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Preface

The articles in this volume represent the invited lectures at the RESMOD Summer
School on Model Theory of Groups and Automorphism Groups held in Blaubeuren,
Germany, from 31 July to 5 August 1995. This was an EC-funded meeting directed
at graduate students and researchers in Model Theory and Algebra and consisted
mainly of invited lectures surveying various recent interactions between model the-
ory and and other branches of mathematics, notably group theory.

RESMOD is the acronym for the European Human Capital and Mobility Net-
work on Model Theory and Applications coordinated by the Equipe de Logique
Mathematique at Universite Paris 7. The programme committee for the meeting
consisted of Wilfrid Hodges, Daniel Lascar and Dugald Macpherson. The meeting
took place at the Heinrich Fabri Institut of the University of Tubingen, and the
local organisers were Ulrich Feigner and Frieder Haug.

David M. Evans,
School of Mathematics,
University of East Anglia,
Norwich NR4 7TJ,
England.
February 1997.





Introduction

The articles in this volume demonstrate the wide variety of interactions between
algebra (particularly group theory) and current research in model theory. On the
one hand, the analysis of direct questions about the first-order theories of classes
of algebraic structures requires an interplay between model-theoretic and algebraic
methods, and often such questions also evolve into ones which are interesting from a
purely algebraic viewpoint. More indirectly, the model-theoretic analysis of classes
of structures using some of the latest developments of model theory (particularly
stability theory) has recently resulted in a wave of new applications of model theory
to other parts of mathematics.

Alongside these developments there has been considerable interaction between
model theory and the study of infinite permutation groups. Automorphism groups
of model-theoretically interesting structures have provided a rich supply of exam-
ples and problems for the permutation group theorists, and the study of automor-
phism groups has been a crucial tool in certain model-theoretic questions.

Readers can judge for themselves the extent to which the articles in this vol-
ume fit into this pattern, but I shall give a brief sketch of them, emphasising the
interactions between model theory and other parts of mathematics.

The article by Evans, Ivanov and Macpherson is a survey largely concerned with
a question that originated in studying the fine detail of totally categorical struc-
tures, but which is now seen (and studied) as a problem about infinite permutation
groups. The techniques in the papers by Lascar and Evans are model-theoretic in
flavour, but the applications are to the study of the automorphism group of the
field of complex numbers, and the papers are written without using model-theoretic
terminology. The papers by Chatzidakis and Hodges form a survey of recent work
on the model theory of pseudo-finite fields and in particular give surprising appli-
cations of these results (due to Hrushovski and Pillay) to the subgroup structure
of Chevalley groups over prime fields.

Cameron's paper draws together strands from model theory, permutation groups
and combinatorics. It studies a graded algebra which can be associated to any
countable No-categorical structure, and which is also significant in enumerative
combinatorics.

The papers by Boffa, Oger and Chiswell are surveys of various aspects of the
model theory of particular classes of groups. The questions considered start out as
model-theoretic ones (equivalence of formulas, elementary equivalences at various
levels of quantifier complexity et cetera), but also develop into questions which are
interesting from a purely group-theoretic viewpoint. The techniques are a mixture
of group theory and model theory (notably ultraproducts). The paper by Pfander
follows on from ChiswelPs article and gives new results on the finite present ability
of groups with the same existential and universal theory as the non-abelian free
groups.

The paper by Burke and Prest is a contribution to the theory of modules: an
area where model-theoretic methods have had a significant impact on the algebraic
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theory. Finally, the paper by Kim is a survey of recent work (of Kim and Pillay)
on Shelah's notion of simplicity of a first-order theory. In such theories a good
notion of independence (forking) can be described and various unstable algebraic
structures have recently been shown to have simple theories (for example, pseudo-
finite fields).

In the remainder of this introduction I will give some background material
and pointers to the literature which may be helpful to the non-specialist reader.
This will be very brief, not least because there are already several excellent swift
introductions to the area in print: for example, the opening sections of [1] and
(more comprehensively) the article [6].

