN & H. NIEDERREITER (eds)
234 Introduction to subfactors, V. JONES & V.S. SUNDER
235 Number theory 1993-94, S. DAVID (ed)
236 The James forest, H. FETTER & B. GAMBOA DE BUEN
237 Sieve methods, exponential sums, and their applications in number theory, G.R.H. GREAVES et al
238 Representation theory and algebraic geometry, A. MARTSINKOVSKY & G. TODOROV (eds)
240 Stable groups, FRANK O. WAGNER
242 Geometric Galois actions I, L. SCHNEPS & P. LOCHAK (eds)
Geometric Galois actions I, L. SCHNEPS & P. LOCHAK (eds)
Geometric Galois actions I, L. SConNisS & P. LOCHAK (eds) 
Geometry, combinatorial designs and related structures, J.W.P. HIRSCHFELD et al
p-Automorphisms of finite p-groups, E.I. KHUKHRO
p-Automorphisms of finite p-groups, E.I. KHUK
Tame topology and o-minimal structures, LOU VAN DEN DRIES
The atlas of finite groups: ten years on, ROBERT CURTIS & ROBERT WILSON (eds)
The atlas of finite groups: ten years on, ROBERT CUR
Gröbner bases and applications, B. BUCHBERGER & F. WINKLER (eds)
Geometry and cohomology in, group theory, P. KROPHOLLER, G. NIBLO & R. STÖHR (eds)
The q-Schur algebra, S. DONKIN
Galois representations in arithmetic algebraic geometry, A.J. SCHOLL & R.L. TAYLOR (eds)
Symmetries and integrability of difference equations, P.A. CLARKSON & F.W. NIJHOFF (eds)
Aspects of Galois theory, HELMUT VÖLKLEIN et al
An introduction to noncommutative differential geometry and its physical applications 2ed, J. MADORE
Sets and proofs, S.B. COOPER & J. TRUSS (eds)
Models and computability, S.B. COOPER & J. TRUSS (eds)
Groups St Andrews }1997\mathrm{ in Bath,I, C.M. CAMPBELL et al
Analysis and logic, C.W. HENSON J IOVINO A S. KECHI
Analysis and logic, C.W. HENSON, J. IOVINO, A.S. KECHRIS & E. ODELL
Singularity theory, BILL BRUCE & DAVID MOND (eds)
New trends in algebraic geometry, K. HULEK, F. CATANESE, C. PETERS & M. REID (eds)
Elliptic curves in cryptography, I. BLAKE, G. SEROUSSI & N. SMART
Surveys in combinatorics, 1999, J.D. LAMB & D.A. PREECE (eds)
Spectral asymptotics in the semi-classical limit, M. DIMASSI & J. SJÖSTRAND
Ergodic theory and topological dynamics, M.B. BEKKA & M. MAYER
Ergodic theory and topological dynamics, M.B. BEKKA & M. M
Singular perturbations of differential operators, S. ALBEVERIO & P KURASOV
Singular perturbations of differential operators, S. ALBEVERIO & P. KURASOV
Character theory for the odd order theorem, T. PETERFALVI
Spectral theory and geometry, E.B. DAVIES & Y. SAFAROV (eds)
The Mandlebrot set, theme and variations, TAN LEI (ed)
Descriptive set theory and dynamical systems, M. FOREMAN et al
Singularitis of plane curves, E. CASAS-ALVERO
Computational and geometric aspects of modern algebra, M.D. ATKINSON et al
Topics in symbolic dynamics and applications, F. BLANCHARD, A. MAASS & A. NOGUEIRA (eds)
Topics in symbolic dynamics and applications, F. BLANCHARD, A. MAASS & A. NOGU
Explicit birational geometry of 3-folds, ALESSIO CORTI & MILES REID (eds)
Explicit birational geometry of 3-folds, ALESSIO CORTI & MILES REID (eds)
Auslander-Buchweitz approximations of equivariant
Foundations of (H)
Foundations of computational mathematics, R. DEVORE,A. ISERLES & E. S
Rational points on curves over finite, fields, H. NI
Topics on Riemann surfaces and Fuchsian groups, E. BUJALANCE et al
Topics on Riemann surfaces and Fuchsian groups, E. B
Surveys in combinatorics, 2001, J. HIRSCHFELD (ed)
Aspects of Sobolev-type inequalities, L. SALOFF-COS
Quantum groups and Lie theory, A. PRESSLEY (ed)
Tits buildings and the model theory of groups, K. TENT (ed)
A quantum groups primer, S. MAJID
Second order partial differential equations in Hilbert spaces, G. DA PRATO & J. ZABCZYK
Introduction to the theory of operator spaces, G. PISIER
Introduction to the theory of operator spaces, G. PISIER 
Geometry and Integrabiry, LIONEL MALSN & YAV UZ NUTKU (eds)
Lectures on invariant theory, IGOR DOLGACHEV
he homotopy category of simply connected 4-manifolds, H.-J. BAUES
Kleinian Groups and Hyperbolic 3-Manifolds Y. KOMORI, V. MARKOVIC, C. SERIES (eds)
Introduction to Möbius Differential Geometry, UDO HERTRICH-JEROMIN
Stable Modules and the D(2)-Problem, F.E.A. JOHNSON
Stable Modules and the D(2)-Problem, F.E.A. JOHNSON M, J. ABLORWITZ B PRINARI, A. D. TRUBATCH
Discrete and Continuous Nonlinear Schrödinger Systems, M. J. ABLORWITZ, B. PRINARI, A.
Number Theory and Algebraic Geometry, MILES REID & ALEXEI SKOROBOGATOV (eds)
Groups St Andrew, (eds)
Groups St Andrews 2001 in Oxford Vol. 2, C.M. CAMPBELL, E.F. ROBERTSON, G.C. SMITH (eds)
Surveys in Combinatorics 2003, C D. WENSLEY (ed.)
Corings and Comodules,TOMASZ BRZEZINSKI & ROBERT WISBAURER
Topics in Dynamics and Ergodic Theory, SERGEY BEZUGLYI & SERGIY KOLYADA (eds)
Foundations of Computational Mathematics, Minneapolis 2002, FELIPE CUCKER et al (eds
Transcendental aspects of algebraic cycles, S. MULLER-STACH & C. PETERS (eds)
Spectral generalizations of line graphs, D. CVETKOVIC, P. ROWLINSON, S. SIMIC
Structured ring spectra, A. BAKER & B. RICHTER (eds)
Advances in elliptic curve cryptography, I. F. BLAKE, G. SEROUSSI, N. SMART
Perturbation of the boundary in boundary-value problems of Partial Differential Equations, DAN HENRY
Recent perspectives in random matrix theory and number theory, F. MEZZADRI & N. C. SNAITH (eds)
Recent perspectives in random matrix theory and number theory, F. MEZZADRI & N. C. SNAITH (eds)
```


Singularities and Computer Algebra

Edited by
CHRISTOPH LOSSEN \& GERHARD PFISTER
University of Kaiserslautern

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo
Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK
www.cambridge.org
Information on this title: www.cambridge.org/9780521683098
© Cambridge University Press 2006
This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2006
Printed in the United Kingdom at the University Press, Cambridge
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data
ISBN-13: 978-0-521-68309-8 paperback
ISBN-10: 0-521-68309-2 paperback
Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> Dedicated to
> Gert-Martin Greuel
> on the Occasion of
> His $60^{\text {th }}$ Birthday

Prof. Dr. Gert-Martin Greuel

Contents

Preface xi
Invited Lectures xiii
List of Participants XV
Christoph Lossen and Gerhard Pfister
Aspects of Gert-Martin Greuel's Mathematical Work xvii
Hirotachi Abo and Frank-Olaf Schreyer
Exterior Algebra Methods for the Construction of Rational Surfaces in the Projective Fourspace 1
Introduction 1
1 The Exterior Algebra Method 3
2 Construction 5
References 11
Enrique Artal Bartolo, Ignacio Luengo and Alejandro Melle Hernández Superisolated Surface Singularities 13
Introduction 13
1 Superisolated Surface Singularities 14
2 Deformations 20
3 Zariski Pairs 21
4 Monodromy Conjecture 23
5 SIS Singularities with Rational Homology Sphere Links and Rational Cuspidal Curves 27
6 Final Remarks 32
References 34
Ragnar-Olaf Buchweitz and David Mond Linear Free Divisors and Quiver Representations 41
1 Introduction 41
2 Linear Free Divisors 43
3 Representations of Quivers 44
4 The Fundamental Exact Sequence 48
5 Deformations of Representations 49
6 A Criterion for D to be a Linear Free Divisor 56
7 Examples 60
8 Equations for D 65
9 An Interlude from Commutative Algebra 71
10 The Case of E_{8} with the Centre as Only Sink 73
References 75
Yuriy A. Drozd
Derived Categories of Modules and Coherent Sheaves 79
1 Generalities 80
2 Finite Dimensional Algebras 85
3 Nodal Rings 98
4 Projective Curves 114
References 126
Wolfgang Ebeling
Monodromy 129
Introduction 129
1 The Monodromy Operator 130
2 Computation of Monodromy 133
3 Zeta Function 135
4 Spectrum 139
5 Monodromy and the Topology of the Singularity 142
References 144
Anne Frühbis-Krüger and Gerhard Pfister Algorithmic Resolution of Singularities 157
Introduction 157
1 Blowing Up 159
2 The b-Singular Locus and Basic Objects 162
3 The Monomial Case 167
4 The Tower of a Basic Object 168
5 Some Remarks on Applications 180
References 182
Evelia García Barroso and Bernard Teissier
Newton Polyhedra of Discriminants: A Computation 185
Introduction 185
1 Plane Branches, Semigroups and Monomial Curves 187
2 The Discriminant 192
3 Curves with Two Characteristic Pairs 194
4 A Question of Genericity 204

Contents

5 The Information is Constant 208
References 209
Helmut A. Hamm
Depth and Differential Forms 211
Introduction 211
1 A de Rham Lemma for Complete Intersections 213
2 Application: Complete Intersections in \mathbb{P}_{m} 215
3 Relation to Residues 216
4 A Generalized Akizuki-Nakano Theorem 217
5 A Preliminary Lefschetz Theorem for Differential Forms 220
6 De Rham Cohomology and Singular Cohomology 222
7 A Lefschetz Theorem for Differential Forms on Local Complete Intersections 226
8 Logarithmic de Rham Cohomology and the Gysin Sequence 227
References 231
Lê Dũng Tráng
The Geometry of the Versal Deformation 233
1 On the Local Topology of Isolated Hypersurface Singularities 234
2 An Example 237
3 Geometry of a Versal Deformation 238
4 Geometry of the Discriminant 242
5 Open Problems 244
References 245
Christoph Lossen and Hans Schönemann
21 Years of SINGULAR Experiments in Mathematics 247
Introduction 247
1 The Early Years 249
2 Applications in Singularity Theory 252
3 The Latest Features: SINGULAR 3 262
References 269
Eugenii Shustin
The Patchworking Construction in Tropical Enumerative Geometry 273
1 Introduction 273
2 Patchworking of Curves on Toric Surfaces 275
3 Patchworking of Curves on Arbitrary Surfaces 291
4 Nodal Deformations of Non-Planar Isolated Curve Singularities 294
References 299
Joseph H.M. Steenbrink
Adjunction Conditions for One-Forms on Surfaces in Projective Three-Space 301
Introduction 301
1 Differentials on Spaces with Quotient Singularities 302
2 The Filtered de Rham Complex 303
3 Barlet Differentials 304
4 Smoothing: the Specialization Sequence 305
5 Local Comparison 306
6 Application to Projective Hypersurfaces 310
References 313
Jan Stevens
Sextic Surfaces with Ten Triple Points 315
1 Nine Triple Points 316
2 Families with Ten Triple Points 319
References 331
Duco van Straten
Some Problems on Lagrangian Singularities 333
1 Definitions and Examples of Lagrangian Singularities 333
2 Algebraic and Geometric Aspects 336
3 Deformations and Rigidity 340
4 The δ-constant Stratum 343
References 347
Jonathan Wahl
Topology, Geometry, and Equations of Normal Surface Singularities 351
1 Introduction 352
2 The Basics of Normal Surface Singularities 353
3 Some Cases when Topology Implies Nice Geometry 356
4 Universal Abelian Covers of Singularities with $\mathbb{Q} H S$ Links 358
5 Splice Diagrams and Complete Intersections of Splice Type - ZHS Case 360
6 Generalized Splice Diagrams and CIST's 365
7 Okuma's Theorem and Further Questions 368
References 369

Preface

From 18 to 20 October 2004, a conference "Singularities and Computer Algebra" was held at the University of Kaiserslautern on the occasion of GertMartin Greuel's 60th birthday. It was attended by 70 participants from Europe, Israel, Japan, Canada and the U.S.A. We were particularly happy that Greuel's teacher, Egbert Brieskorn, was among them.

