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Preface

Field theory is the framework with which one describes the theory of the standard
model of elementary particles and their interactions. The electromagnetic sector
(QED) of the standard model is understood extremely well using perturbation
theory, but the color interaction (QCD) which is responsible for hadron physics
can only be accounted for perturbatively for a limited set of observational data.
Due to the fact that at long distances the color interaction is strongly coupled,
one cannot reliably apply perturbative methods to extract, for instance, the
spectrum of the hadrons. The arsenal of tools to handle strongly coupled systems
is obviously much more limited than the one used for weakly coupled ones.
Nevertheless, several methods to handle non-perturbative field theories have been
developed. The main goal of this book is to expose the reader to those techniques
and to describe their applications in two-dimensional and four-dimensional field
theories and finally in QCD in four dimensions.

The topic of non-perturbative field theory is by itself very rich and it is clear
that one cannot cover it in a non superficial manner in one book. Thus we had
to make certain decisions about the flow of the book and about the topics that
should be addressed. As for the former issue we have decided to present the
book in three parts. In the first part we describe, in detail, the most impor-
tant non-perturbative techniques of two-dimensional field theory. The reason for
this is obvious since physical systems with one space dimension and one time
dimension are the simplest and hence it is easier to grasp the non-perturbative
tools when applied to these systems. In the second part of the book we study
two-dimensional gauge theories with the emphasis on employing the techniques
developed in the first part. The third part is devoted to the non-perturbative
aspects of gauge dynamics in four dimensions. In this part we elevate the tech-
niques of the first part to four dimensions and we examine to what extent gauge
theories in four dimensions behave like their two-dimensional simplified analogs.

There are several books on the shelves discussing non-perturbative methods in
general such as [66] and [182], there are books describing one particular method,
like conformal field theory in two dimensions for instance [77], there are books
that describe two-dimensional QCD, [2] and books that study various aspects of
four-dimensional QCD, for example [151] and of course there are books on the
basics of field theory, for example [37], [130], [173] and [215]. The aim of this
book is three-fold, to review a package of non-perturbative methods, to present
a picture which is close to the state-of-the-art in the topics described and to
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demonstrate application of the methods in addressing several questions of gauge
dynamics.

The particular methods we explore in Part 1 of the book associate with con-
formal field theory, with affine Lie algebras, with topological properties of fields,
solitons and integrable models, with bosonization and with the large N approx-
imation.

In Part 2 we first present the basics of gauge field theories in two dimensions
and in particular the bosonized version of them, we then describe the seminal
large N solution of ’t Hooft of the mesonic spectrum of two-dimensional QCD;
we address the mesonic spectrum using current algebra methods, we describe the
discrete light-cone quantization of QCD with quarks in the fundamental repre-
sentation and also adjoint quarks, we compute the spectrum of baryons and their
properties in the strong coupling limit, we discuss the issue of confinement versus
screening behavior, we analyze QCD2 using coset model and BRST techniques,
and finally we digress and devote a chapter to generalized Yang–Mills theory on
Riemann surfaces and their stringy nature.

In Part 3 we demonstrate the applications in four-dimensional gauge dynam-
ics of conformal invariance, techniques of integrable models, of large N expan-
sion and of topology. In particular we devote chapters to Skyrmions, magnetic
monopoles and gauge theory instantons.

As we have mentioned above we had to take decisions about what topics
related to non-perturbative field theory we should not include. We decided not
to address string theories, supersymmetric field theories and the holographic
string (gravity)/gauge duality. The main reason for this decision was that to
cover each of these topics requires a book in itself, or even more than one book.
In fact certain subjects that we do cover in the book, like conformal field theory,
magnetic monopoles or instantons would require a full book to cover properly.
What we have tried to achieve is to describe the basic ideas of each topic and to
demonstrate its application. We have also not treated subjects like anomalies, lat-
tice formulations, sigma models, chiral Lagrangians and other non-perturbative
topics.

Some topics described in the book are “fully established topics”, in the sense
that presumably the most important developments in those have been already
achieved, for instance conformal field theory in two dimensions and bosonization
in two dimensions. On the other hand some other topics of the book are under
current intensive investigation and are certainly still not fully established. An
example of the latter is integrability in four-dimensional gauge dynamics. The
reason we have decided to include topics of the latter kind is that we wanted the
book to be fairly up to date and useful to researchers investigating “modern”
topics.

In the more basic issues we have made an effort to present the material in a
pedagogical manner and to be self contained. For instance our discussion started
from a free massless scalar field theory in two dimensions and gradually evolved
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into general conformal field theories. In dealing with more advanced topics, like
for instance instantons in four dimensions, the reader will need to consult with
specialized references to obtain a more complete and wider picture of the topic.

Some of the content of the book, mainly in Part 2, is based on the research
work of the authors, but most of the material is a review of the work of many
researchers in the field.

The book is aimed for advanced Ph.D. students, post-docs and other newcom-
ers to the arena of non-perturbative methods in field theory. The reader should
definitely be equipped with a basic knowledge of field theory, group theory and
algebra, differential equations, geometry and topology.

Throughout the book we refer to only a limited list of references. The number
of scientific contributions to the topics discussed in this book is enormous and
since we could not cover all of them we have referred to papers that initiated the
various topics, and to review papers and books where a much more exhaustive
list of references can be found.

We have made an attempt to keep the same notations throughout the book.
However in certain instances we have changed notations during the course of
the book, mainly to be in accordance with relevant literature. In these cases we
specified explicitly the change in notation made.
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PART I

Non-perturbative methods in two-dimensional

field theory





1

From massless free scalar field to conformal
field theories

In this chapter we analyze the simplest field theory, which is the theory of a
free massless scalar field in two space-time dimensions, one space and one time.1

The rich symmetry and algebraic structure of this theory encapsulates the basic
concepts of two-dimensional conformal field theory, which will be the topic of
the next chapter.

1.1 Complex geometry

It is convenient for the discussion of two-dimensional free scalar theory and later
conformal field theories to introduce complex coordinates as follows:2

ξ = x0 + ix1 ξ̄ = x0 − ix1 . (1.1)

We now take x0 and x1 to be in Euclidean space. Correspondingly we define the
derivatives

∂ξ =
1
2
(∂0 − i∂1) ∂ξ̄ =

1
2
(∂0 + i∂1), (1.2)

which is a special case of the decomposition to components of vectors, namely

Aξ = 1
2 (A0 − iA1) Aξ̄ =

1
2
(A0 + iA0)

Aξ = (A0 + iA1) Aξ̄ = (A0 − iA1). (1.3)

The metric of the flat Euclidean space-time ds2 = dx02 + dx12 translates into
ds2 = dξdξ̄, namely

gξξ̄ = gξ̄ξ =
1
2
, gξ ξ̄ = gξ̄ξ = 2, gξξ = gξ̄ ξ̄ = gξξ = gξ̄ ξ̄ = 0. (1.4)

With this metric at hand the scalar product of two vectors takes the form

AµBµ = AξBξ + Aξ̄Bξ̄ =
1
2
(AξBξ̄ + Aξ̄Bξ ). (1.5)

Complex components of higher-order tensors relate in a similar manner to
the real components, in particular for a symmetric two-tensor (like the

1 The content of this chapter comprises the basics of massless scalar fields in two dimensions.
This is covered in many textbooks.