Section 2 below is based on notes of Dugald Macpherson originally prepared as
an appendix to the 'Finite covers' paper in this volume.

1 Model theory

The books by Chang and Keisler [2] and Hodges [5] give a thorough treatment of
model theory excluding stability theory. A good introduction to the latter can be
found in the the book by Pillay [7], and [8] has many of the more recent develop-
ments.

1.1 First-order languages and structures

In a first-order language one has an alphabet of symbols and certain finite sequences
of these symbol (the formulas of the language) are the objects of interest. The
symbols are connectives A (and), V (or), -i (not); quantifiers V and 3; punctuation
(parentheses and commas); variables; and constant, relation and function symbols,
with each of the last two coming equipped with a finite 'arity' specifying how many
arguments it has. The number of these constant, relation and function symbols
(together with their arities) is referred to as the signature of the language.

The terms of the language are built inductively. Any variable or constant
symbol is a term and if / is an n-ary function symbol and t\,..., tn are terms, then
f(t\,..., tn) is also a term (all terms are built in this way).

Now we can build the formulas of the language. Again, this is done inductively.
If R is an n-ary relation symbol in the language and t\,...,tn are terms then
R(t\,..., tn) is a formula (an atomic formula). If <f>, ift are formulas and x a variable,
then (<f>) A (ip), (<f>) V (ip), ->(0), Vx(0), 3x(<t>) are formulas (of higher 'complexity').
A formula not involving any quantifiers is called quantifier free or open. There is
a natural notion of a free variable in a formula, and when we write a formula as
<f>(xi,..., xm) we mean that its free variables are amongst the variables x\,..., xm.
A formula with no free variables is called a sentence. For more details the reader
could consult ([2], Section 1.3) or ([5], Section 2.1).

If L is a first-order language then an L-structure consists of a set M equipped
with a constant (that is, a distinguished element of M), n-ary relation (that is,
a subset of Mn), and n-ary function Mn -* M for each constant symbol and



Introduction xi

n-ary relation and function symbol in L. If </>(#i,.. . ,xm) is an X-formula and
a i , . . . , a m G M then one can 'read' 0(ai, . . . ,am) as a statement about the be-
haviour of a i , . . . , a m and these constants, relations and functions (interpreting
each constant, relation or function symbol as the corresponding constant, relation
or function of M), which is either true or false. If it is true, then we write

M |= 0(a i , . . . ,am ) .

All of this can of course be made completely precise (defined inductively on the
complexity of (f>): see ([2], Section 1.3) and ([5], Section 2.1) again. We shall always
have = as a binary relation symbol in L and interpret it as true equality in any
X-structure.

If $ is a set of X-sentences and M an ^-structure we say that M is a model of
$ (and write M |= $) if every sentence in $ is true in M. If there is a model of $
we say that $ is consistent. The set of Z-sentences true in M is called the theory
of M. Two Z-structures M\ and M2 are elementarily equivalent if they have the
same theory. This is written as M\ = M2. Thus in this case the structures M\
and M<i cannot be distinguished using the language L. The following basic result
of model theory shows that one should not expect first-order languages to be able
to completely describe infinite structures.

Theorem 1.1 (Lowenheim-Skolem) Let L be a first-order language with signature
of cardinality X. Let fi, v be cardinals with \i,v > max(A, KQ), and suppose M\ is an
L-structure with cardinality \i. Then there exists an L-structure M2 elementarily
equivalent to M\ and of cardinality v.

The 'upward' part of this result (where v > fi) follows easily from the funda-
mental theorem of model theory:

Theorem 1.2 (The Compactness Theorem) Let L be a first-order language and $
a set of L-sentences. If every finite subset of $ is consistent, then $ is consistent.

