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Preface

A revolution is underway in cosmology, with largely qualitative models of the
Universe being replaced with precision modelling and the determination of
Universe’s properties to high accuracy. The revolution is driven by three distinct
elements – the development of sophisticated cosmological models and the abil-
ity to extract accurate predictions from them, the acquisition of large and precise
observational datasets constraining those models, and the deployment of advanced
statistical techniques to extract the best possible constraints from those data.

This book focuses on the last of these. In their approach to analyzing datasets,
cosmologists for the most part lie resolutely within the Bayesian methodology for
scientific inference. This approach is characterized by the assignment of proba-
bilities to all quantities of interest, which are then manipulated by a set of rules,
amongst which Bayes’ theorem plays a central role. Those probabilities are con-
stantly updated in response to new observational data, and at any given instant
provide a snapshot of the best current understanding. Full deployment of Bayesian
inference has only recently come within the abilities of high-performance
computing.

Despite the prevalence of Bayesian methods in the cosmology literature, there is
no single source which collects together both a description of the main Bayesian
methods and a range of illustrative applications to cosmological problems. That, of
course, is the aim of this volume. Its seeds grew from a small conference ‘Bayesian
Methods in Cosmology’, held at the University of Sussex in June 2006 and attended
by around 60 people, at which many cosmological applications of Bayesian meth-
ods were discussed. CUP editor Vince Higgs, who attended the conference, saw
the need for a comprehensive volume covering these topics, and suggested that we
put together an edited volume of articles. And here it is!

The book is divided into two part. The first part, ‘Methods’, concentrates on the
formalism, methods and algorithms, with only limited illustrative examples. The
focus is very much on those aspects that have proven valuable in cosmological

xi



xii Preface

studies, complementing the much more complete treatments of Bayesian inference
given in the excellent books by MacKay (2003; see page 35), Gregory (2005; see
page 97), and Sivia and Skilling (2006; see page 35), all of which we recommend
to the interested reader. The second part, ‘Applications’, studies a wide range of
cosmological applications in detail. Many of the codes used in these applications
are publicly available.



Part I

Methods
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Foundations and algorithms

John Skilling

Why and how – simply – that’s what this chapter is about.

1.1 Rational inference

Rational inference is important. By helping us to understand our world, it gives us
the predictive power that underlies our technical civilization. We would not func-
tion without it. Even so, rational inference only tells us how to think. It does not
tell us what to think. For that, we still need the combination of creativity, insight,
artistry and experience that we call intelligence.

In science, perhaps especially in branches such as cosmology, now coming of
age, we invent models designed to make sense of data we have collected. It is no
accident that these models are formalized in mathematics. Mathematics is far and
away our most developed logical language, in which half a page of algebra can
make connections and predictions way beyond the precision of informal thought.
Indeed, one can hold the view that frameworks of logical connections are, by def-
inition, mathematics. Even here, though, we do not find absolute truth. We have
conditional implication: ‘If axiom, then theorem’ or, equivalently, ‘If not theorem,
then not axiom’. Neither do we find absolute truth in science.

Our question in science is not ‘Is this hypothetical model true?’, but ‘Is this
model better than the alternatives?’. We could not recognize absolute truth even
if we stumbled across it, for how could we tell? Conversely, we cannot recognize
absolute falsity. If we believe dogmatically enough in a particular view, then no
amount of contradictory data will convince us otherwise, if only because the data
could be dismissed as evidence of conspiracy to deceive. Yet even a determined
sceptic might be sufficiently charitable to acknowledge that a model with demon-
strable ability to predict future effects could have practical value.

3



4 Foundations and algorithms

Let us, then, avoid the philosophical minefields of belief and truth, and pay at-
tention to what we really need, which is predictive ability. We anticipate the Sun
will rise tomorrow, not just because it always has done so far, but because this is
predicted by models of stellar structure and planetary dynamics, which accord so
well with such a variety of data that perceived failure of the Sun to rise might more
likely be hallucination.