2 The use of complex coordinates in the context of the bosonic string theory is described by
Polyakov in [177].
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x

x0

1

Z

Fig. 1.1. The map between ξ and z.

energy-momentum tensor),

T ≡ Tξξ =
1
4
(T00 − 2iT10 − T11)

T̄ ≡ Tξ̄ ξ̄ =
1
4
(T00 + 2iT10 − T11)

Tξ̄ξ = Tξξ̄ =
1
4
(T00 + T11). (1.6)

Often, especially in the context of string theory, the space direction is no longer
R, but rather is compactified on S1 so that x1 ≡ x1 + 2π. For such a geometry
it is convenient to introduce the following conformal map:

ξ → z = eξ = ex0 +ix1
,

which maps the cylinder to the complex plane (see Fig. 1.1).
In particular the past x0 = −∞ is mapped into the origin and the future

x0 = ∞ into a circle with an infinite radius. It is clear that the relations between
(ξ, ξ̄) and (x0 , x1) derived above hold also between (z, z̄) and (Real(z), Im(z)).
The holomorphic and anti-holomorphic derivatives with respect to z will be
denoted by ∂ ≡ ∂z and ∂̄ ≡ ∂z̄ .

1.2 Free massless scalar field

The action S of the free massless scalar field X̂(z, z̄) is

S =
∫

d2xL =
1
8π

∫
d2x∂ν X̂∂̄ν X̂

=
1
4π

∫
d2ξ∂ξ X̂∂ξ̄ X̂ =

1
4π

∫
d2z∂X̂∂̄X̂, (1.7)



1.3 Symmetries of the classical action 5

where L is the Lagrangian density. The factor 1
4π is used to match the normal-

ization of the bosonic string theory (with α′ = 2). In the complex coordinate
notation (ξ, ξ̄) and (z, z̄) the measure of the integral is d2ξ = (i/2)dξ ∧ dξ̄ and
d2z = (i/2)dz ∧ dz̄, respectively. Note that L is a local expression and thus is
the same for the Euclidean plane or for any compact two-surface.

Varying the scalar field X̂(z, z̄) → X̂(z, z̄) + δX̂(z, z̄) induces a variation in
the action of the form

δS = − 1
2π

∫
d2z(∂∂̄X̂)δX̂. (1.8)

The action is thus extremized by configurations that solve the corresponding
equation of motion

∂∂̄X̂ = 0. (1.9)

It is thus clear that ∂X̂ is a holomorphic function and ∂̄X̂ is an anti-holomorphic
function, and the most general solution takes the form

X̂(z, z̄) = [X(z) + X̄(z̄)]. (1.10)

1.3 Symmetries of the classical action

By construction the action is invariant under translations and SO(2) rotations.
Translations in x0 and x1 translate in complex coordinates to

z → z + a; z̄ → z̄ + ā, (1.11)

where a is a constant complex number, and the SO(2) rotations, in infinitesimal
form, to

δz = −iεz; δz̄ = iεz̄, (1.12)

where ε is an infinitesimal real parameter.
When we go back to Minkowski space, the SO(2) rotations turn into SO(1, 1)

transformations. In addition it is easy to realize that a shift of the field by a
constant A,

X̂(z, z̄) → X̂(z, z̄) + A, (1.13)

leaves the Lagrangian invariant. It is a special feature of two dimensions that
the symmetry group of the action is in fact much richer since one can replace
the constant A with A(z) and the constant Ā with Ā(z̄), which are arbitrary
holomorphic and anti-holomorphic functions, respectively,

X̂(z, z̄) → X̂(z, z̄) + A(z); X̂(z, z̄) → X̂(z, z̄) + Ā(z̄). (1.14)

These are the affine current algebra transformations.3

3 Affine Lie algebras describing a physical system were first discussed in [27]. More references
will be given in the next two chapters.
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In a similar manner the space-time translations (1.11) can also be elevated to
holomorphic and anti-holomorphic transformations,

z → f(z); z̄ → f̄(z̄), (1.15)

referred to as two-dimensional conformal transformations. Affine current alge-
bra transformations and conformal transformations will be further discussed in
Sections 1.10 and 1.11

1.4 Mode expansion

The mode expansion of the classical solution depends on the boundary condi-
tions. For the case where the underlying two-dimensional manifold is the infinite
plane, a standard Fourier transform is used:

X̂(x0 , x1) =
∫

dk1
√

2π
√

k0
[a(k1)e−ik ·x + a†(k1)eik ·x ]. (1.16)

If the range of the space coordinate is bounded, one may impose two types of
boundary conditions, associated with closed and open strings. In the case of
closed strings the boundary conditions

X̂(x0 , x1) = X̂(x0 , x1 + 2π) (1.17)

are automatically obeyed by X̂(z, z̄). For this case the mode expansion is
expressed in terms of a Laurent series,

∂X = −i

∞∑
n=−∞

αn

zn+1 ∂̄X̄ = −i

∞∑
n=−∞

ᾱn

z̄n+1 . (1.18)

Integrating this expansion we get

X̂(z, z̄) = X − iP ln(zz̄) + i

∞∑
m=−∞, m �=0

(αm

m
z−m +

ᾱm

m
z̄−m

)
, (1.19)

with X a constant and

P = α0 = ᾱ0 . (1.20)

For open strings the boundary conditions are of Neumann type, namely

∂1X̂(x0 , x1 = 0) = ∂1X̂(x0 , x1 = π) = 0 =⇒ ∂X̂(z, z̄ = z) = ∂̄X̂(z, z̄ = z).

(1.21)

The corresponding mode expansion takes the form

X̂(z, z̄) = X − iP ln(zz̄) + i

∞∑
m=−∞, m �=0

αm

m

(
z−m + z̄−m

)
. (1.22)
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1.5 Noether currents and charges

Associated with the symmetries (1.14) and (1.15) are conserved Noether currents
and charges. In the Noether procedure one is instructed to elevate the global
parameters of transformations into local ones and extract the associated currents
from the variation of the action, namely δS ∼

∫
d2xJµ∂µε. Let us apply this

procedure first to the affine current algebra transformations so that we vary the
action with respect to δX̂(z, z̄) = ε(z, z̄) yielding

δS =
1
4π

∫
d2z[∂ε(z, z̄)∂̄X̂(z, z̄) + ∂̄ε(z, z̄)∂X̂(z, z̄)]. (1.23)

Unlike the situation in more than two dimensions, and due to the fact that the
symmetries (1.14) are in fact not only global ones but rather “half local”, the
currents

J ≡ ∂X; J̄ ≡ ∂̄X̄ (1.24)

are holomorphic and anti-holomorphic conserved,

∂̄J ≡ ∂̄∂X = 0; ∂J̄ ≡ ∂∂̄X̄ = 0. (1.25)

The classical currents are determined up to an overall constant.
A similar situation occurs with respect to the conformal transformation.