The original version of this is due to Godel (1931). Proofs (using a method due
to Henkin (1949)) can be found in ([2], Theorem 3.2.2) and ([5], Theorem 6.1.1).
Algebraists may prefer the proof using ultraproducts ([2], Corollary 4.1.11) and the
theorem of Los ([2], Theorem 4.1.9, or [5], Theorem 9.5.1).

If M, N are ^-structures with M C N and the distinguished relations, functions
(and constants) of N extend those of M, then we say that M is a substructure of
N. If also for every Z-formula <j>(x\,..., xm) and a i , . . . , am £ M we have

M |= </>(«i,...,am)<^iV |= </>(ai,...,am)

then we say that M is an elementary substructures of N (and that N is an ele-
mentary extension of M) and write M •< N. A stronger version of the Lowenheim-
Skolem Theorem (1.1) is true: the smaller of Mi, M2 may be taken to be an
elementary substructure of the larger. Proofs can be found in ([2], Theorems 3.1.5
and 3.1.6) and ([5], Corollaries 3.1.5 and 6.1.4).
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1.2 Definable sets; types

Suppose L is a first-order language and M an Z-structure. Let n G N. A subset A of
Mn is called (parameter) definable if there exist 61 , . . . , bm G M and an X-formula
</>(xi,...,xn,yu...,ym) with

A = {aeMn :M\=<t>(a,b)}.

If the parameters 6 can be taken from the subset X C M then A is said to be X-
definable. The union of the finite X-definable subsets of M is called the algebraic
closure of X, denoted by acl(X), and the union of the X-definable singleton subsets
of M is the definable closure of X, denoted by dcl(X). It is not hard to check that
both of these are indeed closure operations on M.

So the definable subsets of Mn are the ones which can be described using L-
formulas (and parameters). Conversely one could take a particular n-tuple a G Mn

and a set of parameters ACM and ask what the language L can say about a
(in terms of A and M). This gives the notion of the type of a over A, which by
definition is

t p M ( a / A ) = {<f>(xu...,xn,bi,...,bm) : 6 1 , . . . , 6 m G A , M |= <t>(a,b)}

(the subscript M is dropped if this is clear from the context). It is sometimes useful
to consider the type of a (over A) using only certain Z-formulas. For example, for
the quantifier free type of a over A one takes only quantifier free <j) in the above
definition. It is also possible to define the type of an infinite sequence of elements
of M. The reader can consult ([5], Section 6.3) or ([2], Section 2.3) for further
details here.

More generally, a (complete) n-type over A is a set of Z-formulas with param-
eters from A equal to tpN(a/A) for some elementary extension N of M and some
a G Mn. There is no reason to suppose, for arbitrary M and A, that this type
should be realised in M, that is, there exists a' G Mn with tpM(a'/A) = tpN(d/A).
For example, this would clearly be impossible if A = M and a £ Mn. However, it
can happen that for some infinite cardinal n if |A| < n then every complete n-type
over A is realised in M: in this case M is called ^.-saturated, and if K — \M\ then
M is saturated. The reader should consult ([2], Section 2.3) and then ([2], Chapter
5) and ([5], Chapter 10) for more on this subject as the need arises.

1.3 Interpreted structures; imaginary elements

Some structures can be built out of others in a definable way. The classical exam-
ple is the construction of the field of rational numbers from the ring of integers.
Another example is algebraic groups over a particular field.

Formalising this leads to the notion of an interpretation of one structure in
another. Suppose K and L are first-order languages, M a A'-structure and N an
X-structure. We say that N is interpretable in M if for some n G N there exist:

1. a 0-definable subset D of Mn;
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2. a 0-definable equivalence relation E on D\

3. a bijection 7 : N -> £ / £

such that for every 0-definable subset # of Nm the subset of Mmn given by

is 0-definable in M.
Thus the set N can be identified with a 0-definable subset of Mn factored by a

0-definable equivalence relation, and with this identification all of the Z-structure
on TV can be derived from the A'-definable structure on M. There is a considerable
amount of redundancy in the definition: it is only necessary to have 0-definability
of R when R is a distinguished constant or relation, or the graph of a distinguished
function.