Most of the participants have been influenced by Greuel's work on singularities and their computational aspects over the last 30 years. Among them, one could find colleagues and friends from the early years in Göttingen and Bonn, but also former and present diploma and Ph.D. students of GertMartin Greuel at Kaiserslautern. In particular, each of the invited speakers could look retrospectively at cooperating in one way or another with Greuel.

The papers of this volume concern ten of the invited lectures, supplemented by four articles which are written by participants of the conference and focus on computational aspects. Most of the contributions are intended to give an overview on a particular aspect of singularities. They describe the development of important areas of singularity theory over the past years and they discuss open questions.

In the lead text, we include a list of the invited lectures and a list of the participants as well as a picture of the septic with 99 nodes found by Oliver Labs and Duco van Straten, which has acted as a logo for the conference. Further, we include an article focussing on Aspects of Gert-Martin Greuel's Mathematical Work.

We would like to thank all the people who have contributed to the sucess of the conference and to this volume.

> Christoph Lossen and Gerhard Pfister
> (Organizers of the Conference)

Invited Lectures

Helmut A. Hamm: Depth and De Rham Cohomology
LÊ Dung Trang: Singularity Invariants in Versal Deformations
Eugenii Shustin: The Patchworking Construction and Applications to Tropical Enumerative Geometry

Ragnar-Olaf Buchweitz: Free Divisors in the Representation Theory of Algebras

Wolfgang Ebeling: Monodromy
Yuri A. Drozd: Derived Categories of Modules and Coherent Sheaves
Antonio Campillo: Some Aspects and Applications of Singularities in Positive Characteristic

Jonathan WAhl: Topology, Geometry, and Equations of Normal Surface Singularities

Ignacio Luengo: Superisolated Singularities
Kyoji Saito: A Linearization Theorem of the Real Discriminants for Simple Singularities

Charles T.C. Wall: Transversality in families of mappings
Joseph H.M. Steenbrink: Adjunction Conditions for 1-Forms on Surfaces in Projective Three-Space

Duco van Straten: Lagrangian Singularities
Bernard Teissier: On the Structure of the Newton Polyhedra of Certain Discriminants

Wolfram Decker: SINGULAR and PLURAL
Frank-Olaf Schreyer: An Experimental Approach to Numerical Godeaux Surfaces

A septic surface S in $\mathbb{P}^{3}(\mathbb{C})$ with 99 real nodes. It was discovered in 2004 by O. Labs and D. van Straten using Singular experiments over small finite fields of prime order. If $\alpha \in \mathbb{C}$ satisfies $7 \alpha^{3}+7 \alpha+1=0$, a defining equation for S over $\mathbb{Q}(\alpha)$ is the following:

$$
\begin{aligned}
& \left(z+a_{5} w\right)\left((z+w)\left(x^{2}+y^{2}\right)+a_{1} z^{3}+a_{2} z^{2} w+a_{3} z w^{2}+a_{4} w^{3}\right)^{2} \\
& \quad-x^{7}+21 x^{5} y^{2}-35 x^{3} y^{4}+7 x y^{6}-7 z\left(x^{2}+y^{2}\right)^{3}+56 z^{3}\left(x^{2}+y^{2}\right)^{2} \\
& \quad-112 z^{5}\left(x^{2}+y^{2}\right)+64 z^{7}
\end{aligned}
$$

where

$$
\begin{array}{ll}
a_{1}:=-\frac{12}{7} \alpha^{2}-\frac{384}{49} \alpha-\frac{8}{7}, & a_{2}:=-\frac{32}{7} \alpha^{2}+\frac{24}{49} \alpha-4, \\
a_{3}:=-4 \alpha^{2}+\frac{24}{49} \alpha-4, & a_{4}:=-\frac{8}{7} \alpha^{2}+\frac{8}{49} \alpha-\frac{8}{7}, \\
a_{5}:=49 \alpha^{2}-7 \alpha+50 . &
\end{array}
$$

List of Participants

Klaus Altmann, Freie Universität Berlin (Germany)
Gottfried Barthel, Universität Konstanz (Germany)
Corina Baciu, TU Kaiserslautern (Germany)
Rocio Blanco, Univ. de Valladolid (Spain)
Lesya Bodnarchuk, TU Kaiserslautern (Germany)
Egbert Brieskorn, Bonn (Germany)
Steve Brüske, Universität Münster (Germany)
Ragnar-Olaf Buchweitz, University of Toronto (Canada)
Igor Burban, MPI Bonn (Germany)
Antonio Campillo, Univ. de Valladolid (Spain)
Jan A. Christophersen, Universitetet i Oslo (Norway)
Wolfram Decker, Universität des Saarlandes (Germany)
Gunnar Dietz, Universität Münster (Germany)
Yuri A. Drozd, Kyiv Taras Shevchenko University (Ukraine)
Alan Durfee, Mount Holyoke College (U.S.A.)
Wolfgang Ebeling, Universität Hannover (Germany)
Anne Frühbis-Krüger, TU Kaiserslautern (Germany)
Michel Granger, Université d'Angers (France)
Gert-Martin Greuel, TU Kaiserslautern (Germany)
Helmut A. Hamm, Universität Münster (Germany)
Jürgen Hausen, MF Oberwolfach (Germany)
Herwig Hauser, Universität Innsbruck (Austria)
Fernando Hernando, Univ. de Valladolid (Spain)
Claus Hertling, Universität Mannheim (Germany)
David Ilsen, TU Kaiserslautern (Germany)
Theo De Jong, Johannes-Gutenberg-Universität Mainz (Germany)
Dmitry Kerner, Tel Aviv University (Israel)
Bernd Kreussler, University of Limerick (Ireland)
Viktor S. Kulikov, Steklov Institute Moscow (Russia)
Matthias Kreck, Universität Heidelberg (Germany)
Herbert Kurke, Humboldt-Universität zu Berlin (Germany)
Oliver Labs, Johannes-Gutenberg-Universität Mainz (Germany)
Yousra Lakhal, TU Kaiserslautern (Germany)
Lê Dung Trang, ICTP Trieste (Italy)
Monique Lejeune-Jalabert, Université Versailles (France)
Victor Levandovskyy, TU Kaiserslautern (Germany)
Michael Lönne, Universität Hannover (Germany)
Christoph Lossen, TU Kaiserslautern (Germany)
Ignacio Luengo, Universidad Complutense Madrid (Spain)
Hannah Markwig, TU Kaiserslautern (Germany)

Thomas Markwig, TU Kaiserslautern (Germany)
Bernd Martin, TU Cottbus (Germany)
Francisco Monserrat, Universidad Jaume I, Castellon (Spain)
Julio Jose Moyano Fernandez, Univ. de Valladolid (Spain)
Stavros Papadakis, Universität des Saarlandes (Germany)
Markus Perling, Universität Paderborn (Germany)
Gerhard Pfister, TU Kaiserslautern (Germany)
Ragni Piene, Universitetet i Oslo (Norway)
Wilfred Pohl, TU Kaiserslautern (Germany)
Dorin Popescu, IMAR Bucharest (Romania)
Oswald Riemenschneider, Universität Hamburg (Germany)
Marko Roczen, Humboldt-Universität zu Berlin (Germany)
Diego Ruano, Univ. de Valladolid (Spain)
Kyoji Saito, Kyoto University (Japan)
Hans Schönemann, TU Kaiserslautern (Germany)
Frank-Olaf Schreyer, Universität des Saarlandes (Germany)
Mathias Schulze, Université d'Angers (France)
Christian Sevenheck, Universität Mannheim (Germany)
Donal O'Shea, Mount Holyoke College (U.S.A.)
Eugenii Shustin, Tel Aviv University (Israel)
Dirk Siersma, Universiteit Utrecht (The Netherlands)
Joseph H.M. Steenbrink, Universiteit Nijmegen (The Netherlands)
Jan Stevens, Chalmers TH Göteborg (Sweden)
Duco van Straten, Johannes-Gutenberg-Universität Mainz (Germany)
Bernard Teissier, Université Paris VII (France)
Günther Trautmann, TU Kaiserslautern (Germany)
Ilya Tyomkin, Weizmann Institute, Rehovot (Israel)
Jonathan Wahl, University of N.C., Chapel Hill (U.S.A.)
Charles T.C. Wall, Liverpool (U.K.)
Anja Wenning, Universität Münster (Germany)
Eric Westenberger, TU Kaiserslautern (Germany)
Oliver Wienand, TU Kaiserslautern (Germany)

Aspects of Gert-Martin Greuel's Mathematical Work

Christoph Lossen
Gerhard Pfister

Abstract

This article emanates from the opening speech of the conference "Singularities and Computer Algebra" which took place on October 18-20, 2004 on the occasion of Gert-Martin Greuel's 60th birthday. When preparing the speech, we realized soon that it is impossible to cover in such a speech Gert-Martin's complete work which is documented in more than eighty publications. Not to mention Gert-Martin's organisational work for the mathematical community. We decided to illuminate only some cornerstones of Gert-Martin's mathematical work: his Ph.D.-Thesis in 1973, his Habilitationsschrift in 1979, the Singular project, the work on moduli spaces, and the work on equisingular families.