Replacing in the infinitesimal version of (1.15) δz → ε(z, z̄) and δz̄ → ε̄(z, z̄) one
finds,

δS =
1
2π

∫
d2z[∂ε̄(z, z̄)∂̄X̂(z, z̄)∂̄X̂(z, z̄) + ∂̄ε(z, z̄)∂X̂(z, z̄)∂X̂(z, z̄)]. (1.26)

The associated holomorphic and anti-holomorphic conserved energy-
momentum tensor components are

T = −1
2
∂X∂X; T̄ = −1

2
∂̄X̄∂̄X̄, (1.27)

where the coefficients were chosen in a way that will turn out to be convenient
when discussing the corresponding quantum generators.

1.6 Canonical quantization

Prior to imposing the canonical quantization condition one has to identify the
time direction. There are several options. Using x0 as the time direction, the
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corresponding conjugate momentum of X̂(z, z̄) is

Π =
δL

δx0X̂
=

1
4π

∂0X̂,

and the standard quantization conditions are

[X̂(x0 , x1),Π(y0 , y1)]x0 =y 0 = iδ(x1 − y1)

[X̂(x0 , x1), X̂(y0 , y1)]x0 =y 0 = 0

[Π(x0 , x1),Π(y0 , y1)]x0 =y 0 = 0. (1.28)

These conditions yield the standard algebra of the creation and annihilation
operators for (1.16),

[a(k1), a†(p1)] = δ(k1 − p1); [a(k1), a(p1)] = [a†(k1), a†(p1)] = 0. (1.29)

Substituting the mode expansion (1.16) into the expressions of the Noether
charges associated with the symmetries of the action (1.7) one finds that
the energy-momentum operators are proportional to a†(k)a(k) + a(k)a†(k) and
hence their vacuum expectation values are proportional to δ(0) ∼ L, where L is
the size of the space direction. It is thus clear that for the infinite Euclidean plane
(or a Minkowski space-time with space R) these expectation values diverge. One
then defines the normal ordered operators:

: O : ≡ O − <0|O|0> . (1.30)

For free fields this is equivalent to ordering annihilation operators to the right
of creation operators, and sufficient to make : O : finite.

Using the algebra of the creation and annihilation operators and the normal
ordered Hamiltonian, the construction of the Fock space is standard. One defines
the vacuum state |0> such that

a(k1)|0>= 0. (1.31)

The states in the Fock space are∏
i

a†(ki)ni |0>, (1.32)

and their energies, by applying the Hamiltonian,

H|
∏

a†(ki)ni |0>=
∑

i

(k0
j )ni(ki)

∏
a†(ki)ni |0> . (1.33)

The canonical quantization for the scalar field on a compact space direction,
with the boundary conditions of open or closed string, (1.21) and (1.17), respec-
tively, follows very similar steps. Imposing the quantization conditions (1.28)
above implies the following algebra for the αn operators of the open string and
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for the αn and ᾱn operators for the closed string:

[αm , αn ] = mδm+n

[ᾱm , ᾱn ] = mδm+n

[αm , ᾱn ] = 0. (1.34)

It is thus clear that αn operators are related to the a(k) operators as

αm =
√

ma(m),m > 0; α−m =
√

ma†(m),m > 0. (1.35)

1.7 Radial quantization

For the case of a cylinder-like two-dimensional manifold, namely, where the space
direction is compactified so that x1 ≡ x1 + 2π, it is natural to use the z = ex0 +ix1

coordinates. Space translations x1 → x1 + a take the form of multiplying by
a phase factor z → eiaz, and time translations x0 → x0 + a turn into dilata-
tions z → eaz. Rotations (x0 + ix1) → (c + is)(x0 + ix1), go into z → z(c+is) ,
with (c + is) = eiθ , θ the rotation angle. Correspondingly the generators of these
transformations change their geometrical operation. For instance the Hamilto-
nian obviously goes into the dilatation generator. Moreover, generators which
are Noether charges transform into contour integrals. Recall that the Noether
charge is Q =

∫
dx1J0(x1) which in the new coordinates reads Q =

∫
dθJr (θ) so

that we can write,

Q =
1

2πi

∮
[dzJ(z) + dz̄J̄(z̄)], (1.36)

where the contour integral is performed at some radius and the sign convention
we adopt is that both the dz and dz̄ integral are taken to be positive for the
counter-clockwise sense.

The infinitesimal transformation of an operator generated by the Noether
charge Q is given by:

δε,ε̄O =
1

2πi

∮
[dzJ(z)ε(z),O(w, w̄)] + dz̄[J̄(z̄)ε̄(z̄),O(w, w̄)]. (1.37)

Define a product R of two operators A(z)B(w) as taken radially, namely4

R(A(z)B(w)) = A(z)B(w), |z| > |w|; B(w)A(z), |w| > |z|. (1.38)

In Fig. 1.2 we show the two contour integrals that lead to a contour integral
around w, the location of the operator O, so that the infinitesimal transformation
is given by,

δε,ε̄O =
1

2πi

∮
[dzε(z)R(J(z)O(w, w̄)) + dz̄ε̄(z̄)R(J(z̄)O(w, w̄))]. (1.39)

4 The notion of radial quantization was introduced in [104]. This construction was used in the
context of complex geometry in [93].
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z z

w

w w

z

Fig. 1.2. A contour around w from the commutator.

We now apply this formulation to the symmetry generators (discussed in Sec-
tion 2.1):

(i) The infinitesimal affine current algebra transformation X̂(z, z̄) → X̂(z, z̄) −
ε(z) is generated by the holomorphic current J(z) = ∂X via

δεX̂(w, w̄) =
1

2πi

∮
dzε(z)R(∂X(z)X̂(w, w̄))

=
1

2πi

∮
dz

−1
z − w

ε(z) = −ε(w), (1.40)

where we have used for the product of operators,

R(X(z)X(w)) = − log(z − w) + finite terms. (1.41)

This is an example of the concept of operator product expansion, which is
addressed in the next section.