If E is simply equality on D then we say that N is definable in M. If also
D — M then we say that N is a reduct of M (so N just consists of M with some
of its definable structure forgotten). It is also possible to formulate a notion of
interpretation using parameters. The reader should consult ([5], Section 5.3) for
further information on interpretations.

Equivalence classes in D/E as above are referred to as imaginary elements of
M. Taking the set of all imaginary elements (as D and E range over all 0-definable
sets and equivalence relations) gives us the set Meq. We wish to regard this as a
first-order structure, so we extend the language K of M in a canonical way (to
a first-order language Keq), and part of the Keq-theory of Meq describes how the
imaginary elements correspond in a 0-definable way to the original iif-structure
M. The reader can consult ([5], Section 4.3) for the precise details of how to do
all of this. Once we have this concept, it makes sense to extend notions such as
'parameter definable', 'types', 'algebraic closure' etc. to subsets of Meq. Again we
refer the reader to ([5]) for further details if the need arises.

2 Permutation groups

Most of what is said here can be found in more detail in ([5], Section 4.1), ([1],
Chapters 1 and 2) and ([6]). A general reference on permutation groups which
usefully contains material on automorphism groups of infinite structures is [3].

2.1 Actions and orbits

Let X be any set. The group of all permutations of X is called the symmetric
group on X and is denoted by Sym(X). A permutation group on X is a subgroup
of this. The image of the element x E X under the permutation g E Sym(X)
is denoted by gx. More generally, an action of a group G on X is a function
a : G X X -» X such that for all x E X and g,h E G we have a(l,x) = x
and a(g,a(h,x)) = a(gh,x). It is easy to see that this is equivalent to the map
g i-> a(p, - ) being a homomorphism from G into Sym(X). Thus each element of
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G induces a permutation of X and a product of elements in the group induces the
corresponding product of permutations. Henceforth, we shall also denote a(g, x) by
gx if the action is clear from the context. (It should be noted that some people write
their actions on the right, and so would write xg instead of gx, with corresponding
changes needed for other pieces of notation. This rarely causes confusion.)

Given an action of a group G on a set X the orbits are the equivalence classes
under the equivalence relation ~ on I , where X\ ~ x^ if there is g G G with
gx\ = #2. We say that the action is transitive on X if there is a unique orbit. One
way of manufacturing transitive actions of a group G is via coset spaces. Let H
be a subgroup of G and let Y = {gH : g G G} be the set of left cosets of H in
G. Define an action of G on Y by setting a(gi,g2H) — g\g2H- Clearly this is a
transitive action. However, in a strong sense this gives us all transitive actions of G.
Suppose G acts transitively on a set X. Let x E X and let H = {g G G : gx = x}
(the stabiliser of x in 6r, usually denoted by Gx). Then the map 9 : Y —> X given
by 0(gH) = gx is a well-defined bijection and for all y G Y and g G G we have
9(gy) = gO(y). Thus the actions of G on X and Y are equivalent. This is the
Orbit-Stabiliser Theorem.

Out of any given action of a group G on a set X we can produce various other
actions of G. For example, if 7 C X is a union of G-orbits, then one can simply
restrict the action to Y. Also, suppose there is a C-invariant equivalence relation
on X. Then one can consider the action of G on the set of equivalence classes.
Next, suppose k is a positive integer. Then there is an induced action of G on Xk

(given by g(x\,... ,Xk) — (<7#i, • • -,gxk)), and ar* equally natural action on XW,
the set of fc-sets from X. We say that G is k-transitive if, in the first action, all
fc-tuples of distinct elements lie in the same orbit. We say G is k-homogeneous if
it is transitive on X^k\ The original action is highly transitive (or homogeneous)
if it is fc-transitive (or A;-homogeneous) for all k G N.