Ph.D.-Thesis (1973).

In his Diploma Thesis, titled "Zur Picard-Lefschetz-Monodromie isolierter Singularitäten von vollständigen Durchschnitten", and his Ph.D.-Thesis, titled "Der Gauß-Manin Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten", G.-M. Greuel develops the theory of the Gauß-Manin connection for isolated complete intersection singularities: Let $f:(X, x) \rightarrow(S, 0)$ be a map of germs with the following properties:

- X is an m-dimensional complete intersection,
- S is a k-dimensional complex manifold,
- f is flat,
- $x \in X_{0}=f^{-1}(0)$ is an isolated singular point,
- the critical set C of f is of dimension $k-1$.

Then $\left(X_{0}, x\right)$ is an isolated complete intersection singularity of dimension $n:=m-k$. We introduce $S^{\prime}:=S \backslash D_{f}$ and $X^{\prime}:=X \backslash f^{-1}\left(D_{f}\right)$, where $D_{f}=f(C) \subset S$ denotes the discriminant of f.

By a result of Hamm (extending a result of Milnor), we may assume that the restriction $f: X^{\prime} \rightarrow S^{\prime}$ is a locally trivial differentiable fibre bundle whose fibres are homotopy equivalent to a bouquet of n-spheres. The number of spheres in the bouquet, which equals $\operatorname{dim}_{\mathbb{C}} H^{n}\left(X_{t}, \mathbb{C}\right)$, is called the Milnor number of the complete intersection germ $\left(X_{0}, x\right)$ and denoted by $\mu\left(X_{0}, x\right)$.

The fibration $f: X^{\prime} \rightarrow S^{\prime}$ induces a vector bundle with fibre $H^{n}\left(X_{t}, \mathbb{C}\right)$ over $t \in S^{\prime}$. Its sheaf of holomorphic sections, $\mathcal{H}^{n}=R^{n} f_{*} \mathbb{C}_{X^{\prime}} \otimes_{\mathbb{C}_{S^{\prime}}} \mathcal{O}_{S^{\prime}}$, has a canonical integrable connection $\nabla: \mathcal{H}^{n} \rightarrow \mathcal{H}^{n} \otimes_{\mathcal{O}_{S^{\prime}}} \Omega_{S^{\prime}}^{1}, \omega \otimes f \mapsto \omega \otimes d f$. The monodromy of this connection is the Picard-Lefschetz monodromy of f in $x, \rho_{\mathbb{C}}: \pi_{1}\left(S^{\prime}, t\right) \rightarrow \operatorname{Aut}\left(H^{n}\left(X_{t}, \mathbb{C}\right)\right)$, induced by the action of $\pi_{1}\left(S^{\prime}, t\right)$ on $H^{n}\left(X_{t}, \mathbb{Z}\right)$. Greuel's main result is now the following theorem (extending Brieskorn's result for hypersurfaces):

Theorem. The connection ∇ on S^{\prime} can be extended to a (meromorphic) regular singular connection on S, the Gau β-Manin connection

$$
\nabla_{X / S}: \mathcal{H}_{D R}^{n}(X / S) \longrightarrow \mathcal{H}_{D R}^{n}(X / S) \otimes \Omega_{S}^{1}\left(D_{f}\right)
$$

of coherent \mathcal{O}_{S}-modules, where $\mathcal{H}_{D R}^{n}(X / S)$ is the hypercohomology $\mathbb{R}^{n} f_{*} \Omega_{X / S}^{\bullet}$ of the complex of relative holomorphic differential forms.

This result is already contained in his diploma thesis. An important ingredient of the proof is a proof of the generalized de Rham lemma saying that, for each holomorphic map $h=\left(h_{1}, \ldots, h_{t}\right): X \rightarrow \mathbb{C}^{k}$, the morphism

$$
\Omega_{X / S}^{p} / \sum_{i=1}^{t} d h_{i} \wedge \Omega_{X / S}^{p-1} \longrightarrow \Omega_{X / S}^{p+t}, \quad[\omega] \longmapsto\left[d h_{1} \wedge \ldots \wedge d h_{t} \wedge \omega\right]
$$

is injective for $0 \leq p<\operatorname{codim}_{X} \operatorname{Sing}(f, h)$, where $(f, h): X \rightarrow S \times \mathbb{C}^{k}$. Here, X does not need to have an isolated singularity. The de Rham lemma was later formulated by K. Saito in a more algebraic context, but the first proof is due to Greuel [1]. Indeed, Greuel proves a much more general statement, and the proof provides results which were recently used by Gusein-Zade and Ebeling to compute indices of vector fields.

In his Ph.D. thesis [2], published in [4], Greuel proves that $\mathcal{H}_{D R}^{n}(X / S)$ is locally free for $\operatorname{dim} S \leq 2$ and that a different extension $\mathcal{H}_{D R}^{\prime \prime \prime}$ (corresponding to Brieskorns $\mathcal{H}^{\prime \prime}$ is locally free for arbitrary S (of rank $\mu\left(X_{0}, x\right)$). Using these results and applying the index theorem of Malgrange to the Gauß-Manin connection, Greuel gets a purely algebraic formula for the Milnor number of an isolated complete intersection singularity $\left(X_{0}, x\right) \subset(X, x)$ as above:

Theorem. The Milnor number $\mu\left(X_{0}, x\right)$ has the following properties:

$$
\begin{aligned}
& \text { (1) } \mu\left(X_{0}, x\right)=\operatorname{dim}_{\mathbb{C}} \Omega_{X_{0}, x}^{n} / d \Omega_{X_{0}, x}^{n-1} \text { if } n>0 \text {, and } \mu\left(X_{0}, x\right)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{X_{0}, x}-1 \\
& \text { if } n=0 \text {. }
\end{aligned}
$$

In particular, the Milnor number depends only on X_{0} (and not on f).
(2) If $\operatorname{dim} S=1$, then $\mu\left(X_{0}, x\right)+\mu(X, x)=\operatorname{dim}_{\mathbb{C}} \Omega_{X / S, x}^{m}=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{X, x} / \mathscr{C}$, where \mathscr{C} denotes the ideal of $\mathcal{O}_{X, x}$ generated by the entries of the Jacobian matrix $\partial\left(g_{1}, \ldots, g_{r}, f\right) / \partial \boldsymbol{x}$. Here g_{1}, \ldots, g_{r} are supposed to generate the ideal of X in $\mathbb{C}\{\boldsymbol{x}\}=\mathbb{C}\left\{x_{1}, \ldots, x_{m}\right\}$.

In particular, we can compute $\mu\left(X_{0}, x\right)$ by recursion:
(3) If $X_{i}:=V\left(f_{1}, \ldots, f_{k-i}\right) \subset \mathbb{C}^{m}$ and $f_{k-i+1}: X_{i} \rightarrow S_{i}=\mathbb{C}$, then

$$
\mu\left(X_{0}, 0\right)=\sum_{i=1}^{k}(-1)^{k-i} \operatorname{dim}_{\mathbb{C}} \Omega_{X_{i} / S_{i}, 0}^{n+i}=\sum_{i=1}^{k}(-1)^{k-i} \operatorname{dim}_{\mathbb{C}} \mathbb{C}\{\boldsymbol{x}\} / \mathscr{C}_{i}
$$

where \mathscr{C}_{i} denotes the ideal of $\mathbb{C}\{\boldsymbol{x}\}$ generated by f_{1}, \ldots, f_{i-1} and the i-minors of the Jacobian matrix $\partial\left(f_{1}, \ldots, f_{i}\right) / \partial \boldsymbol{x}$.
(4) If $X_{0}=V\left(f_{1}, \ldots, f_{k}\right) \subset \mathbb{C}^{m}$ is quasihomogeneous, then

$$
\mu\left(X_{0}, 0\right)=\operatorname{dim}_{\mathbb{C}} \mathbb{C}\{\boldsymbol{x}\} /\left(\mathscr{C}_{k}+\left\langle f_{k}\right\rangle\right)
$$

1. Zur Picard-Lefschetz-Monodromie isolierter Singularitäten von vollständigen Durchschnitten. Diplomarbeit, Göttingen (1971).
2. Der Gauß-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten. Ph.D. Thesis, Göttingen (1973).
3. Singularities of complete intersections. In: A. Hattori: Manifolds, Tokyo 1973. Univ. of Tokyo Press, 123-129 (with E. Brieskorn, 1975).
4. Der Gauß-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten. Math. Ann. 214, 235-266 (1975).
5. Spitzen, Doppelpunkte und vertikale Tangenten in der Diskriminante verseller Deformationen von vollständigen Durchschnitten. Math. Ann. 222, 71-88 (with Lê Dung Tráng, 1976).
6. Cohomologie des singularités non isolés. C.R. Acad. Sci. Paris Sér. A Math. 284, 321-322 (1977).
7. Die Zahl der Spitzen und die Jacobi-Algebra einer isolierten Hyperflächensingularität. Manuscr. Math. 21 227-241 (1977).

Habilitationsschrift (1979).

Greuel's Habilitationsschrift, which has the title "Kohomologische Methoden in der Theorie isolierter Singularitäten", consists of three parts:
I. The Milnor number and deformations of complex curve singularities.
II. Deformation spezieller Kurvensingularitäten und eine Formel von Deligne.
III. Dualität in der lokalen Kohomologie isolierter Singularitäten.

Large Parts of the Habilitationsschrift were written during a one year stay for research in France at IHES (Bures-sur Yvette) and at the mathematical institute of the Université de Nice.

In the first part, which has been based on a joint work with R.O. Buchweitz (see [11]), again a Milnor number $\mu(C, 0)$ is the main object of investigation. This time for $(C, 0) \subset\left(\mathbb{C}^{n}, 0\right)$ being an arbitrary reduced complex curve singularity. Buchweitz and Greuel define this new invariant as

$$
\mu(C, 0):=\operatorname{dim}_{\mathbb{C}} \omega_{C, 0} / d \mathcal{O}_{C, 0},
$$

where $\omega_{C, 0}=\operatorname{Ext}_{\mathcal{O}_{\mathbb{C}^{n}, 0}}^{n-1}\left(\mathcal{O}_{C, 0}, \Omega_{\mathbb{C}^{n}, 0}^{n}\right)$ is the dualizing module of Grothendieck, extending in this way the notion of the Milnor number of an isolated complete intersection curve singularity, $\mu(C, 0)=\operatorname{dim}_{\mathbb{C}} \Omega_{C, 0}^{1} / d \mathcal{O}_{C, 0}$.

According to Greuel, the main results of Part I can be summarized by saying that also the general notion of a Milnor number reflects the topological nature of curve singularities:
"Obwohl μ für Kurvensingularitäten in Kodimension ≥ 2 keine topologische Invariante ist, spiegelt sie doch im Wesentlichen den topologischen Charakter der Singularität wider. Das ist der gemeinsame Nenner der Hauptresultate des ersten Teils."