(ii) In a similar manner we can compute the transformation of ∂X generated by
the energy momentum tensor T

δε∂X(w) =
1

2πi

∮
dzε(z)R

(
−1

2
: ∂X(z)∂X(z) : ∂X(w)

)
=

1
2πi

∮
dz

1
(z − w)2 ∂X(z)ε(z) = ∂ε(w)∂X(w) + ε(w)∂2X(w), (1.42)

which is indeed the infinitesimal transformation of the holomorphic current
J = ∂X(z). The generator T is normal ordered using the following expression:

T (w) = −1
2

: ∂X(z)∂X(w) :≡ −1
2

limz→w

[
∂X(z)∂X(w) +

1
(z − w)2

]
. (1.43)
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1.8 Operator product expansion

In computing the contour integrals associated with infinitesimal transformations
we have made use of the operator product expansions of pairs of operators.5 The
singularities that occur when the points are taken to approach one another are
captured in the notion of operator product expansion (OPE),

Oi(x)Oj (y) =
∑

k

ck
ij (x − y)Ok (y), (1.44)

where ck
ij (x − y) are the coefficient functions which are singular in the limit of

x → y. Such expansions were proven to hold in renormalizable field theories. The
OPEs are an essential tool in exploring quantum field theories. Recall that all of
the information on the QFT is encoded into the values of all possible correlation
functions of the complete set of local

operators Oi(x), namely, < O1(x1)...On (xn ) >. In particular, one is interested
in the behavior of these correlation functions when two or more points approach
each other, which is encapsulated in the OPEs. For all applications discussed here
the OPEs are treated as asymptotic expansions and only their singular terms
will be specified. For the present case of two-dimensional free massless scalar
field theory the OPE converges and in fact, as will be discussed in Section 3.7.2,
a similar situation occurs in all 2d CFTs.

The OPEs of the free massless scalar can be deduced from its propagator,
which can be evaluated from the solution. It takes the form:

< X̂(zz̄)X̂(ww̄) >= −log|z − w|2 . (1.45)

In terms of the separation of the solution into holomorphic and anti-holomorphic
parts the two propagators read:

< X(z)X(w) >= − log(z − w); < X̄(z̄)X̄(w̄) >= − log(z̄ − w̄). (1.46)

By differentiating the last relation with respect to z and to w one finds the short
distance expansion of other operators like J(z), T (z) etc. In particular the OPE
of the currents is

J(z)J(w) = ∂X(z)∂X(w) = − 1
(z − w)2 + finite terms, (1.47)

with a similar result for the anti-holomorphic currents.
A different, though equivalent, approach is to write the OPE as a Taylor

expansion in (z − w) and (z̄ − w̄) in the following form:

X̂(z, z̄)X̂(ww̄) = −log|z − w|2 +
∞∑

k=1

1
k!

[(z − w)k : (∂kX̂(w, w̄))X̂(w, w̄) :

+(z̄ − w̄)k : (∂̄k X̂(w, w̄))X̂(w, w̄) :]. (1.48)

5 Wilson introduced for the first time the concept of an operator product expansion [219]. It
was used for two-dimensional conformal field theories in [33].
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This form of expansion is based on the property that the normal ordered product
of the scalar fields,

: X̂(z, z̄)X̂(ww̄) := X̂(z, z̄)X̂(w, w̄) + log|z − w|2 , (1.49)

obeys the equation of motion, namely,

∂∂̄ : X̂(z, z̄)X̂(w, w̄) := 0, (1.50)

and hence can be decomposed to holomorphic and anti-holomorphic functions
and thus is non singular.

In the previous subsection we used two OPEs to determine the symmetry
transformation of X and ∂X. We will work out now two additional examples
of OPEs, involving the operator which will later be found to be very useful
: eiαX (w ) :.

(i) The conformal properties of : eiαX (w ) are being determined by its OPE with
T (z) which takes the form

T (z) : eiαX (w ) : = −1
2
(: ∂X(z)∂X(z) :)(: eiαX (w ) :)

=
(α2

2 )
(z − w)2 eiαX (w ) +

1
(z − w)

∂eiαX (w ) . (1.51)

In language that will be developed in Section 2.2 this result will mean that
: eiαX (w ) : has a conformal dimension of α2

2 .

(ii) The OPE of two operators of the form : eiαX (w ) is

(: eiαX (z ) :)(: e−iβX (w ) :) =
: eiαX (w )e−iβX (w ) :

(z − w)αβ
. (1.52)

1.9 Path integral quantization

So far we have been using canonical quantization. Before proceeding to the gen-
eral structure of affine current algebra and Virasoro algebra we introduce the
quantization of a free massless scalar field using the Euclidean path integral
approach. As usual the functional integration DX̂(z, z̄) can be approximated
by discretizing the two-dimensional space and representing the functional inte-
gral by products of ordinary integrals. Expectation values of operators O(X)
constructed from X are given by,

< O(X̂) >=
∫

DX̂(z, z̄)O(X̂)e−S =
∫

DX̂(z, z̄)O(X̂)e−
1

2 π

∫
d2 z∂ X̂ ∂̄ X̂ . (1.53)

Correlation functions have to obey the equation

∂∂̄ < X̂(z, z̄)X̂(w, w̄) >= −2πδ2(z − w, z̄ − w̄), (1.54)
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as can be deduced by using the fact that the path integral of a total derivative
vanishes:

0 =
∫

DX̂(z, z̄)
δ

δX̂(z, z̄)
[e−S X̂(w, w̄)]

=
∫

DX̂(z, z̄)e−S

[
− δS

δX̂(z, z̄)
X̂(w, w̄) + δ2(z − w, z̄ − w̄)

]
=

1
2π

< ∂∂̄X̂(z, z̄)X̂(w, w̄) > + < δ2(z − w, z̄ − w̄) > . (1.55)

Alternatively one can use (1.45) and (1.46) directly. Note that in that case care
must be exercised, as naively we would get zero rather than the delta function,
since the expression is a sum of two terms, one depending on z only and the
other on z̄ only. The point is that the expressions (1.46) cannot be taken over at
the origin. A working rule is:

∂̄

(
1
z

)
= ∂

(
1
z̄

)
= (2π)δ2(z, z̄)

This can be derived by going over from 1
z to z̄

z z̄+ε2 , to regulate the singularity
at the origin.

1.10 Affine current algebra

As was shown in Section 1.3 the classical action is invariant under both affine
current algebra transformations and conformal transformations. We would like
to study the algebraic structure of the generators of these symmetries. We start
with the invariance under affine current algebra transformations. Recall that the
corresponding generators are the holomorphic and anti-holomorphic currents J

and J̄ , given in (1.24). Expanding the currents in Laurant series,

J =
∞∑

n=−∞
Jnz−(n+1); J̄ =

∞∑
n=−∞

J̄n z̄−(n+1) , (1.56)

it is obvious from the mode expansion (1.18) that the algebra of the currents is
related to that of the αn operators, namely

[Jm , Jn ] = −mδm+n ; [J̄m , J̄n ] = −mδm+n . (1.57)

This form of algebra will be shown in the next chapter to be associated with level
k = 1 abelian affine current algebra (or Kac–Moody algebra as it is sometimes
referred to).