2.2 Automorphism groups and topological groups

Suppose L is a first-order language and M an //-structure. By an automorphism
of M we mean a permutation of M which preserves each of the distinguished
constants, relations and functions of M. The set of these forms a subgroup of
Sym(M), called the automorphism group of M, and is denoted by Aut(Af). It is
clear that if A C M, then Aut(M/A) = {g G Aut(M) : ga — a Va G A} is a,
subgroup of Aut(M) which stabilises any A-definable subset of Mk. Furthermore,
if b G Mk and g G Aut(Af/A) then tpM(b/A) = tipM(gb/A). More subtly, if M is
saturated then the converse is also true: if b and V have the same type over A and
\A\ < \M\ then 6 and V are in the same Aut(M/A)-orbit (for example, see ([5],
Corollary 10.4.12), or the proof of ([2], Theorem 2.3.9) if M is countable). Note
that any element of Aut(M) induces an automorphism of Meq.

Conversely, if G is a permutation group on a set X then there is a natural
first-order structure with domain X, on which G acts as a group of automorphisms
(with, for each n G N, the same orbits on n-tuples as the full automorphism group).
For each orbit ft of G on X n (as n ranges through N) introduce an n-ary relation
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symbol RQ, interpreted on X by the orbit 0. The corresponding language is known
as the canonical language, and the structure on X as the canonical structure.

Suppose that X is any set. Then there is a natural topology on Sym(X) which
makes it into a topological group (so multiplication and inversion are continuous
maps). The open sets are unions of cosets of pointwise stabilisers of finite subsets of
X. We then make any permutation group G on X into a topological group by giving
it the relative topology. To put this another way, if g G G then the cosets #G(F)
as F ranges over the finite subsets of X form a basis of open neighbourhoods of g
in G, where G^jr) = {h £ G : hx = x Vx e F}. Clearly this topology is Hausdorff.
In fact, as any open coset is closed, the topology is totally disconnected. It it
separable if and only if X is countable and discrete if and only if G^ = {1} for
some finite F C X. It is not hard to show that a closed subgroup G of Sym(X) is
compact if and only if all of its orbits on X are finite.

For us, the most important fact about this topology will be that a subgroup of
Sym(X) is closed if and only if it is the full group of automorphisms of a first-order
structure with domain X. In fact, if G < Sym(X) then the automorphism group
of the canonical structure of G on X is the closure of G in Sym(X).

If X is countable the topology is metrisable: enumerate X as (xn : n G N), and
define a metric d on Sym(X) by putting, for distinct g,h G Sym(X), the distance
d(g, h) to be 1/m where m is as large as possible such that g agrees with h, and
g-1 with /i"1, on x\ for all / < ra. Thus, Sym(X) becomes a complete metric space
with a countable basis of open sets (a Polish space).

2.3 No-categoricity

For saturated structures M there is a strong connection between what is definable
in a first-order way and the automorphism group: over small subsets of M orbits
equate to types. For countable No-categorical structures the connection is even
stronger, and automorphism groups of No-categorical structures are probably the
most widely studied class of infinite permutation groups.

If M an L-structure and K an infinite cardinal we say that M is n-categorical if
its theory has a model of size K and all such are isomorphic. The case K = No (that
is, countably infinite K) has a group-theoretic formulation. Say that a permutation
group G on an infinite set X is oligomorphic if it has finitely many orbits on
Xk for all positive integers k. Then the theorem of Engeler, Ryll-Nardzewski,
and Svenonius asserts that, for a countably infinite structure M, the following are
equivalent:

1. M is No-categorical;

2. Aut(M) acts oligomorphically on M;

3. for every n G N there are only finitely many n-types over 0 (realised in
elementary extensions of M).

