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Introduction

The following material is selected from a course of lectures given

at the University of Florida in Gainesville, Florida during 1971/72. The

reader is expected to have read both Gorensteins' Finite Groups and much

of HuppertTs Endliche Gruppen I. In particular he must be familiar with

the concepts of p-constraint and p-stability in order to begin, although

there is a short discussion of these concepts in an appendix here.

The topics covered are such that I feel rather diffident about

publishing these notes at all. The title should perhaps be changed to

something like TLectures on some results of Bender on finite groups1.

No less than three of his major results are studied here and of course

the classification of A*-groups depends on his Tstrongly embedded sub-

group' theorem - which is not studied here at all. I feel that the theorems

and techniques of the papers TOn the uniqueness theorem' and TOn groups

with abelian Sylow 2-subgroupsT are too important for finite groups and

much too original to remain, as at present, accessible only to a very few

specialists. I think that I understand the motivation for the abbreviation

of the published versions of these two results. However, though it is

clear that a proof becomes considerably more readable when a two or

three page induction can be replaced by the words 'By induction we haveT,

these details must sometime be filled in. And unfortunately, I think

Dr. Bender has sometimes disguised the deepest and most elegant argu-

ments by this very brevity. I hope that these notes will serve to make

more of the group theoretical public aware of these incredibly rich results.

I must thank here the audience at the University of Florida -

Mark Hale, Karl Keppler, Ray Shepherd and Ernie Shult. The contribu-

tion of Ernie Shult in particular cannot be minimized. Without him, we

would all have floundered very soon.

December, 1973 Terry Gagen
Sydney, Australia
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Notations

The notation used here is more or less standard. The reader
should refer to [12] or [15] when in doubt.

The set of all self centralizing normal subgroups of P.

The set of all self centralizing normal subgroups of a

Sylow p-subgroup.

I/I (A, 77) The set of all A-invariant 77-subgroups of G where 77 is a

set of primes.

I/I* (A, 77) The maximal elements of I/L(A, 77).
vjr vjr

r(P) The number of generators of an elementary abelian subgroup

of P of maximal order (amongst all elementary abelian

subgroups of P).

A B <Ab : b €  B).

G A Sylow p-subgroup of G.

0 (G) The maximal normal 77- subgroup of G, 77 a set of primes.

°a TT(G) °77(G m o d °a(G))#

0 (G) The smallest normal subgroup of G such that G/0 (G) is

a 77-group.

F(G) The Fitting subgroup of G.

$(G) The Frattini subgroup of G.

The following two results are absolutely basic.

1. The Three Subgroups Lemma

If A, B, C c_G, N ^ G and [A, B, C] c N, [B, C, A] c N, then

[C, A, B] c N.

2. If P is a p-group of class at most 2, then for all n e Z and for

all x, y e P,

(xy)n = xnyn[y, x ] n ( l
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