This algebra translates into the following algebra of the currents:

[J(z), J(w)] = δ′(z − w). (1.58)
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Using the technique developed in Section 1.7 we can derive this result also from
the operator product expansion of two currents,

J(z)J(w) =
1

(z − w)2 + finite terms. (1.59)

1.11 Virasoro algebra

Next we address the algebraic structure of the generators of conformal transfor-
mations (1.27). Upon inserting (1.18) into the Laurent expansion of the energy
momentum tensor,

T =
∞∑

n=−∞
Lnz−(n+2); T̄ =

∞∑
n=−∞

L̄n z̄−(n+2) , (1.60)

one finds that for Ln with n �= 0,

Ln = 1/2
∞∑

m=−∞
: αn−m αm : . (1.61)

For n �= 0 the operators αn−m and αm commute, and so the product equals
the normal ordered one. The situation is different for L0 . Here one encoun-
ters an infinity in the product of chiral fields, which normal ordering removes,
resulting in,

L0 = 1/2P2 +
∞∑
1

α−m αm . (1.62)

We shall later see that it is sometimes necessary to shift L0 by a constant. Using
the commutation relation of αn one finds the following “naive” expression for
the commutator of Ln operators:

[Lm ,Ln ] =
1
4

∑
k,l

[αm−kαk , αn−lαl ]

=
1
2

∑
k

kαm−kαk+n +
1
2

∑
k

(m − k)αm−k+nαk

= (m − n)Lm+n , (1.63)

where to get to the third line we have changed a variable in the first sum from
k → k − n. This is the classical Virasoro algebra,6 and in fact in the quantum
theory it is further corrected. The correction appears only for the case m + n = 0,
so for m �= −n the classical form (1.63) is exact. For generators with m + n = 0
the two sums in the second line of (1.63) have to be brought to normal order. As
re-ordering means using the commutator, one gets divergent series for which, in
the case at hand, one cannot shift the variable of summation without changing

6 The Virasoro algebra was presented in [212]. More references will be given in the next two
chapters.
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the result. Taking this into account, one gets a c-number shift in the commutation
rule,

[Lm ,Ln ] = (m − n)Lm+n + A(m)δm+n . (1.64)

To compute the anomaly term A(m) we introduce a cutoff function fΛ(k),
which tends to 1 in the limit of infinite regulator Λ for any k, but for every finite
Λ goes to zero sufficiently rapidly at infinite k. Thus we view the operators Ln

as regularized sums,

Ln = 1/2
∞∑

m=−∞
: αn−m αm : fΛ(m), (1.65)

to replace (1.61). With this regularized expression, a direct computation gives
for the anomaly,

A(m) = 1/4
∞∑

k=1

{k(m − k)fΛ(m − k)[fΛ(k − m) + fΛ(−k)]

+ k(m + k)fΛ(−k)[fΛ(k) + fΛ(−m − k)]}. (1.66)

If we now take fΛ(k) to 1, without being careful, we get the divergent sum,

A(m) → m

∞∑
k=1

k. (1.67)

Using ζ-function regularization, namely replacing k by k−s , we get a convergent
sum for any s > 1, and then we continue analytically to s = −1, to get −m/12
for the right-hand side of the last equation.

To compute A(m) with the regulators fΛ, we now look at,

A(m) +
m

12
= 1/4

∞∑
k=1

{k(m − k)fΛ(m − k)[fΛ(k − m) + fΛ(−k)]

+ k(m + k)fΛ(−k)[fΛ(k) + fΛ(−m − k)] − 4mk}. (1.68)

Only large k is relevant now, as for any finite k we can take Λ to infinity first,
obtaining zero on the right-hand side. We now take,

fΛ(q) ≈ |q|−p |q| → ∞, (1.69)

with p → 0 as Λ → ∞. Expanding in powers of m
k , and recalling that ζ(s) has a

pole only at s = 1, we get by summing first and then letting p → 0, the result,

A(m) +
m

12
=

m3

12
. (1.70)

The anomaly term A(m) can also be determined using the Jacobi identity
[Lk , [Lm ,Ln ]] + [Lm , [Ln , Lk ] + [Ln , [Lk , Lm ] = 0. One finds that for k + m +
n = 0 the anomaly term obeys (m − n)A(k) + (n − k)A(m)+ (k − n)A(m) = 0.
Recall also that A(0) = 0 and A(m) = −A(−m) so it is enough to determine
A(m) for positive m. The relation derived from the Jacobi identity can be used
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to get a recursion relation which is determined by values of A(1) and A(2).
In fact the general solution is of the form A(n) = b3n

3 + b1n. The coefficient
b1 is correlated with the normal ordering ambiguity constant of L0 . One can
determine the coefficients b1 and b3 by computing the vacuum expectation val-
ues of <0|[L1 , L−1 ]|0>= 0 and <0|[L2 , L−2 ]|0>= 1

2 , so that altogether one finds
A(n) = 1

12 n(n2 − 1) and the full Virasoro algebra associated with the massless
free scalar field is,

[Lm ,Ln ] = (m − n)Lm+n +
1
12

m(m2 − 1)δm+n . (1.71)

In the next chapter the Virasoro algebra will be discussed in a broader perspec-
tive. In that context it will become clear that the algebra of (1.71) associated
with the massless free scalar is characterized by a c = 1 Virasoro anomaly.



2

Conformal field theory

Conformal invariance of two-dimensional massless scalar field theory was shown
in the previous chapter to associate with the infinite algebra of conserved charges,
the Virasoro algebra. In this chapter we describe the basic building blocks of
any two-dimensional conformal field theory (CFT). The notions of primary and
descendant operators will be introduced and the structure of the Hilbert space
of states will be described. We will discuss and classify certain classes of unitary
CFTs. Crossing symmetry, duality and bootstrap equations will be defined and
applied to computing correlators of CFTs. We then discuss the Verlinde formula
which relates the fusion rules and the S transformation. We will end up with two
examples of CFTs that demonstrate all of the concepts that have been introduced
before. The first one is the theory of a Majorana fermion and the second is the
m = 3 unitary minimal model, which is shown to be the continuum limit of the
two-dimensional Ising model.

Conformal field theory in two dimensions is covered by many review articles
and books. The former include [109] which we use intensively in this chapter,
also [25], [13], [59], [233] and many others.

Among the books that discuss 2d CFT is [140] and books on string theories
[113], [154], [174], [138], [237], [142], [30].

The most complete book on the topic is [77].
The basics of conformal field theory were stated in the seminal paper by

Belavin, Polyakov and Zamolodchikov [33]. This includes the introduction of
primary fields, the behavior of the energy-momentum tensor and the central
charge. Conformal Ward identity and the use of OPEs appears in [93], [95]
and [94].

2.1 Conformal symmetry in two dimensions

The theory of the free massless scalar field in two dimensions was shown to be
invariant under the holomorphic and anti-holomorphic coordinate transforma-
tions

z → z′ = f(z); z̄ → z̄′ = f̄(z̄). (2.1)

Under such a transformation the metric transforms as

ds2 = dzdz̄ → dz′dz̄′ =
∂z′

∂z

∂z̄′

∂z̄
dzdz̄. (2.2)
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At this point we can understand why we referred to these transformations as
conformal transformations. In general in d space-time dimensions the confor-
mal group is the subgroup of coordinate transformations that leaves the metric
invariant up to a scale, namely,

gµν (x) → g′µν (x′) = Ω(x)gµν (x). (2.3)

It is obvious from (2.2) that the 2d conformal transformations (2.1) indeed pro-
duce such a variation of the metric. An important property of conformal trans-
formations in any dimension is that they preserve the angle �A · �B√

A 2 B 2 between two

vectors �A and �B.
Starting from flat space, the general infinitesimal coordinate transforma-

tions xµ → xµ + εµ(x) induces a change of the metric ds2 → ds2 + (∂µεν +
∂ν εµ)dxµdxν , so that the condition for conformal transformations reads,

∂µεν + ∂ν εµ =
2
d
(∂ · ε)gµν , (2.4)

where gµν is ηµν or δµν for a Minkowskian signature, or Euclidean signature,
respectively.