Rational assessment of different models is the central subject of Bayesian meth-
ods, so called after Revd Thomas Bayes, the eighteenth century clergyman gener-
ally associated with the beginnings of formal probability theory. We will find that
probability calculus is forced upon us as the only method which lets us learn from
data irrespective of their order – surely a required symmetry. We will also discover
how to use it properly, with the aid of modern computers and algorithms. Inference
was held back for a century by technical inability to do the required sums, but that
sad era has closed.

1.2 Foundations

Suppose we are given a choice of basic models, a = apple, b = banana, c =
cherry, which purport to explain some data. Such models can be combined, so that
apple-OR-banana, written a ∨ b, is also meaningful. Data that excluded cherries
would, in fact, bring us down from the original apple-OR-banana-OR-cherry

combination to just that choice. With n basic models, there are 2n possible combi-
nations. They form the elements of a lattice, ranging from the absurdity in which
none of the models is allowed, up to the provisional truism in which all of them
remain allowed. In inference, we need to be able to navigate these possibilities as
we refine our knowledge.

a ∨ b ∨ c

a ∨ b a ∨ c b ∨ c

a b c

∅

�
��

�
��

�
��

�
��
�

��
�

��

�
��

�
��

The absurdity ∅ is introduced merely because analysis is cleaner with it than with-
out it, rather as 0 is often included with the positive integers.

The three core concepts of measure, information and probability all have wider
scope than inference alone. They apply to lattices in general, whether or not the
lattice fills out all 2n possibilities. By exposing just the foundation that we need,
and no more, we can allow wider application, as well as clarifying the basis so that
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alternative formulations of these concepts become even less plausible than they
may have been before.

1.2.1 Lattices

The critical idea we need is ‘partial ordering’. We always have “=”: every element
equals itself, x = x. Sometimes, we have “<”, as in x < y, meaning that y includes
x. In inference, we say that apple is included in apple-OR-banana, because the
scope of the latter is wider and includes all of the former, but we would not try to
include apple within banana. We don’t need that particular motivation, though. All
we need is “<” in the abstract. Ordering is to be transitive,

x < y and y < z implies x < z, (1.1)

otherwise it would not make sense.
The other idea we need is ‘least upper bound’. The upper bounds to elements x

and y are those elements at or including both x and y. If there is a least such bound,
we write it as x ∨ y and call it the least upper bound:{

x ≤ x ∨ y

y ≤ x ∨ y

}
, and x ∨ y ≤ u for all u obeying

{
x ≤ u

y ≤ u

}
. (1.2)

In inference, the unique least upper bound x ∨ y is that element including all the
components of x and y, but no more. There, the existence of least upper bound is
obvious.

Technically, a lattice is a partially ordered set with least upper bound, so that “<”
and “∨” are defined. Any pair of elements x and y also has lower bounds, being all
those elements at or beneath both. There is a unique greatest lower bound, written
x ∧ y. (If there were alternatives u and v, then u ∨ v could be ambiguously x or
y, contradicting uniqueness of their least upper bound.) Mathematicians (Klain &
Rota 1997) traditionally define a lattice in terms of ∨ and ∧, but our use of <

and ∨ is equivalent, and (with =) underlies their traditional axioms of reflexivity,
antisymmetry, transitivity, idempotency, commutativity, associativity and absorp-
tion. Of these, the associativity property

(x ∨ y) ∨ z = x ∨ (y ∨ z) (1.3)

is of particular importance to us.
What we now seek is a numerical valuation v(x) on our lattice of models, so that

we can rank the possibilities. Remarkably, there is only one way of conforming to
lattice structure, and this leads us to measure theory, thence to information and
probability. Though modernized following Knuth (2003), the approach dates back
to Cox (1946, 1961).
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1.2.2 Measure

Addition

For a start, we want valuations to conform to “≤”, so we require

x ≤ y =⇒ v(x) ≤ v(y). (1.4)

Moreover, whatever our valuations were originally, we can shift them to give a
standard value 0 to the ubiquitous absurdity ∅, so that the range of value becomes
0 = v(∅) ≤ v(x).