More precisely, Buchweitz and Greuel obtain the following results:
Theorem (Generalized Milnor formula). If ($C, 0$) is a reduced complex curve singularity with r branches, then

$$
\mu(C, 0)=2 \delta(C, 0)-r+1
$$

where $\delta(C, 0)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\bar{C}, \overline{0}} / \mathcal{O}_{C, 0}$ for $(\bar{C}, \overline{0}) \rightarrow(C, 0)$ the normalization.
Theorem. Let $f: \mathscr{C} \rightarrow D \subset \mathbb{C}$ be a good representative of a flat family of reduced curve singularities. Then, for all $t \in D$,
(1) The fibre \mathscr{C}_{t} is connected.
(2) $\mu\left(\mathscr{C}_{0}, 0\right)-\sum_{x \in \mathscr{C}_{t}} \mu\left(\mathscr{C}_{t}, x\right)=\operatorname{dim}_{\mathbb{C}} H^{1}\left(C_{t}, \mathbb{C}\right)$.
(3) $\mu\left(\mathscr{C}_{0}, 0\right)-\sum_{x \in \mathscr{C}_{t}} \mu\left(\mathscr{C}_{t}, x\right) \geq \delta\left(\mathscr{C}_{0}, 0\right)-\sum_{x \in \mathscr{C}_{t}} \delta\left(\mathscr{C}_{t}, x\right)$.
(4) $\mu_{t}:=\sum_{x \in \mathscr{C}_{t}} \mu\left(\mathscr{C}_{t}, x\right)$ is constant in t iff all fibres \mathscr{C}_{t} are contractible.

Statement (2) shows that the Milnor number is again a measure for the vanishing cohomology.

Theorem (μ-constant is equivalent to topological triviality).
Let $f: \mathscr{C} \rightarrow D \subset \mathbb{C}$ be a good representative of a flat family of reduced curve singularities with section $\sigma: D \rightarrow \mathscr{C}$ such that $\mathscr{C}_{t} \backslash\{\sigma(t)\}$ is smooth for all $t \in D$. Then the following are equivalent:
(a) $\mu\left(\mathscr{C}_{t}, \sigma(t)\right)$ is constant for $t \in D$.
(b) $\delta\left(\mathscr{C}_{t}, \sigma(t)\right)$ and $r\left(\mathscr{C}_{t}, \sigma(t)\right)$ are constant for $t \in D$.
(c) $f: \mathscr{C} \rightarrow D$ is topologically trivial.

Theorem (Generalized Zariski discriminant criterion).

Let $f: \mathscr{C} \rightarrow D \subset \mathbb{C}$ be a sufficiently small representative of a flat deformation of a reduced complete intersection curve singularity $(C, 0)$. Then the following are equivalent:
(a) There exists a finite mapping $\pi=\left(\pi_{1}, f\right):(\mathscr{C}, 0) \rightarrow(\mathbb{C} \times D, 0)$ such that the multiplicity of the discriminant (with Fitting structure) along $\{0\} \times D$ is constant for $t \in D$ and equal to

$$
\sum_{x \in \mathscr{C}_{t}}\left(\mu\left(\mathscr{C}_{t}, x\right)+\operatorname{mult}\left(\mathscr{C}_{t}, x\right)-1\right), \quad t \neq 0
$$

(b) $f: \mathscr{C} \rightarrow D$ admits a holomorphic section $\sigma: D \rightarrow \mathscr{C}$ such that \mathscr{C}_{t} is smooth outside $\{\sigma(t)\}$, and $\mu\left(\mathscr{C}_{t}, \sigma(t)\right)$ and $\operatorname{mult}\left(\mathscr{C}_{t}, \sigma(t)\right)$ are constant in t.

Note that condition (b) is stronger than equisingularity, since for a complete intersection in codimension ≥ 2 constant Milnor number does not imply constant multiplicity.

Part II of the Habilitationsschrift deals with smoothable singularities: Let $(C, 0) \subset\left(\mathbb{C}^{n}, 0\right)$ be a reduced complex curve singularity, and let

be the semiuniversal deformation. Then $(C, 0)$ is called smoothable if there exists a component E of $(S, 0)$ such that the fibre \mathscr{C}_{t} over a general point
$t \in E$ is smooth. The component $(E, 0)$ is then referred to as a smoothing component for $(C, 0)$.

Deligne's formula (1973) plays an important role in the investigation of smoothable singularities. It states that for a smoothable reduced complex curve singularity $(C, 0)$, each smoothing component has the dimension

$$
e(C, 0):=3 \delta(C, 0)-\underbrace{\operatorname{dim}_{\mathbb{C}} \bar{\Theta} / \Theta}_{=: m_{1}(C, 0)}
$$

where $\Theta=\operatorname{Hom}_{\mathcal{O}_{C, 0}}\left(\Omega_{C, 0}^{1}, \mathcal{O}_{C, 0}\right)$, and $\bar{\Theta}=\operatorname{Hom}_{\overline{\mathcal{O}}}\left(n_{*} \Omega_{\bar{C}, \overline{0}}^{1}, \overline{\mathcal{O}}\right)$ for $\overline{\mathcal{O}}=n_{*} \mathcal{O}_{\bar{C}, \overline{0}}$. And, for each reduced curve singularity $(C, 0)$, the codimension $m_{1}(C, 0)$ can be computed as $m_{1}(C, 0)=r(C, 0)+\operatorname{dim}_{\mathbb{C}} \bar{G} / G$, where $\bar{G}=\operatorname{Aut}(\overline{\mathcal{O}} / I)$ for some ideal $I \subset \overline{\mathcal{O}}$ contained in the conductor, and $G \subset \bar{G}$ the stabilisator of $\mathcal{O}_{C, 0} / I$.

The main goal in Part II of Greuel's Habilitationsschrift (published in [13]) is to extend Deligne's Formula to not necessarily smoothable singularities and to express it by means of invariants of $(C, 0)$ that are easier to compute:

Theorem. (1) If $(C, 0)$ is a quasihomogeneous complex curve singularity,

$$
e(C, 0)=\mu(C, 0)+t(C, 0)-1
$$

where $t(C, 0)=\operatorname{dim}_{\mathbb{C}}\left(\omega_{C, 0} / \mathfrak{m}_{C, 0} \omega_{C, 0}\right)$ is the Cohen-Macaulay type of $(C, 0)$.
(2) If $(C, 0)$ is Gorenstein and irreducible, then

$$
e(C, 0) \leq \mu(C, 0)
$$

and equality holds iff $(C, 0)$ is quasihomogeneous.
(3) For an arbitrary reduced complex curve singularity $(C, 0)$,

$$
\begin{aligned}
e(C, 0)=\mu & (C, 0)+t(C, 0)-1 \\
& +\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{\mathcal{O}_{C, 0}}\left(\Omega_{C, 0}^{1}, \mathcal{O}_{C, 0}\right) / \operatorname{Hom}_{\mathcal{O}_{C, 0}}\left(\overline{\mathcal{O}} / \mathcal{O}_{C, 0}\right) \\
& -\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{\mathcal{O}_{C, 0}}\left(\mathfrak{m}_{C, 0}, \mathcal{O}_{C, 0}\right) / \operatorname{Hom}_{\mathcal{O}_{C, 0}}\left(\overline{\mathcal{O}} / \mathcal{O}_{C, 0}\right)
\end{aligned}
$$

The irreducibility assumption in (2) was later removed (see [17]). While Deligne's proof of the formula for the dimension of a smoothing component was global, a local proof was given as an application of the main result in [16].

Part III of the Habilitationsschrift (published in [12]) is devoted to the comparison of the Milnor and the Tjurina number of an isolated complete intersection singularity. The name "Tjurina number" for $\tau(X, 0):=\operatorname{dim}_{\mathbb{C}} T_{X, 0}^{1}$ (for
an arbitrary singularity $(X, 0)$) was coined by Greuel and introduced in that paper. If $(X, 0)$ is unobstructed (e.g., a complete intersection), then $\tau(X, 0)$ equals the dimension of the base space of the semiuniversal deformation. Part III contains the following result:

Theorem. Let $(X, 0)$ be an isolated complete intersection singularity.
(1) If $(X, 0)$ is quasihomogeneous, then $\mu(X, 0)=\tau(X, 0)$.
(2) If the neighbourhood boundary of $(X, 0)$ is a rational homology sphere or if $\operatorname{dim}(X, 0)=1$, then $\mu(X, 0) \geq \tau(X, 0)$.

The last statement has been generalized by Looijenga and Steenbrink to arbitrary complete intersection singularities of dimension ≥ 2.
8. Invarianten quasihomogener vollständiger Durchschnitte. Invent. Math. 49, 67-86 (with H.A. Hamm, 1978).
9. Le nombre de Milnor, équisingularité, et déformations de singularités des courbes réduites. C.R. Acad. Sci. Paris Sér. A Math. 288 35-38 and Sém. sur les Singularités. Publ. Math. Univ. Paris 7, 13-30 (with R.-O. Buchweitz, 1979-80).
10. Kohomologische Methoden in der Theorie isolierter Singularitäten. Habilitationsschrift, Bonn (1979).
11. The Milnor number and deformations of complex curve singularities. Invent. Math. 58 241-281 (with R.-O. Buchweitz, 1980).
12. Dualität in der lokalen Kohomologie isolierter Singularitäten. Math. Ann. 250 157-173 (1980).
13. On deformation of curves and a formula of Deligne. In: J.M. Aroca et al: Algebraic Geometry, La Rábida 1981. Springer LNM 961, 141-168 (1983).
14. On the topology of smoothable singularities. In: P. Orlik: Singularities, Arcata 1981. Proc. Sympos. Pure Math. 40, 535-545 (with J.H.M. Steenbrink, 1983).
15. Einfache Kurvensingularitäten und torsionsfreie Moduln. Math. Ann. 270, 417-425 (with H. Knörrer, 1985).
16. The dimension of smoothing components. Duke Math. Journ. 52, 263-272 (with E. Looijenga, 1985).
17. Numerische Charakterisierung quasihomogener Gorenstein-Kurvensingularitäten. Math. Nachr. 124, 123-131 (with B. Martin, G. Pfister, 1985).
18. Constant Milnor number implies constant multiplicity for quasihomogeneous singularities. Manuscr. Math. 56, 159-166 (1986).
19. Torsion free modules and simple curve singularities. Canad. Math. Soc. Conf. Proc. 6, 91-94 (1986).
20. Deformationen isolierter Kurvensingularitäten mit eingebetteten Komponenten. Manuscr. Math. 70, 93-114 (with C. Brücker, 1990).
21. Simple Singularities in Positive Characteristic. Math. Z. 203, 339-354 (with H. Kröning, 1990).

The SINGULAR Project.

The birth of the Singular project can be dated back to about 1982, when G.-M. Greuel and the second author tried to generalize K. Saito's theorem which states that, for a germ $(X, 0)$ of an isolated hypersurface singularity, the following conditions are equivalent:
(a) ($X, 0$) is quasi-homogeneous (that is, has a good \mathbb{C}^{*}-action).