It is thus obvious that for two-dimensional Euclidean space-time ε = ε(z) and
ε̄ = ε̄(z̄) are the unique solutions of (2.4), which reduces to the Cauchy–Riemann
equation ∂1ε1 = ∂2ε2 and ∂1ε2 = −∂2ε1 .

We would like now to put aside scalar field theory and explore the general prop-
erties of conformal field theories in two dimensions. Any theory with a vanishing
trace of the energy-momentum tensor Tµ

µ = 0, or in complex coordinates Tzz̄ = 0,
has necessarily an independent holomorphically (and anti-holomorphically) con-
served energy-momentum tensor components, namely,

∂̄T ≡ ∂̄Tzz = 0 ∂T̄ ≡ ∂Tz̄ z̄ = 0. (2.5)

This follows trivially from the usual conservation law ∂̄Tzz + ∂Tzz̄ = 0, and its
complex conjugation. It is also clear that in fact there are infinitely many con-
served currents, since g(z)T (z) for any analytic function g(z) is also a holomor-
phically conserved current (we sometimes call any conserved tensor “current”).

We show in the following section that indeed the energy-momentum tensor
T (z) and T̄ (z̄) generate the conformal transformations given in (2.1).

2.2 Primary fields

Conformal invariance constrains the OPEs of the theory. In particular, since T

is holomorphic, the OPE of T (z) with a general operator can be expanded in
terms of a Laurent expansion in integer powers of z. The singular part of the
OPE takes the form,

T (z)Õ(w, w̄) =
∞∑

n=0

1
(z − ω)n+1 Õ

(n)(w, w̄), (2.6)
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where the sum is usually finite, and the operators Õ(n)(w, w̄) have to be deter-
mined. Using radial quantization as in Section 1.7 and the OPE above, we get
for the transformation generated by T (z),

δεÕ(w, w̄) =
∑

n

1
n!

[
(∂nε)Õ(n)(w, w̄)

]
. (2.7)

We now consider operators that transform under conformal transformation in a
way that generalizes the transformation of the metric, (2.2),

O(z, z̄) → O′(z′z̄′) =
(

∂z′

∂z

)h (
∂z̄′

∂z̄

)h̄

O(z′z̄′). (2.8)

An operator with such conformal transformations is a primary field or a ten-
sor operator with conformal weights (h, h̄), which are sometimes referred to as
the holomorphic and anti-holomorphic conformal dimensions.1 The sum of the
weights h + h̄ is the total dimension that determines the behavior under scal-
ing, whereas h − h̄ is the spin that controls the behavior under rotations. The
infinitesimal transformations that correspond to (2.8) are,

δε,ε̄O(z, z̄) =
[
(h∂ε + ε∂) + (h̄∂̄ε̄ + ε̄∂̄)

]
O(zz̄). (2.9)

This form of transformation implies that the singular part of the OPE of T and
O(w, w̄) reduces to,

T (z)O(w, w̄) =
h

(z − ω)2 O(w, w̄) +
1

(z − ω)
∂O(w, w̄). (2.10)

Applying these notions to the free scalar field we find that ∂X(z) has (1, 0)
weights, ∂̄X̄(z̄) has (0, 1) and the weights of : eiαX (z ,z̄ ) : are (α2

2 , α2

2 ).
In Chapter 1 the notion of OPE was discussed in the context of scalar field the-

ory. The generalization to any CFT is straightforward. Normalize the operators
with fixed conformal weights as,

〈Oi(z, z̄)Oj (w, w̄)〉 = δij
1

(z − w)2hi

1
(z̄ − w̄)2h̄ i

, (2.11)

then, for a complete set, the OPE of any pair of such operators is, to leading
singularity,

Oi(z, z̄)Oj (w, w̄) ∼
∑

k

Cijk (z − w)hk −hi −hj (z̄ − w̄)h̄k −h̄ i −h̄ j Ok (w, w̄), (2.12)

where Cijk are the product coefficients of the theory.

1 The notion of conformal primary field and its descendants was introduced in [33] and further
discussed in [236].
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2.3 Conformal properties of the energy-momentum tensor

For the free massless scalar field we found that the OPE of T (z)T (w) is not
of the form shown as (2.6), due to the anomaly term as in (1.71). The form of
T (z)T (w) OPE for any CFT is rather,

T (z)T (w) =
c/2

(z − w)4 +
2T (w)

(z − w)2 +
∂w T (w)
(z − w)

, (2.13)

where c is the central charge (or the Virasoro anomaly), a constant that charac-
terizes the theory. The second term represents the dimensions and the third the
property of translations under T . For theories with positive semi-definite Hilbert
space c ≥ 0, as follows from,

< T (z)T (w) >=
c/2

(z − w)4 .

This type of OPE implies the following infinitesimal transformation of T :

δε(z )T (z) =
c

12
∂3ε(z) + 2(∂ε(z))T (z) + ε(z)∂T (z). (2.14)

The corresponding finite transformation T (z) → T ′(z′) takes the form,

T ′(z′) = (∂z′)2T (z) +
c

12
{z′, z}, (2.15)

where {z′, z} is the Schwarzian derivative,

{f, z} =
2∂3f∂f − 3∂2f∂2f

2∂f∂f
. (2.16)

To derive (2.16), we first note that by applying a second transformation f → ω

we get,

{w, z} = (∂zf)2{w, f} + {f, z}. (2.17)

Then, we take ω = f + δf , thus obtaining a functional equation,

δf
δ

δf
{f, z} = (∂zf)2 ∂3δf

∂3f
. (2.18)

Expressing the right-hand side as derivatives with respect to z,

1
f ′ (δf)

′′′ − 3f
′′

(f ′)2 (δf)
′′

+

[
3(f

′′
)2

(f ′)3 − f
′′′

(f ′)2

]
(δf)

′
,

we can integrate the equation to get (2.16). The first term suggests integrating to
f

′′′
/f

′
, the variation of which gives 1/f

′
(δf)

′′′ − f
′′′

/(f
′
)2(δf)

′
, while the second

term suggests −3(f
′′
)2/2(f

′
)2 , the variation of which gives −3f

′′
/(f

′
)2(δf)

′′
+

3(f
′′
)2/(f

′
)3(δf)

′
.

For the massless scalar case T can be written as T (z) = − 1
2 : J(z)J(z) :, as

we saw in (1.5). In fact, as will be discussed in Chapter 3, there is a large class
of theories that share this so-called Sugawara form. For this type of theory the
proof that the finite transformation is of the form of (2.15) is as follows. Recall



2.4 Virasoro algebra for CFT 21

that as a primary field of weights (1, 0), J(z) → ∂z ′

∂z J(z′). If we write T (z) =
− 1

2 limz→w (J(z)J(w) + 1
(z−w )2 ) and substitute the transformation of the currents

we end up after some lengthy but straightforward calculation with (2.15).