Proofs can be found in ([2], Theorem 2.3.13) or ([5], Theorem 7.3.1). There is a
translation between the group-theoretic and model-theoretic terminology in this
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case. The countable model M is saturated so (realisations in M of) ra-types over
a finite subset A of M are exactly Aut(M/A)-orbits on Mn. But as there are only
finitely many of these, each of them is actually A-definable. So a subset of Mn

is A-definable if and only if it is invariant under Aut(M/yl). It then follows from
the Orbit-Stabiliser Theorem that a €  M is in the algebraic closure of A if and
only if Aut(M/A U {a}) is of finite index in Aut(M/A). The same is true in Meq.
Moreover stabilisers of elements of Meq are exactly the open subgroups of Aut(Af)
(use ([1], 1.2, Exercise 4)).

Obvious examples of countable No-categorical structures include a pure set, the
set of unordered pairs from a pure set (with a natural induced graph structure,
two 2-sets adjacent if they intersect in a singleton), the rationals as an ordered set
and the countable atomless boolean algebra. The paper [4] is a survey of various
ways of constructing No-categorical structures and classification results relating to
them. The book [1] contains a large amount of information about automorphism
groups of these structures.
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0 Outline of the Notes
These notes examine a technique for building new structures from simpler ones.
The original motivation for this construction is Zil'ber's 'ladder theorem' (Theorem
1.6.4 here), which describes how totally categorical structures are built from strictly
minimal sets by a sequence of covers. Similar results exist for several other classes
of structures, such as Ni-categorical structures, No-categorical unstable structures,
and smoothly approximated structures.

We will concentrate on finite covers of countable No-categorical structures, and
we often describe structures entirely by their automorphism groups, without refer-
ence to any particular language (in the No-categorical case this is justified by the
Ryll-Nardzewski theorem). The following terminology is convenient.

If 0 is a set then we regard Sym(ft), the symmetric group on ft, as a topological
group with a base of open sets being given by cosets of pointwise stabilisers of finite
subsets of H. Then a permutation structure is a pair (W; G) where W is a non-
empty set (the domain), and G is a closed subgroup of Sym(I^) (the group of
automorphisms). We shall usually write G = Aut(W) and refer simply to 'the
permutation structure W.' If A is a subset of W and B a subset of W (or more
generally of some set on which Aut(W) is acting in an obvious way), then Ant(A/B)
denotes the permutations of A which extend to elements of Ant(W) fixing every
element of B. We shall write permutations on the left of the elements of W.

Permutation structures are all obtained by taking automorphism groups of first-
order structures on W, and we often regard a first-order structure as a permutation
structure without explicitly saying so. When we do this, the group of automor-
phisms for the permutation structure is, of course, just the automorphism group
of the first-order structure. We can now define a finite cover (a model-theoretic
definition is given in 1.1.2).

Definition 0.0.1 If C, W are permutation structures, then a finite-to-one surjec-
tion 7r : C —• W is a finite cover if its fibres form an Aut(C)-invariant partition of
C, and the induced map fi : Aut(C) —• Sym(VF) given by ^{g)w = 7r(gn~1(w)) for
g E Aut(C) and w £ W has image Aut(W). We refer to fi as the restriction map.
The kernel of the finite cover is ker ji = Aut(C/VF).

The main problem which concerns us is:

The Cover Problem: For a given No-categorical structure W, de-
scribe its finite covers.

An overview of how the material in this paper relates to this problem can
be found in Section 1.7, after we have given the basic definitions, examples and
results. For the rest of this section, we simply describe the structure of these notes
and highlight some of the principal results in each section.

Section 1 first gives the basic definitions and some 'naturally occuring' examples
of covers. We discuss notions closely related to finite covers, notably symmetric
extensions, and give some of the basic theory, sometimes in this wider context.
Finally we review some of the model-theoretic background to the cover problem.
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Three general constructions of finite covers are described in Section 2: free cov-
ers, digraph coverings and coverings of two-graphs. We show that free covers are
uniquely determined by choice of fibre and binding groups, and so we have a satis-
factory classification of these. The material on digraph and two-graph coverings is
suggested by ideas from topology (covering spaces) and finite combinatorics. Both
constructions provide examples of finite covers with finite kernels.