(b) $\mu(X, 0)=\tau(X, 0)$.
(c) The Poincaré complex of $(X, 0)$ is exact.

Trying to extend this theorem to complete intersection curve singularities, they only succeeded in proving the equivalence of (a) and (b) (see [17]). They expected that (b) and (c) are, indeed, not equivalent for general complete intersection curve singularities. They succeeded in expressing the exactness of the Poincaré complex as an equality of dimensions of certain $\mathcal{O}_{X, 0}$-modules. In those days, however, there was no computer algebra system available which could compute Milnor numbers, Tjurina numbers and the dimensions of the differential modules in the Poincaré complex. To be able to compute these numbers, such a system requires an implementation of T. Mora's tangent cone algorithm, a modification of Buchberger's Gröbner basis algorithm designed for computations over local rings.

Having implemented this algorithm, the expected counterexamples were found by H. Schönemann and the second author in C.T.C. Wall's list of unimodal complete intersection curve singularities: consider

$$
\left\{x y+z^{\ell-1}=x z+y z^{2}+y^{k-1}=0\right\}
$$

for $4 \leq \ell \leq k, 5 \leq k$.
Motivated by this success, Greuel and the second author tried to attack Zariski's famous multiplicity conjecture by searching for a counterexample. Starting point was the following result of Greuel, confirming Zariski's conjecture for families of quasihomogeneous isolated singularities [18]:

Theorem. Let $f \in \mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}$ be such that the ideal $\langle f\rangle$ can be generated by a semiquasihomogeneous polynomial, and let $f_{t} \in \mathbb{C}\left\{x_{1}, \ldots, x_{n}, t\right\}$ be a μ constant deformation of f, then the multiplicity of f_{t} is constant (that is, independent of t for $t \in \mathbb{C}$ small).

The method of proof suggested a way to look for possible counterexamples in the non-quasihomogeneous case. However, since Zariski's conjecture holds for curves and semiquasihomogeneous singularities, potential counterexamples have Milnor number >1000. For these computations, the existing implementation of the tangent cone algorithm was not sufficient. Therefore, Greuel, the second author and H. Schönemann decided to set up such a computer algebra system with improved algorithms and extended functionality.

The result is nowadays known as Singular which has grown to a major specialized computer algebra system used in mathematical research and teaching, and even in industrial applications (see the article on Singular in this volume by H. Schönemann and the first author).

The computational complexity provided by the potential counterexamples to Zariski's conjecture was a big challenge and resulted in sophisticated strategies for the implementation of Buchberger's (resp. Mora's) algorithm. One can say that the hardness of the problem is one of the main reasons for Singular to have one of the fastest implementations of a standard basis algorithm.

Although the search for a counterexample to Zariski's conjecture failed, it was not useless. The experiments with Singular suggested a positive answer to Zariski's conjecture in another special case, proved in [24]. In general, Zariski's conjecture is still open.

Some Publications Related to SINGULAR 1996-2005

22. Standard bases, syzygies and their implementation in Singular. In: Beiträge zur angewandten Analysis und Informatik. Shaker, Aachen, 69-96 (with H. Grassmann, B. Martin, W. Neumann, G. Pfister, W. Pohl, H. Schönemann, T. Siebert, 1994).
23. On an implementation of standard bases and syzygies in Singular. AAECC 7, 235-149 (with H. Grassmann, B. Martin, W. Neumann, G. Pfister, W. Pohl, H. Schönemann, T. Siebert, 1996).
24. Advances and improvements in the theory of standard bases and syzygies. Arch. Math. 66, 163-176 (with G. Pfister, 1996).
25. Description of Singular: A Computer Algebra System for Singularity Theory, Algebraic Geometry and Commutative Algebra. Euromath Bulletin 2, 161-172 (1996).
26. The normalisation: a new algorithm, implementation and comparisons. In: Proc. EUROCONFERENCE Computational Methods for Representations of Groups and Algebras (1.4.-5.4.1997). Birkhäuser (with W. Decker, T. de Jong, G. Pfister, 1998).
27. Primary decomposition: algorithms and comparisons. In: G.-M. Greuel, B.H. Matzat, G. Hiss: Algorithmic Algebra and Number Theory. Springer Verlag, Heidelberg, 187-220 (with W. Decker, G. Pfister, 1998).
28. Gröbner bases and algebraic geometry. In: B. Buchberger and F. Winkler: Gröbner Bases and Applications. LNS 251, CUP, 109-143 (with G. Pfister, 1998).
29. Applications of Computer Algebra to Algebraic Geometry, Singularity Theory and Symbolic-Numerical Solving. In: European Congress of Mathematicians, Barcelona, July 10-14, 2000, Vol. II, 169-188 (2000).
30. Computer Algebra and Algebraic Geometry - Achievements and Perspectives. Journ. Symb. Comp. 30, 253-290 (2000).
31. Three Algorithms in Algebraic Geometry, Coding Theory, and Singularity Theory. In: C. Ciliberto et al: Application of Algebraic Geometry to Coding Theory, Physics and Computation, Proceedings. Kluwer, 161-194 (with C. Lossen, M. Schulze, 2001).
32. A Singular Introduction to Commutative Algebra. Springer-Verlag, 605 pp . (with G. Pfister, and with contributions by O. Bachmann, C. Lossen and H. Schönemann, 2002).
33. Two-variable identities for finite solvable groups. C.R. Acad. Sci. Paris, Ser. I 337, 581-586 (with T. Bandman, F. Grunewald, B. Kunyavskii, G. Pfister, E. Plotkin, 2003).
34. Engel-Like Identities Characterizing Finite Solvable Groups. To appear in Compos. Math. (with T. Bandman, F. Grunewald, B. Kunyavskii, G. Pfister, E. Plotkin, 2005).

Applying Computer Algebra Methods in Mathematical Research.

The publications $[33,34]$ are related to a problem from group theory. The solution to this problem may serve as a model for how computer algebra methods may be used for establishing conjectures and for proving theorems in other fields of mathematics.

The was problem addressed to G.-M. Greuel and the second author by B. Kunyavskii. It can be stated as follows:

Characterize the class of solvable finite groups G by explicit twovariable identities.

To explain this problem, note that a group G is Abelian iff the two-variable identity $x y=y x$ is satisfied for all $x, y \in G$. Moreover, Zorn (1930) proved that, setting

$$
v_{1}(x, y):=[x, y]:=x y x^{-1} y^{-1}, \quad v_{k+1}(x, y):=\left[v_{k}, y\right]
$$

a finite group G is nilpotent iff there exists some $n \geq 1$ such that the twovariable identity $v_{n}(x, y)=1$ holds for all $x, y \in G$. The identity $v_{n}(x, y)=1$ is referred to as an Engel Identity.

The existence of two-variable (but non-explicit) identities for finite solvable groups has been proved by R. Brandl and J.S. Wilson $(1981,1988)$. B. Plotkin suggested that there should be an explicit definition for such a twovariable identity $U_{n}(x, y)=1$, using the recursion $U_{k+1}=\left[x U_{k} x^{-1}, y U_{k} y^{-1}\right]$. A key point has been to find an appropriate candidate for $U_{1}(x, y)$. Indeed, experimenting with Singular such a candidate was found (see [33,34]):

Theorem. Define U_{k} inductively by

$$
U_{1}(x, y):=x^{-2} y^{-1} x, \quad U_{k+1}(x, y):=\left[x U_{k}(x, y) x^{-1}, y U_{k}(x, y) y^{-1}\right] .
$$

Then a finite group G is solvable iff there exist some n such that the twovariable identity $U_{n}(x, y)=1$ holds for all $x, y \in G$.

That solvable groups satisfy the identity above is clear by the definition of a solvable group. Thus, it remains to show that for a (minimal) non-solvable finite group no such equality holds. Fortunately, the minimal non-solvable finite groups have been classified by Thompson (1968): his list consists of

1. $\operatorname{PSL}\left(2, \mathbb{F}_{p}\right), \quad p \geq 5$ prime,
2. $\operatorname{PSL}\left(2, \mathbb{F}_{2^{p}}\right), \quad p$ prime,
3. $\operatorname{PSL}\left(2, \mathbb{F}_{3^{p}}\right), \quad p$ prime,
4. $\operatorname{PSL}\left(3, \mathbb{F}_{3}\right)$,
5. the Suzuki groups $\mathrm{Sz}\left(2^{p}\right)$, p prime.

The key observation that allows one to translate B. Plotkins suggestion to a problem of algebraic geometry is the following ${ }^{1}$: if $x, y \in G$ satisfy $1 \neq U_{1}(x, y)=U_{2}(x, y)$, then $U_{n}(x, y) \neq 1$ for all $n \in \mathbb{Z}$.

It thus remains to show that for each group in Thompson's list, there are elements $x, y \in G$ such that $1 \neq U_{1}(x, y)=U_{2}(x, y)$.

It is quite instructive to show how such a problem from group theory can be translated to a problem in algebraic geometry and how to solve it with the help of computer algebra. Let us consider here the family of groups $G=\operatorname{PSL}\left(2, \mathbb{F}_{p}\right), p \geq 5$ a prime. The next two cases of Thomson's list can be handeled similarly, the fourth case is treated by giving an explicit example. The last case, however, has turned out to be much more difficult, with a surprising complexity and involving in addition deep theorems from arithmetic geometry.

We represent two elements x and y of G by two matrices of the following types:

$$
x=\left(\begin{array}{rr}
t & 1 \\
-1 & 0
\end{array}\right), \quad y=\left(\begin{array}{cc}
1 & b \\
c & 1+b c
\end{array}\right)
$$

[^0]with $b, c, t \in \mathbb{F}_{p}$.
Clearly we have $y \neq x^{-1}$ for all $(b, c, t) \in \mathbb{F}_{p}^{3}$, thus $U_{1}(x, y) \neq 1$. It remains to show that for each choice of p the equation $U_{1}(x, y)=U_{2}(x, y)$ has a solution $(b, c, t) \in \mathbb{F}_{p}^{3}$.

The ideal $I \subset \mathbb{Z}[b, c, t]$ spanned by the entries of $U_{1}(x, y)-U_{2}(x, y)$ is generated by four polynomials of degree at most 8 . For a fixed prime number p, it defines a curve in the three-dimensional space over \mathbb{F}_{p}. To prove that there are \mathbb{F}_{p}-rational points on the curve we use the the Hasse-Weil-Theorem as generalized by Aubry and Perret for singular curves: If $C \subseteq \overline{\mathbb{F}_{q}}{ }^{n}$ is an irreducible affine curve, defined over $\mathbb{F}_{q}, q=p^{m}$, and if $\bar{C} \subset \mathbb{P}^{n}$ is its projective closure, then

$$
\# C\left(\mathbb{F}_{q}\right) \geq q+1-2 p_{a}(\bar{C}) \sqrt{q}-\operatorname{deg}(\bar{C})
$$

To be able to apply the theorem to our situation, we have to show that the image of the ideal I in $\mathbb{F}_{p}[b, c, t]$ defines an irreducible curve C over the algebraic closure $\overline{\mathbb{F}_{p}}$ of \mathbb{F}_{p}. In algebraic terms, we have to show that the image of I generates a prime ideal of $\overline{\mathbb{F}_{p}}[b, c, t]$.