We next assume that if x and y are disjoint, so that x ∧ y = ∅ and they have
nothing in common, then the valuation v(x ∨ y) should depend only on v(x) and
v(y). Write this relationship as a binary operation ⊕,

v(x ∨ y) = v(x) ⊕ v(y) when x ∧ y = ∅ . (1.5)

To conform with associativity (1.3), we require(
v(x) ⊕ v(y)

)
⊕ v(z) = v(x) ⊕

(
v(y) ⊕ v(z)

)
. (1.6)

This has to hold for arbitrary values v(x), v(y), v(z), and the associativity theorem
(Azcél 2003) then tells us that there must be some invertable function F of our
valuations v such that

F
(
v(x ∨ y)

)
= F

(
v(x)

)
+ F

(
v(y)

)
. (1.7)

That being the case, we are free to discard the original valuations v and use m =
F (v) instead, for which ∨ is simple addition: for disjoint x and y we have the sum
rule

m(x ∨ y) = m(x) + m(y) (1.8)

In other words, valuation can without loss of generality be taken to be what math-
ematicians call a ‘measure’. They traditionally define measures from the outset as
additive over infinite sets, but offer little justification. Mathematicians just do it.
Physicists want to know why. Here we see that there’s no alternative, and although
we start finite we can extend to arbitrarily many elements; it is the same struc-
ture. This is why measure theory works – it is because of associativity – and we
physicists don’t have to worry about the infinite.

Assignment

As for actual numerical values, we can build them upwards by addition – except
for foundation elements that are not equal to any least upper bound of different
elements. Those values alone cannot be determined by the sum rule.
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Thus, in the inference example, we can value an apple, a banana and a cherry
arbitrarily, but there is a scale on which combinations add. On that scale, if an ap-
ple costs 3c/ and a cherry costs 4c/, then their combination costs 3 + 4 = 7c/, not
32 + 42 = 25 or other non-linear construction. Associativity underlies money. Per-
sonal assignments may be on a different scale. In economics, for example, personal
benefit is sometimes held to be logarithmic in money, m = log($), to reflect the
asymmetry between devastating downside risk and comforting upside reward. On
that scale, money combines non-linearly, as log $(x ∨ y) = log $(x) + log $(y).
That’s permitted, the point being that there is a scale on which one’s numbers add.
Thus quantification is intrinsically linear – because of associativity.

In inference, ∨ behaves as logical OR and ∧ as logical AND, obeying the extra
property of distributivity:

(x OR y) AND z = (x AND z) OR (y AND z) ,

(x AND y) OR z = (x OR z) AND (y OR z) .
(1.9)

Equivalently, they behave as set union and set intersection of the foundation ele-
ments, which can therefore be assigned arbitrary values. In other applications, ∨
and ∧ might not be distributive, and the foundation assignments become restricted
by the non-equality of combinations that would otherwise be identical. But their
calculus would still be additive.

Multiplication

As well as by addition, measures can also combine by multiplication. Here, we
consider a direct product of lattices. For example, one lattice might have playing-
card foundation elements (♠, ♥, ♣, ♦) while the other has music-key foundations
(�, �, �). The direct-product lattice treats both together, here with 12 foundation
elements like ♥× � and 212 elements overall:

♠×�♥×�♣×�♦×�

♠×�♥×�♣×�♦×�

♠×�♥×�♣×�♦×�

=

♠ ♥ ♣ ♦

×

�

�

�

We now assume that the measure m(x×y) should depend only on m(x) and m(y).
Write this relationship as a binary operation

m(x × y) = m(x) ⊗ m(y). (1.10)

Now the direct-product operator is associative, (x × y) × z = x × (y × z),
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�� ��
�� ��
�� ��
�� ��
�� ��

=

�� ��

��

=

�

��

�

��

�

��

�

��

�

��

�

��
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��

so (
m(x) ⊗ m(y)

)
⊗ m(z) = m(x) ⊗

(
m(y) ⊗ m(z)