In Section 3 we give some preliminary results on finite covers. We then give
various ways of dividing up the general cover problem and make various reduc-
tions which show that we should focus on some special types of covers (minimal,
superlinked and abelian kernel). Any finite cover is an expansion of a free finite
cover with the same fibre and binding groups, and we aim for classification up to
conjugacy within the automorphism group of this free cover. On the other hand,
any finite cover is a reduct of a minimal cover. We show that the kernel of a min-
imal cover of an KQ-categorical structure is nilpotent, and thereby reduce certain
problems to consideration of finite covers with abelian kernels.

Finite covers whose kernels are finite are analysed in Section 4. We show that in
some cases these can all be described in terms of digraph coverings. In some other
cases not covered by these results, a careful analysis of the example of a vector
space covering its projective space provides a different answer. The techniques and
notions in Section 4 parallel very clearly some ideas from stability theory (strong
types, stationarity, and distinguished extensions of types). In Section 5 we amplify
further on this, and consider the results of Section 4 from this viewpoint.

In Section 6 we consider finite covers with abelian kernels. Following the ap-
proach of Ahlbrandt and Ziegler we divide the problem into two parts: describe
the possibilities for the kernels, then work out what the possible covers can be
with each particular kernel. For the first part we outline how Pontriagin duality
can sometimes be useful. For the second part, we describe the construction of the
cohomology group H* which parametrises the covers with a given kernel. We use
these ideas to show how results on the cohomology and representation theory of
finite groups can be used in our context.

Section 7 contains further results which can be used to calculate cohomology
groups. These are all standard results from cohomology of discrete groups, adapted
to our purposes. We show how these can be used to prove finiteness of H*, given
additional constraints on W.

Section 8 contains some open problems and questions which occurred to us
during the writing of this paper.

1 Introduction to covers

1.1 Definitions

We give the basic definitions associated with permutation structures and finite
covers. We suggest that the reader skims over them quickly and refers back when
necessary.
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1.1.1 Permutation structures

If W\ and W2 are sets of the same cardinality then any bijection <j> : W\ —• W2
induces an isomorphism /«/, : Sym(Wi) —* Sym(W2)- We say that permutation
structures {W\',G\) and (W^;^) are isomorphic if for some bijection </> we have
f^{G\) = G2- (As pointed out to us by Martin Ziegler, this produces a slight
conflict in terminology: the group of isomorphisms from a permutation structure
(W%, G) to itself is actually the normaliser in Sym(VF) of G, so it might be more
correct to refer to this as the 'automorphism group of the permutation structure,'
rather than G.)

Two permutation structures are bi-interpretable if their automorphism groups
are isomorphic as topological groups. If the permutation structures arise from
countable No-categorical structures there is a model-theoretic interpretation of this
notion due to G. Ahlbrandt and M. Ziegler ([2]: see also Section 7 of [42]). The
following useful observation is due to E. Hrushovski ([36]).

Lemma 1.1.1 A permutation structure (W; G) such that G has finitely many or-
bits on W is bi-interpretable with a transitive permutation structure {W\',G\).