If this is the case, we may compute the degree and the arithmetic genus of the projective curve $\bar{C} \subset \mathbb{P}^{3}$ via the Hilbert-polynomial which equals $H(t)=10 t-11$. Hence, $\operatorname{deg}(\bar{C})=10$ and $p_{a}(\bar{C})=11+1=12$, and the Hasse-Weil formula gives $\# C\left(\mathbb{F}_{p}\right)>0$ for all primes $p>593$.

As the remaining finitely many cases can be checked directly with a computer, it remains to prove that for any prime $p \geq 5$, the ideal $I \cdot \overline{\mathbb{F}_{p}}[b, c, t]$ is, indeed, a prime ideal.

We have $I \cdot \overline{\mathbb{F}_{p}}[b, c, t]=\left(I \cdot \overline{\mathbb{F}_{p}}(t)[b, c]\right) \cap \overline{\mathbb{F}_{p}}[b, c, t]$, and $I \cdot \overline{\mathbb{F}_{p}}(t)[b, c]$ is generated by two polynomials $f_{1} \in \mathbb{F}_{p}[b, t], f_{2} \in \mathbb{F}_{p}[b, c, t]$, as obtained using Singular and verified by hand later on. Thus, it is enough to prove that $I \cdot \overline{\mathbb{F}_{p}}(t)[b, c]$ is a prime ideal, which is equivalent to showing that f_{1} is irreducible in $\overline{\mathbb{F}_{q}}[t, b]$. As the polynomial f_{1} has a small degree (namely 4) in x, this could be proved by making an Ansatz and showing that the resulting systems of polynomial equations have no solution over the algebraic closure (which was done first by the computer, then by hand).

Work on Cohen-Macaulay Modules and Moduli Spaces.

In the joint paper [15] with H. Knörrer, G.-M. Greuel showed that a reduced plane curve singularity is of finite CM-representation type, that is, its analytic local ring has only finitely many isomorphism classes of indecomposable Cohen-Macaulay modules iff it is a simple (ADE-) singularity.

This result has been extended later by Knörrer and Greuel in a joint paper with R.-O. Buchweitz and F.-O. Schreyer to arbitrary isolated hypersurface singularities [41]. It attracted interest by mathematicians working in representation theory of finite dimensional algebras, and the question came
up whether the so-called tame-wild dichotomy for finite dimensional algebras (proved by Y. Drozd) also holds for curve singularities w.r.t. Cohen-Macaulay modules. During a workshop in Bielefeld in 1990 organized by C.M. Ringel, Greuel proposed this as a conjecture when he gave a talk about the construction of moduli spaces of CM modules over a fixed local ring of a reduced curve singularity. Y. Drozd, who was in the audience, immediately realized that the sandwiched construction used for the construction of moduli spaces could be used to reduce the question to a matrix problem.

The tame-wild dichotomy for CM-modules over curve singularities was finally proved by Greuel and Drozd in a joint paper. Several other joint papers of Greuel and Drozd were devoted to the classification of tame curve and surface [47] singularities and their CM-modules. Moreover, in [45], the tame-wild dichotomy was shown to hold also for singular projective curves with a particular nice geometric description of the tame curves for which a classification of all indecomposable vector bundles resp. torsion free sheaves was achieved.

In the remaining part of this section, we focus on the general approach to constructing moduli spaces for singularities and related objects developed by G.-M. Greuel and the second author in the 1980s. This approach basically consists of the following steps:

1. Fix some rough invariants.
2. Find the worst object among them you want to classify.
3. Consider the versal deformation $X \rightarrow T$ of the worst object with fixed invariants.
4. Prove that this family contains all objects you want to classify.
5. Compute the kernel \mathcal{L} of the Kodaira-Spencer map of the family.
6. Compute a stratification $\left\{T_{\alpha}\right\}$ of T, by fixing suitable invariants such that the geometric quotient T_{α} / \mathcal{L} exists.
7. Modulo the action of a finite group, we obtain coarse moduli spaces.

To illustrate this general idea, let us consider an example:

$$
\begin{aligned}
& \text { Classify all } R=\mathbb{C}\left[\left[t^{c}, t^{c+1}, \ldots\right]\right] \text {-modules of rank one with set of } \\
& \text { values } \Gamma=\left\{\gamma_{0}, \ldots, \gamma_{k}, c, c+1, \ldots\right\}, \quad 0=\gamma_{0}<\gamma_{1}<\ldots<\gamma_{k}<c \text {. }
\end{aligned}
$$

Following our philosophy, we determine the worst object:

$$
M_{0}=\sum_{i=1}^{k} t^{\gamma_{i}}+t^{c} \mathbb{C}[[t]] .
$$

Its versal deformation is given by

$$
\mathscr{M}_{\Gamma}=\sum_{i=1}^{k} m_{i} \cdot \mathbb{C}[\boldsymbol{\lambda}]\left[\left[t^{c}, t^{c+1}, \ldots\right]\right]+t^{c} \mathbb{C}[\boldsymbol{\lambda}][[t]]
$$

where $\boldsymbol{\lambda}=\left\{\lambda_{i, j}\right\}_{j+\gamma_{i} \notin \Gamma}$, and $m_{i}=t^{\gamma_{i}}+\sum_{j+\gamma_{i} \notin \Gamma} \lambda_{i, j} t^{j+\gamma_{i}}$. The Kodaira-Spencer map is a mapping

$$
\rho: \operatorname{Der}_{\mathbb{C}} \mathbb{C}[\boldsymbol{\lambda}] \longrightarrow \operatorname{Ext}_{\mathbb{C}\left[\boldsymbol{\lambda}\left[\left[t^{c}, \ldots\right]\right]\right.}^{1}\left(\mathscr{M}_{\Gamma}, \mathscr{M}_{\Gamma}\right)
$$

and $t, t^{\prime} \in T=\operatorname{Spec}(\mathbb{C}[\boldsymbol{\lambda}])$ define isomorphic modules iff they are in the same integral manifold of the kernel \mathcal{L} of ρ. This kernel is of the form $\sum_{\ell} \mathbb{C}[\boldsymbol{\lambda}] \delta_{\ell}$, with $L=\sum_{\ell} \mathbb{C} \delta_{\ell}$ an Abelian Lie algebra.

The computation of the moduli spaces as geometric quotients is based on the following theorem:

Theorem. Let A be a K-algebra, $\mathcal{L} \subset \operatorname{Der}_{K}^{\text {nil }}(A)$ a Lie algebra, $\delta_{1}, \ldots, \delta_{n} \in \mathcal{L}$ such that $\mathcal{L} \subset \sum_{\ell=1}^{n} A \delta_{\ell}$, and let x_{1}, \ldots, x_{n} be elements of A such that $\operatorname{det}\left(\delta_{\ell}\left(x_{j}\right)\right)$ is a unit in A and such that for each k-minor M of the first k columns of $\left(\delta_{\ell}\left(x_{j}\right)\right)$ we have $\boldsymbol{\delta}(M) \in \sum_{j<k} A \boldsymbol{\delta}\left(x_{j}\right)$. Then the following holds:
(1) $A^{\mathcal{L}}\left[x_{1}, \ldots, x_{n}\right]=A$ and x_{1}, \ldots, x_{n} are algebraically independent over $A^{\mathcal{L}}$. In particular, $\operatorname{Spec}(A) \rightarrow \operatorname{Spec}\left(A^{\mathcal{L}}\right)$ is a (trivial) geometric quotient.
(2) If, additionally, $\mathcal{L}=L$ is a finite dimensional nilpotent Lie algebra of dimension n, then $H^{1}(\mathcal{L}, A)=0$.

This theorem has as consequence the following corollary which is the basis for the applications:

Corollary. Let A be a Noetherian K-algebra, $L \subset \operatorname{Der}_{K}^{\text {nil }}(A)$ a finite dimensional, nilpotent Lie algebra, and let $d: A \rightarrow \operatorname{Hom}_{K}(L, A)$ be the differential, $d a(\delta)=\delta(a)$. Assume that the following holds:

- $0=Z_{k+1}(L) \subset Z_{k}(L) \subset \ldots \subset Z_{0}(L)=L$ is a finite filtration of L satisfying $\left[L, Z_{j}(L)\right] \subset Z_{j+1}(L)$.
- $0=F^{-1}(A) \subset F^{0}(A) \subset F^{1}(A) \subset \ldots$ is a filtration of the K-algebra A such that $\delta\left(F^{i}(A)\right) \subset F^{i-1}(A)$ for all i and all $\delta \in L$.
- $\operatorname{Spec}(A)=\bigcup_{\alpha} U_{\alpha}$ is the flattening stratification of the modules

$$
\operatorname{Hom}_{K}(L, A) / A \cdot d\left(F^{i}(A)\right), \quad \operatorname{Hom}_{K}\left(Z_{j}(L), A\right) / \pi_{j}(A \cdot d(A)),
$$

where $\pi_{j}: \operatorname{Hom}_{K}(L, A) \rightarrow \operatorname{Hom}_{K}\left(Z_{j+1}(L)\right)$ denotes the canonical projection.

Then U_{α} is L-invariant and admits a locally trivial geometrical quotient with respect to the action of L.

We illustrate the use of this corollary by continuing the example treated above: in this case, L is Abelian, therefore no Z-filtration is needed.

Let a be the multiplicity of the maximal semigroup $\Gamma_{0} \subset \Gamma$ acting on Γ. Then we define $F^{i}(\mathbb{C}[\boldsymbol{\lambda}])$ to be the \mathbb{C}-vector space generated by all quasihomogeneous polynomials in $\mathbb{C}[\boldsymbol{\lambda}]$ of degree less than $(i+1) \cdot a$. Here, we assign the degree j to $\lambda_{i j}$, which makes the vector fields δ_{ℓ} homogeneous of degree $-\ell$.

Then the assumptions of the corollary are satisfied for the nilpotent Lie algebra $L^{(0)}:=\sum_{\ell \geq a} \mathbb{C} \delta_{\ell} \subset L$. Hence, if $\operatorname{Spec}(\mathbb{C}[\boldsymbol{\lambda}])=\bigcup_{\alpha} U_{\alpha}$ is the flattening stratification of the modules $\operatorname{Hom}_{\mathbb{C}}\left(L^{(0)}, \mathbb{C}[\boldsymbol{\lambda}]\right) / \mathbb{C}[\boldsymbol{\lambda}] \cdot d\left(F^{i}(\mathbb{C}[\boldsymbol{\lambda}])\right)$, then $U_{\alpha} \rightarrow U_{\alpha} / L^{(0)}$ is a geometric quotient. Using an H^{1}-vanishing argument, one can show that $U_{\alpha} \rightarrow U_{\alpha} / L$ is a geometric quotient, too (see [37] for details). This quotient turns out to be the moduli space of all modules with a certain Hilbert function fixed.