2.4 Virasoro algebra for CFT

Let us use the Laurent expansion of T for CFT, following (1.60),

T =
∞∑

n=−∞
Lnz−(n+2) T̄ =

∞∑
n=−∞

L̄n

z̄−(n+2) , (2.19)

so that,

Ln =
1

2πi

∮
dzzn+1T (z). (2.20)

The expansion is chosen such that Ln has scale dimension n under z → z/a,
namely, Ln → anLn .

The Virasoro algebra2 can now be derived using the OPE of T (z)T (w) given
in (2.13),

[Ln , Lm ] =
(

1
2πi

)2 ∮
dz

∮
dw[zn+1wm+1 − zm+1wn+1]T (z)T (w). (2.21)

The double integral is performed by fixing w and transforming the difference of
the two

∮
dz integrals into one integral around w,

[Ln , Lm ] =
(

1
2πi

)2 ∮
dz

∮
dw
[
zn+1wm+1 − zm+1wn+1]

[
c/2

(z − w)4 +
2T (w)

(z − w)2 +
∂w T (w)
(z − w)

]
=
(

1
2πi

)∮
dw
[
c/12(n3 − n)wn+m−1

+ [2(n + 1) − (n + m + 2)]wn+m+1T (w)
]

=
c

12
(n3 − n)δ(n + m) + (n − m)Ln+m . (2.22)

Performing identical steps for L̄n we get that L̄n obeys the same infinite algebra,
with some central charge c̄, and that [Ln , L̄m ] = 0.

Any CFT is a representation of the Virasoro algebra characterized by c and c̄.
It is straightforward to identify the following properties of the algebra:

� The generators (L±1 , L0) span an SL(2,R) algebra,

[L+1 , L−1 ] = 2L0 [L0 , L±1 ] = ∓L± (2.23)

2 The first use of the Virasoro algebra was by M. Virasoro in the context of the dual resonance
model [212]. Its application to two-dimensional CFT was presented in [33].
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Table 2.1. The conformal family

Level Weight Fields

0 h φ
1 h+1 L−1φ
2 h+2 L−2φ, L2

−1φ
3 h+3 L−3φ, L−2L−1φ, L3

−1φ
...

...
...

N h+N P(N) fields

� For n > 0, L−n is a raising operator and Ln is a lowering one, since [L0 , Ln ] =
−nLn so that if |ψ> is an eigenstate of L0 , L0 |ψ>= h|ψ> then L0 |Lnψ>=
(h − n)|Lnψ>.

2.5 Descendant operators

From every primary operator φ(z, z̄) one can construct an infinite tower of Vira-
soro descendant operators,

(L−nφ(w, w̄)) =
1

2πi

∮
dz

1
zn−1 T (z)φ(w, w̄). (2.24)

A distinguished descendant operator is the energy momentum tensor T (z) since,

L−21 =
1

2πi

∮
dz

z
T (z)1 = T (0). (2.25)

The set containing the primary field φ(z, z̄) and all its descendant operators
is called a conformal family and it is denoted by [φ]. A conformal family is a
tower of operators where each layer is characterized by its level as shown in
Table 2.1, where P (N) is the number of partitions of N into positive integer
parts, which can be written in terms of the generating function

∏
n=1

1
(1−qn ) =∑∞

N =0 P (N)qN .
We can now use the conformal family to rewrite the expression of the OPE

(2.12) of two primary fields,

φi(z, z̄)φj (w, w̄)

=
∑
k{l l̄}

C
{l l̄}
ijk (z − w)hk −hi −hj +

∑
n ln (z̄ − w̄)h̄k −h̄ i −h̄ j +

∑
n l̄n φll̄

k (w, w̄),

(2.26)

where we denote by φll̄
k (w, w̄) the descendants L−l1 . . . L−ln L̄−l̄1 . . . L̄−l̄n φk (w, w̄)

with the normalization given in (2.11). The product coefficients C
{l l̄}
ijk are given

in terms of those of (2.12) Cijk as,

C
{l l̄}
ijk = Cijkβ

k{l}
ij β̄

k{l̄}
ij , (2.27)



2.6 Hilbert space of states 23

where β
k{l}
ij are determined by conformal invariance and are functions of c and

hi, hj , hk , and similarly for β̄
k{l̄}
ij . This follows from a detailed analysis that we

do not show here.
The OPEs of any pair of descendant fields can also be deduced from (2.12)

which implies in fact that all the information about the OPE is encoded in the
product coefficients Cijk . Moreover since the structure of (2.26) holds for all the
primaries and their descendants, one can write the so-called fusion algebra for
conformal, families, which takes the form,

[φi ][φj ] =
∑

k

Nk
ij [φk ]. (2.28)

2.6 Hilbert space of states

Our next task is to construct the Hilbert space of states. First we define the
ground state |0> by,

Ln |0>= 0 n ≥ 0. (2.29)

The next step in this program is to build the highest weight states (hws).
Consider the state generated from the vacuum by a primary field φ(z) of
dimension h,

|h>= φ(0)|0> . (2.30)

It is easy to check that for n > 0, [Ln , φ(0)] = 0 since,

[Ln , φ(w)] =
1

2πi

∮
dzzn+1T (z)φ(w) = h(n + 1)wnφ(w) + wn+1∂φ(w). (2.31)

Hence the highest weight state |h> obeys

L0 |h>= h|h> Ln |h>= 0 n > 0. (2.32)

Expanding the primary field φ(z) in a Laurent series
∑

n φnz(n−h) , one can write
the highest weight state symbolically as φh |0>.

Descendant states are generated by applying the descendant operators L−nφ

on the vacuum or alternatively by applying L−n on highest weight states, namely,

L−n |h>= L−nφ(0)|0>= (L−nφ)|0> . (2.33)

It is thus clear that the highest weight states, or equivalently the primary oper-
ators, play a major role in constructing representations of the Virasoro algebra.
In fact one can show that every representation is characterized by a primary
operator. Consider an eigenstate of L0 , L0 |ψ>= hψ |ψ>. Now act on it with the
lowering operator Ln with n > 0. The L0 eigenvalue of the new state Ln |ψ> is
hψ − n. Since we require that the Hamiltonian is bounded from below, L0 has
to be also bounded. This implies that after repeating the lowering process one
finally hits a state that is annihilated by Ln for every n > 0 and hence an hws.
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It is thus clear that any state in a positive Hilbert space is a linear combination
of hws, and their descendants. The representation given in Table 2.1 is referred
to as the Verma module. Denoting it by V(c, h) and its analogous representation
for the anti-holomorphic Virasoro algebra by V̄(c̄, h̄), the Hilbert space of the
theory is a direct sum of the products V(c, h) ⊗ V̄(c̄, h̄), namely,

H =
∑
h,h̄

V(c, h) ⊗ V̄(c̄, h̄). (2.34)

The Verma module may be reducible in the sense that there is a submodule that
is by itself a Verma module. Such a submodule whose states transform amongst
themselves under any conformal transformation, is built from a |hnull>. The
latter is both an hws., namely Ln |hnull>= 0 for n > 0, as well as a descendant.
Such a state is called null state or null vector, motivated by what follows. It
generates its own Verma module which is included in the parent module. It is
orthogonal to the whole Verma module as well as to itself <hnull|hnull>= 0,
since <hnull|L−k1 . . . L−kn

|h>=<h|Lkn
. . . Lk1 |hnull>

∗= 0, and in particular it
has a zero norm <hnull|hnull>= 0 and similarly also its descendants. The null
state corresponds to a null operator which is simultaneously a primary and a
secondary field.