Proof. Let x be a finite tuple of elements from W containing (at least) one
element from each G-orbit. Let W\ be the orbit under G of x. We get a natural
continuous, injective homomorphism G —> Sym(VFi), and it is easy to see that the
image G\ of this is closed in Sym(Wi). The inverse map G\ —> G is also continuous,
and so we have the result. •

Related to this construction is the notion of a Grassmannian of a transitive
permutation structure W. First recall that if W has the property that Ant(W/X)
has finitely many finite orbits for all finite subsets X of W then we define the
algebraic closure acl(X) of X to be the union of the finite Aut(Wr/X)-orbits. This
is a closure operation on the finite subsets of W. If A is a finite algebraically closed
subset of W then the Grassmannian Gr(VF; A) is the permutation structure having
domain WA — {9A : g G Aut(VF)} and automorphism group those permutations
induced on this set by Aut(VF). To see that this is a closed subgroup of Sym(T^^)
observe that, as in Lemma 1.1.1, the group of permutations induced by Aut(W) on
the orbit of an enumeration of A is closed, and there is an invariant finite-to-one
map from this orbit to VF4, so what we want follows from Lemma 1.4.2. If Aut(PF)
acts faithfully on WA then Gr(W; A) is bi-interpretable with W.

We shall frequently employ the following terminology. Suppose Co and C are
permutation structures with the same domain, and Aut(C) < Aut(Co). Then we
say that Co is a reduct of C, or C is an expansion of Co. We use the adjective
proper to indicate that Aut(C) < Aut(Co).

1.1.2 Finite covers

We first give the model-theoretic definition of finite cover. In practice, however,
we will use the group-theoretic translation of this given in the opening remarks
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(0.0.1).

Definition 1.1.2 Let C and W be first-order structures. A finite-to-one surjection
7T : C -» W is a yzmte couer of W if there is a 0-definable equivalence relation E
on C whose classes are the fibres of TT, and any relation on Wn (respectively, Cn)
which is 0-definable in the 2-sorted structure (C,W,w) is already 0-definable in W
(respectively, C).

Observe that a finite cover TT : C -* W induces a homomorphism

fi : Aut(C) -* Aut(W),

given by putting fi(g)(w) = /ir(g7T~1(w)) for all g £ Aut(C) and w E W. In
fact, if W is countable Ko-categorical, then the above definition of a finite cover
is equivalent to saying that the fibres of TT are the classes of an Aut(C)-invariant
equivalence relation on C, and the map Aut(C) —• Aut(W) induced by ir has image
Aut(VF) (Lemma 1.4.2 below ensures that Definition 1.1.2 implies the surjectivity),
and so this agrees with what was given as Definition 0.0.1. We refer to // as the
restriction homomorphism.

Suppose that w : C —• W is a finite cover. Then Aut(C) has a normal subgroup
K, the kernel of the cover, defined by

K := {g 6 Aut(C) : n(x) = v(gx) for all x E C},

(so also the kernel of the restriction homomorphism Aut(C) -» Aut(W)). We have
a short exact sequence

1 -> Jjf _> Aut(C) A Aut(VF) -H. 1.

The cover splits if K has a closed complement in Aut(C), that is, there is a closed
subgroup H of Aut(C) such that KH = Aut(C) and KnH = 1. Equivalently, C is
a reduct of a cover of W with trivial kernel (namely, a structure with automorphism
group H).

For each a E W let C(a) denote the fibre above a, that is {x E C : TT(X) = a}.
We also define, for any a E W, the /z&re grroup of the cover at a as the permutation
group induced by Aut(C) on C(a). The binding group at a is a normal subgroup
of the fibre group, and is the permutation group induced on a fibre C(a) by the
kernel K. Clearly, if Aut(VF) acts transitively on W then all of the fibre groups are
isomorphic as permutation groups, as are the binding groups. We refer to these as
the fibre and binding groups of the cover. If these are unequal, we say that the
cover is twisted.

We mention some special kinds of covers. We say that TT : C -> W is free if
Ant(C/W) = Iiw£w Aut(C(w)/W), that is, the kernel is the full direct product of
the binding groups (so as big as possible). At the other extreme, the cover is trivial
if its kernel Aut(C/W) is the trivial group (this differs from the terminology in [3]
and [4] where 'trivial' means 'split'). A principal cover 7r : C -+ W is a free finite