Publications on CM-Modules and Moduli Spaces 1993-2003

35. Geometric quotients of unipotent group actions. Proc. London Math. Soc. 67, 75-105 (with G. Pfister, 1993).
36. Moduli spaces for torsion free modules on curve singularities I. Journ. Alg. Geom. 2, 81-135 (with G. Pfister, 1993).
37. Moduli for Singularities. In: J.-P. Brasselet: Singularities. London Math. Soc. Lect. Notes 201, CUP, 119-146 (with G. Pfister, 1994).
38. On moduli spaces of semiquasihomogeneous singularities. In: Algebraic geometry and singularities (La Ràbida, 1991). Birkhäuser Progress in Mathematics 134, 171-185 (with G. Pfister, 1996).
39. Moduli Spaces of Semiquasihomogeneous Singularities with fixed Principal Part.Journ. Alg. Geom. 6, 169-199 (with C. Hertling, G. Pfister, 1994).
40. Geometric quotients of unipotent group actions II. In: V.I. Arnold, G.-M. Greuel, J.H.M. Steenbrink: Singularities, The Brieskorn Anniversary Volume. Birkhäuser, 27-36 (with G. Pfister, 1998).
41. Cohen-Macaulay modules on hypersurface singularities, II. Invent. Math. 88, 165-182 (with R.-O. Buchweitz, F.-O. Schreyer, 1987).
42. Tame-wild dichotomy for Cohen-Macaulay modules. Math. Ann. 95, 387-394 (with Y.A. Drozd, 1992).
43. Semicontinuity for representations of Cohen-Macaulay rings. Math. Ann. 306, 371-389 (with Y.A. Drozd, 1996).
44. On Schappert's characterization of strictly unimodal plane curve singularities. In: V.I. Arnold, G.-M. Greuel, J.H.M. Steenbrink: Singularities, The Brieskorn Anniversary Volume. Birkhäuser, 3-26 (with Y.A. Drozd, 1998).
45. Tame and Wild Projective Curves and Classification of Vector Bundles. Journ. Alg. 246, 1-54 (with Y.A. Drozd, 2001).
46. Vector Bundles on Singular Projective Curves. In: C. Ciliberto et al: Application of Algebraic Geometry to Coding Theory, Physics and Computation, Proceedings. Kluwer, 1-15 (with I. Burban, Y.A. Drozd, 2001).
47. On Cohen-Macaulay Modules on Surface Singularities. Moscow Math. Journ. 3, 397-418 (with Y.A. Drozd, I. Kashuba, 2003).

Work on Equisingular Families

The short paper [48], actually an appendix to a paper of A. Tannenbaum in Compos. Math. 1984, was, in a sense, the initial point for G.-M. Greuel to start his own research on equisingular families. Tannenbaum observed that Segre's analysis of families with prescribed singularities can be rigorously justified for curves with at most ordinary nodes and cusps as singularities: Segre associated his characteristic linear series to $H^{0}\left(C, n_{*} \widetilde{\mathcal{N}}\right)$, where $\widetilde{\mathcal{N}}$ is a certain locally free sheaf on the normalization. Correct would have been $H^{0}\left(C, \mathcal{I}_{\text {Z }^{e a}(C)}(C)\right)$, where $Z^{e a}(C)$ is the zero-dimensional scheme locally defined by the Tjurina ideal. Indeed, Tannenbaum proved the existence of an exact sequence

$$
0 \longrightarrow \mathcal{I}_{Z^{\text {ea }}(C)}(C) \longrightarrow n_{*} \tilde{\mathcal{N}} \longrightarrow \mathscr{T} \longrightarrow 0,
$$

where \mathscr{T} is a torsion sheaf supported at the singular locus of C, with stalk $\mathscr{T}_{x}=0$ if (C, x) is a node or a cusp.

As an addendum, Greuel computed the dimension of \mathscr{T}_{x} as

$$
\operatorname{dim}_{\mathbb{C}} \mathscr{T}_{x}=\tau(C, x)+r(C, x)-\operatorname{mult}(C, x)-\delta(C, x) .
$$

In particular, at a singular point x of C, \mathscr{T}_{x} is nonzero unless this singular point is either a node or a cusp.

Greuel's interest in equisingular families of curves with arbitrary singularities (not just nodes and cusps) was stimulated, and more questions came up. To describe some of these, we restrict ourselves to the case of plane curves, using the following definition:

Definition. Let S_{1}, \ldots, S_{r} be (analytic or topological) types of plane curve singularities. Then we set

$$
V_{d}\left(S_{1}, \ldots, S_{r}\right):=\left\{\begin{array}{l|l}
C \subset \mathbb{P}^{2} & \begin{array}{l}
C \text { is a reduced curve of degree } d \\
\text { having exactly } r \text { singular points of } \\
\text { types } S_{1}, \ldots, S_{r}
\end{array}
\end{array}\right\}
$$

respectively $V_{d}^{i r r}\left(S_{1}, \ldots, S_{r}\right)$ where it is additionally assumed that C is irreducible.

In a joint work first with U. Karras [49], Greuel showed that the set $V_{d}\left(S_{1}, \ldots, S_{r}\right)$ carries a natural structure as a complex space, even for analytic types of arbitrary isolated singularities, given by deformation theory. Moreover, with U. Karras and then with E. Shustin and the first author, G.-M. Greuel looked for general numerical criteria answering the following questions (for $V=V_{d}\left(S_{1}, \ldots, S_{r}\right)$, resp. $V_{d}^{i r r}\left(S_{1}, \ldots, S_{r}\right)$):

- Is V non-empty?
- Is V smooth (that is, is the characteristic linear series complete)?
- Is $V T$-smooth (that is, smooth and of the expected dimension)?
- Is V irreducible?

The general method for answering these questions is based on a translation to a statement about the cohomology of ideal sheaves of zero-dimensional schemes.

For instance, the T-smoothness property for analytic types translates as

$$
V \text { is T-smooth at } C \Longleftrightarrow H^{1}\left(\mathcal{J}_{Z^{e a}(C)}(d)\right)=0
$$

for $Z^{e a}(C) \subset \mathbb{P}^{2}$ the zero-dimensional scheme which is locally given by the Tjurina ideal for a local equation of C. For topological types, $Z^{e a}(C)$ has to be replaced by the zero-dimensional scheme $Z^{e s}(C)$ which is locally given by the equisingularity ideal in the sense of J. Wahl.

The first criteria obtained have been based on the following vanishing theorem of Riemann-Roch-type (see [49,50]):

Theorem. Let S be a smooth projective surface, $C \subset S$ a reduced curve. Let \mathcal{F} be a torsion-free, coherent \mathcal{O}_{C}-module having rank 1 on each irreducible component C_{i} of $C, i=1, \ldots, s$. Then $H^{1}(C, \mathcal{F})$ vanishes if

$$
\chi\left(\omega_{C} \otimes \mathcal{O}_{C_{i}}\right)-\operatorname{isod}_{C_{i}}\left(\mathcal{F}, \mathcal{O}_{C}\right)<\chi\left(\mathcal{F}_{C_{i}}\right)
$$

for all $i=1, \ldots, s$. Here, $\mathcal{F}_{C_{i}}=\mathcal{F} \otimes \mathcal{O}_{C_{i}}$ (mod torsion). Moreover,

$$
\operatorname{isod}_{C_{i}, x}(\mathcal{F}, \mathcal{G}):=\min \left(\operatorname{dim}_{\mathbb{C}} \operatorname{coker}\left(\varphi_{C_{i}}: \mathcal{F}_{C_{i}, x} \hookrightarrow \mathcal{G}_{C_{i}, x}\right)\right)
$$

where the minimum is taken over all $\varphi_{C_{i}}$, which are induced by homomorphisms $\varphi: \mathcal{F}_{x} \rightarrow \mathcal{G}_{x}$.

As a consequence, it was shown in $[49,50]$ that V is T-smooth at C if the total (equisingular) Tjurina number of C is bounded by a linear function in the degree of d. The resulting criteria are usually referred to as the $3 d$-criterion and the $4 d$-criterion.
xxxiv. C. Lossen and G. Pfister

A slightly weaker $4 d$-criterion was found before by E. Shustin by different methods. G.-M. Greuel met E. Shustin at the ICM 1990 in Kyoto (Japan) where they discussed the different approaches and realized that joining efforts could result in a major progress in this area.

A major breakthrough in the study of equisingular families was the first asymptotically proper general sufficient condition for the existence of plane curves with prescribed (topological types of) singularities obtained in [53]:

Theorem. If S_{1}, \ldots, S_{r} are topological types of singularities, and if

$$
\sum_{i=1}^{r} \mu\left(S_{i}\right) \leq \frac{1}{392}(d+2)^{2}
$$

then $V_{d}^{i r r}\left(S_{1}, \ldots, S_{r}\right)$ is non-empty.
This criterion is referred to as being asymptotically proper, since (from the asymptotical point of view) it differs from the necessary criterion

$$
\sum_{i=1}^{r} \mu\left(S_{i}\right) \leq(d-1)^{2}
$$

for non-emptyness only by a constant factor. Later, this factor $\frac{1}{392}$ has been improved to $\frac{1}{9}$, and the statement has been extended to analytic types by E. Shustin.

For the T-smoothness problem, the linear right-hand side (as in the 3dand $4 d$-criterion) could be replaced by a quadratic function in d, too. So far, the best known general sufficient criterion has been obtained in [55,56]:

Theorem. Let $d \geq 6$. Then $V_{d}^{\text {irr }}\left(S_{1}, \ldots, S_{r}\right)$ is T-smooth at C if

$$
\sum_{i=1}^{r} \gamma^{e a}\left(C, z_{i}\right) \leq(d+3)^{2}, \quad\left(\text { resp. } \quad \sum_{i=1}^{r} \gamma^{e s}\left(C, z_{i}\right) \leq(d+3)^{2}\right)
$$

for new invariants $\gamma^{e a} \leq(\tau+1)^{2}, \quad \gamma^{e s} \leq\left(\tau^{e s}+1\right)^{2}$.
In particular, for families of curves with n nodes and k cusps (resp. for families of curves with ordinary m_{i}-fold points) the sufficient condition reads

$$
4 n+9 k \leq(d+3)^{2} \quad\left(\text { resp. } 4 \cdot \#(\text { nodes })+\sum_{m_{i}>2} 2 m_{i}^{2} \leq(d+3)^{2}\right)
$$

For the irreducibility problem, the best known general sufficient criterion is:

Theorem. If $\max _{i=1 . . r} \tau^{\prime}\left(S_{i}\right) \leq(2 / 5) \cdot d-1$ and

$$
\frac{25}{2} \cdot \#(\text { nodes })+18 \cdot \#(\text { cusps })+\frac{10}{9} \cdot \sum_{\tau^{\prime}\left(S_{i}\right) \geq 3}\left(\tau^{\prime}\left(S_{i}\right)+2\right)^{2}<d^{2}
$$

then $V_{d}^{i r r}\left(S_{1}, \ldots, S_{r}\right)$ is non-empty and irreducible.