Let us now demonstrate the construction of a null vector. Consider a general
linear combination of the states of level 2,

L−2 |h> + aL2
−1 |h>, (2.35)

we would like to check whether for certain values of the mixing coefficient a, this
state is a null state. If indeed it is |null>, then so is the state [Ln |null>]. In fact
it is easy to verify that at level 2, one has to check these consistency conditions
only for L1 and L2 . Now using the Virasoro algebra we find that,

[L1 , L−2 ] |h> + a
[
L1 , L

2
−1
]
|h> = (3 + 2a(2h + 1))L−1 |h>,

[L2 , L−2 ]|h> + a
[
L2 , L

2
−1
]
|h> =

(
4h +

c

2
+ 6ah

)
|h> . (2.36)

It is thus clear that for the following values of a and c,

a = − 3
2(2h + 1)

c =
2h

2h + 1
(5 − 8h), (2.37)

the linear combination state (2.35) is a null state. In the unitary case we have
h and c positive (see next section). Hence in this example h < 5

8 .
An irreducible representation of the Virasoro algebra can be constructed from

a Verma module that contains a null vector by a quotient procedure, taking
out of the Verma module the null module. In the next section we discuss this
construction.
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2.7 Unitary CFT and Kac determinant

Unitarity is obviously lost if there are negative norm states in the Verma module.
Hence, our task is to derive the conditions for having a negative norm state. In
the basis of the Verma module,

L−k1 . . . L−ki
|h>≡ |s> (1 ≤ k1 ≤ . . . ≤ ki), (2.38)

the matrix of inner products Iss′ =<s|s′> is block diagonal with blocks I(N ) for
states at level N(

∑
i ki = N). For a given Verma module the elements of I are

functions of (h, c). It is easy to realize that unitarity dictates c > 0 and h > 0.
This follows from <h|LnL−n |h>= [2nh + 1/12cn(n2 − 1)] <h|h>, which is pos-
itive for n = 1 only if h > 0 and for large enough n only for c > 0. To determine
the full set of constraints for unitarity let us analyze further the properties of I.
A general state |ŝ>=

∑
k ck |s> has a norm <ŝ|ŝ>= ĉ†Iĉ, with ĉ the vector of

the ck . Now since I is hermitian it can be diagonalized by a unitary matrix U

so that the norm can be written as <ŝ|ŝ>=
∑

k lk |tk |2 where t = Uĉ and lk are
the eigenvalues of I, which are real. It is thus clear that there are negative norm
states if and only if I has negative eigenvalues. A vanishing eigenvalue indicates
a null vector which means a reducible Verma module.

For the low lying levels these matrices take the following form:

I(0) = 1
I(1) = 2h

I(2) =
(

4h(2h + 1) 6h
6h 4h + c/2

)
. (2.39)

The derivation of the various elements is straightforwad, for instance,

I(2)
11 = <h|L1L1L−1L−1 |h>=<h|L1L−1L1L−1 |h> + 2 <h|L1L0L−1 |h>

= 4 <h|L1L−1L0 |h> + 2 <h|L1L−1 |h>= 8h2 + 4h. (2.40)

The determinant of I(2) is given by

det[I(2) ] = 32(h − h1,1)(h − h1,2)(h − h2,1), (2.41)

where h1,1 = 0 and h1,2 , h2,1 are (1/16)[(5 − c) ±
√

(1 − c)(25 − c)]. The trace
of I(2) is Tr[I(2) ] = 8h(h + 1) + c/2. Since the trace and the determinant are the
sum and product of the two eigenvalues, unitarity is lost if either the trace or
the determinant is negative.

The determinant for I(N ) at general level N , which is referred to as the Kac
determinant,3 has the form

det[I(N ) ] = αN

∏
pq≤N

[h − hp,q (c)]
P (N −pq)

, (2.42)

3 The proof of the Kac determinant is detailed in [89], [206] and [95].
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where αN are constants independent of (c, h) and hp,q (c) can be expressed in

terms of m = − 1
2 ± 1

2

√
25−c
1−c as,

hp,q (c) =
[(m + 1)p − mq]2 − 1

4m(m + 1)
. (2.43)

Note that we can choose either the plus or the minus sign in the expression for
m, as their interchange is like interchanging p with q, which does not change the
determinant. Note also that hp,q is invariant under p → m − p, q → m + 1 − q.
Let us also mention that for N = 2 the result is identical to (2.41).

In the (h, c) plane the determinant vanishes along the curves h = hp,q (c) which
are therefore called the vanishing curves. If the determinant (2.42) is negative it
means that there is an odd number of negative eigenvalues and hence the corre-
sponding Virasoro representation is not unitary. If the determinant is vanishing
or positive one needs to further analyze the determinant as follows:

� For c > 1 and h > 0 it is straightforward to show that the determinant does
not vanish.

In the domain 1 < c < 25 the value for m has an imaginary part. Thus hp,q are
complex for p �= q, and as they come in complex conjugate pairs the product of
the appropriate two factors in the determinant is positive. For p = q the value
of hp,q is negative. Thus the determinant is positive in that domain.

For c > 25 the hp,q are negative.

For large h the matrix is dominated by its diagonal elements.

Since these elements are positive, the eigenvalues for large h are all pos-
itive. Now since the determinant never vanishes in the region considered
(h > 0, c > 1) all the eigenvalues have to be positive on the entire region.

Note that in I(2) the off-diagonal element is larger at large h than the 22
element, but still the determinant is dominated at large h by the diagonal
elements, and thus also the eigenvalues, as a 2 × 2 matrix.

� For c = 1 we have hp,q = (p − q)2/4, and so the determinant is never negative.
However, it vanishes when h = n2/4 for some integer n.

� For 0 < c < 1, h > 0 a closer look at the determinant is required. We draw
hp,q (c) in Fig. 2.1.

By expanding the curves around c = 1 one can show that any point in the
region can be connected to the right of c = 1 by crossing a single vanishing
curve. The vanishing of the determinant is due to one eigenvalue that reverses
its sign which implies that there are negative norm states at any point in the
region that are not on the vanishing curve. In fact it turns out that there are
additional negative norm states at points along the vanishing curve except at