Here τ^{\prime} refers to the Tjurina number, resp. to the equisingular Tjurina number, that is, the codimension of the equisingularity ideal.

In contrast to the conditions for non-emptiness and T-smoothness, this condition seems not to be asymptotically proper. Indeed, for instance, for plane curves with r ordinary m-fold points, the known examples of reducible families (see [56]) satisfy $d^{2} \sim r \cdot m^{2}$ while the left-hand side of our criterion is of type $r \cdot \frac{m^{4}}{4}$.

Publications Related to Equisingular Families 1984-2006

48. A remark on the paper of A. Tannenbaum. Compos. Math. 51, 185-187 (1984).
49. Families of varieties with prescribed singularities. Compos. Math. 69, 83-110 (with U. Karras, 1989).
50. Equianalytic and equisingular families of curves on surfaces. Manuscr. Math. 91, 323-342 (with C. Lossen, 1996).
51. New asymptotics in the geometry of equisingular families of curves. $I M R N$ 13, 595-611 (with C. Lossen, E. Shustin, 1997).
52. Geometry of families of nodal curves on the blown-up projective plane. Trans. AMS 350, 251-274 (with C. Lossen, E. Shustin, 1998).
53. Plane curves of minimal degree with prescribed singularities. Invent. Math. 133, 539-580 (with C. Lossen, E. Shustin, 1998).
54. Geometry of Equisingular Families of Curves. In: B. Bruce, D. Mond: Singularity Theory. London Math. Soc. LNS 263, CUP, 79-108 (with E. Shustin, 1999).
55. Castelnuovo Function, Zero-dimensional Schemes and Singular Plane Curves. Journ. Alg. Geom. 9, 663-710 (with C. Lossen, E. Shustin, 2000).
56. The Variety of Plane Curves with Ordinary Singularities is not Irreducible. IMRN 11, 543-550 (with C. Lossen, E. Shustin, 2001).
57. The Geometry of Families of Singular Curves. In: D. Siersma, C.T.C. Wall, V. Zakalyukin: New developments in Singularity Theory. NATO Science Series, Kluwer, 159-192 (with C. Lossen, 2001).
58. Introduction to Singularities and Deformations. Monograph, to appear at Springer-Verlag (with C. Lossen, E. Shustin, 2006).
59. Singular Algebraic Curves. Monograph, to appear at Springer-Verlag (with C. Lossen, E. Shustin).
xxxvi. C. Lossen and G. Pfister

Fachbereich Mathematik, TU Kaiserslautern, Postfach 3049, D67653 Kaiserslautern, Germany
E-mail address: lossen@mathematik.uni-kl.de
Fachbereich Mathematik, TU Kaiserslautern, Postfach 3049, D67653 Kaiserslautern, Germany
E-mail address: pfister@mathematik.uni-kl.de

Exterior Algebra Methods for the Construction of Rational Surfaces in the Projective Fourspace

Hirotachi Abo
Frank-Olaf Schreyer

Abstract

The aim of this paper is to present a construction of smooth rational surfaces in projective fourspace with degree 12 and sectional genus 13. The construction is based on exterior algebra methods, finite field searches and standard deformation theory.

Introduction

This paper is dedicated to Gert-Martin Greuel on the occasion of his sixtieth birthday. The use of computer algebra systems is essential for the proof of the main result of this paper. It will become clear that without computer algebra systems like Singular and Plural developed in Kaiserslautern we could not obtain the main result of this paper at all. We thank the group in Kaiserslautern for their excellent program.

Hartshone conjectured that only finitely many components of the Hilbert scheme of surfaces in \mathbb{P}^{4} correspond to smooth rational surfaces. In 1989, this conjecture was positively solved by Ellingsrud and Peskine [6]. The exact bound for the degree is, however, still open. This motivates our search for smooth rational surfaces in \mathbb{P}^{4}. Examples of smooth rational surfaces in \mathbb{P}^{4} prior to this paper were known up to degree 11, see [4]. Our main result is the proof of existence of the following example.

Theorem 0.1. There exists a family of smooth rational surfaces in \mathbb{P}^{4} over \mathbb{C} with $d=12, \pi=13$ and hyperplane class

$$
H \equiv 12 L-\sum_{i_{1}=1}^{2} 4 E_{i}-\sum_{i_{2}=3}^{11} 3 E_{i}-\sum_{i_{3}=12}^{14} 2 E_{i}-\sum_{i_{4}=15}^{21} E_{i} .
$$

[^1]in terms of a plane model.
Abstractly, these surfaces arise as the blow up of \mathbb{P}^{2} in 21 points. L and E_{i} in the Theorem denote the class of a general line and the exceptional divisors.

The 21 points lie in special position due to the fact that we need $\mathrm{h}^{0}\left(X, \mathcal{O}(H)=5\right.$ and $\mathrm{h}^{1}(X, \mathcal{O}(H))=4$. Indeed, it will turn out that the component of the Hilbert scheme corresponding to these surfaces has dimension 38 , hence up to projectivities this is a $38-24=14$ dimensional family of abstract surfaces. This fits with the fact that the 21 points have to satisfy a condition of codimension $\leq 20=4 \cdot 5$, which leaves us with a family of collections of points in \mathbb{P}^{2} of dimension $\geq 2 \cdot 21-20=22$. Up to automorphism of \mathbb{P}^{2} this leads to a family of dimension $\geq 22-8=14$, and hence equality holds. The great difficulty to find points in \mathbb{P}^{2} in very special positions was one of the sources, which led Hartshorne to his conjecture.

We construct these surfaces via their "Beilinson monad": Let V be an $n+1$-dimensional vector space over a field K and let W be its dual space. The basic idea behind a Beilinson monad is to represent a given coherent sheaf on $\mathbb{P}^{n}=\mathbb{P}(W)$ as a homology of a finite complex of vector bundles, which are direct sums of exterior powers of the tautological rank n subbundle $U=\operatorname{ker}\left(W \otimes \mathcal{O}_{\mathbb{P}(W)} \rightarrow \mathcal{O}_{\mathbb{P}(W)}(1)\right)$ on $\mathbb{P}(W)$. (Thus $U \simeq \Omega^{1}(1)$ is the twisted sheaf of 1-forms. As Beilinson, we will use the notation $\Omega^{p}(p)$ for the exterior powers of U.)

The differentials in the monad are given by homogeneous matrices over an exterior algebra $E=\bigwedge V$. To construct a Beilinson monad for a given coherent sheaf, we typically take the following steps: Determine the type of the Beilinson monad, that is, determine the vector bundles of the complex, and then find differentials in the monad.

Let X be a smooth rational surface in $\mathbb{P}^{4}=\mathbb{P}(W)$ with degree 12 and sectional genus 13. The type of a Beilinson monad for the (suitably twisted) ideal sheaf of X can be derived from the knowledge of its cohomology groups. Such information is partially determined from general results such as the Riemann-Roch formula and the Kodaira vanishing theorem. It is, however, hard to determine the dimensions of all cohomology groups needed to determine the type of the Beilinson monad. For this reason, we assume that the ideal sheaf of X has the so-called "natural cohomology" in some range of twists. In particular, we assume that in each twist $-1 \leq n \leq 6$ at most one of the cohomology groups $\mathrm{H}^{i}\left(\mathbb{P}^{4}, \mathcal{I}_{X}(n)\right.$ for $i=0 \ldots 4$ is non-zero. This is an open condition for surfaces in a given component of the Hilbert scheme. Under this assumption the Beilinson monad for the twisted ideal sheaf $\mathcal{I}_{X}(4)$ of X has the following form:

$$
\begin{equation*}
4 \Omega^{3}(3) \xrightarrow{A} 2 \Omega^{2}(2) \oplus 2 \Omega^{1}(1) \xrightarrow{B} 3 \mathcal{O} . \tag{1}
\end{equation*}
$$

To detect differentials in (1), we use the following techniques developed recently: (1) the first technique is an exterior algebra method due to Eisenbud, Fløystad and Schreyer [5] and (2), the other one is the method using small finite fields and random trials due to Schreyer [9].
(1) Eisenbud, Fløystad and Schreyer presented an explicit version of the Bernstein-Gel'fand-Gel'fand correspondence. This correspondence is an isomorphism between the derived category of bounded complexes of finitely generated S-graded modules and the derived category of certain "Tate resolutions" of E-modules, where $S=\operatorname{Sym}_{K}(W)$. As an application, they constructed the Beilinson monad from the Tate resolution explicitly. This enables us to describe the conditions, that the differentials in the Beilinson monad must satisfy in an exterior algebra context.
(2) Let \mathbb{M} be a parameter space for objects in algebraic geometry such as the Hilbert scheme or a moduli space. Suppose that \mathbb{M} is a subvariety of a rational variety \mathbb{G} of codimension c. Then the probability for a point p in $\mathbb{G}\left(\mathbb{F}_{q}\right)$ to lie in $\mathbb{M}\left(\mathbb{F}_{q}\right)$ is about $\left(1: q^{c}\right)$. This approach will be successful if the codimension c is small and the time required to check $p \notin \mathbb{M}\left(\mathbb{F}_{q}\right)$ is sufficiently small as compared with q^{c}. This technique was applied first by Schreyer [9] to find four different families of smooth surfaces in \mathbb{P}^{4} with degree 11 and sectional genus 11 over \mathbb{F}_{3} by a random search, and he provided a method to establish the existence of lifting these surfaces to characteristic 0 . This technique has been successfully applied to solve various problems in constructive algebraic geometry (see [10], [12] and [1]).

The Singular or Macaulay2 scripts used to construct and to analyse these surfaces are available at http://www.math.uni-sb.de/ ${ }^{\sim}$ ag-schreyer and http://www.math.colostate.edu/~abo/programs.html.

1 The Exterior Algebra Method

Our construction of the rational surfaces uses the "Beilinson monad". A Beilinson monad represents a given coherent sheaf in terms of direct sums of (suitably twisted) bundles of differentials and homomorphisms between these bundles, which are given by homogeneous matrices over an exterior algebra E. Recently, Eisenbud, Fløystad and Schreyer [5] showed that for a given sheaf, one can get the Beilinson monad from its "Tate resolution", that is a free resolution over E, by a simple functor. This enables us to discuss the Beilinson monad in an exterior algebra context. In this section, we take a quick look at the exterior algebra method developed by Eisenbud, Fløystad and Schreyer.

[^0]: ${ }^{1}$ This observation is independent of the choice of U_{1}.

[^1]: 1991 Mathematics Subject Classification. 14J10, 14J26 (secondary: 14Q10)
 Key words. Rational surface, monad, exterior algebra, finite field