)
. (1.11)

This has to hold for arbitrary values m(x), m(y), m(z), and the associativity theo-
rem then tells us that there must be some invertable function Φ of the measures m

such that

Φ(m(x × y)) = Φ(m(x)) + Φ(m(y)). (1.12)

We cannot now re-grade to Φ(m) and ignore m because we have already fixed
the behaviour of m to be additive. What we can do is require consistency with
that behaviour by requiring the sum rule (1.8) to hold for composite elements,
m(x × t) + m(y × t) = m((x ∨ y) × t) for any t. The context theorem (Knuth
and Skilling, in preparation) then shows that Φ has to be logarithmic, so that

m(x × y) = m(x)m(y). (1.13)

While ⊕ is addition, ⊗ is multiplication. Combination is intrinsically multiplicative
– because of associativity. There is no alternative.

Commutativity

Technically, we have not used the commutative property x ∨ y = y ∨ x of a lattice.
However, the sum rule automatically generates values that are equal, v(x ∨ y) =
v(y ∨ x). So real valuations cannot capture non-commutative behaviour. Quantum
mechanics is an example, where states lack ordering so do not form a lattice, and
the calculus is complex. Inference is not an example. There, apple-OR-banana is
the same as banana-OR-apple so ∨ is commutative for us, and we are allowed to
use the real values that we need.

1.2.3 Information

Different measures can legitimately be assigned to the same foundation elements,
as when different individuals value apples, bananas and cherries differently. The
difference between source measure μ and destination measure m can be quantified,
consistently with lattice structure, as ‘information’ H(m | μ).

One way of deriving the form of H is as a variational potential, in which desti-
nation m is obtained at the extremal (minimum, actually) of H , subject to whatever
constraints require the change from μ. Suppose the playing-card example above has
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source measure μ, with destination m obtained by some constraint on card suits.
Independently, the music-key example has source measure ν, with destination n

obtained by some constraint on music keys.
Equivalently, we must be able to analyze the problems jointly. Measures multi-

ply, so the joint element ‘card suit i and music key j’ has source measure μiνj and
destination minj . The latter is to be obtained at the extremal of H(minj | μiνj),
under one constraint acting on i and another on j. Temporarily suppressing the
fixed source μν, the variational equation for the destination measure is

H ′(minj) = λ1(i) + λ2(j), (1.14)

where the λ’s are the Lagrange multipliers of the i and j constraints. Writing x =
mi and y = nj , and differentiating ∂2/∂x∂y, the right-hand side is annihilated,
leaving

xyH ′′′(xy) + H ′′(xy) = 0, (1.15)

whose solution is

H(z) = A − Bz + Cz log z. (1.16)

Setting C = 1 an as arbitrary scale (positive to ensure a minimum), B = 1 to place
that minimum correctly at m = μ, and A = μ to make the minimum zero, we
reach (Skilling 1988)

H(m | μ) = μ − m + m log m
μ (1.17)

This obeys (1.14), so the potential we seek exists, and is required to be of this
unique form. The difference between measures plays a deep rôle in Bayesian
analysis.

1.2.4 Probability

Acquiring data involves a reduction of possibilities. Some outcomes that might have
happened, did not. In terms of the lattice of possibilities, the all-encompassing top
element moves down. To deal with this, we seek a bi-valuation p(x | t), in which
the context t of model x can shrink. Within any fixed context, p is to be a measure,
being non-negative and obeying the sum rule. But we want to change the numbers
when the context changes.

To find the dependence on context, take ordered elements x ≤ y ≤ z ≤ t. As
before, we require conformity with lattice ordering, here

x ≤ y ≤ z =⇒ p(x | z) ≤ p(x | y) (1.18)
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so that a wider context dilutes the numerical value. Ordering such as x ≤ z can be
carried out in two steps, x ≤ y and y ≤ z. Our bi-valuation should conform to this,
meaning that we require a “
” operator combining the two steps into one:

p(x | z) = p(x | y) 
 p(y | z). (1.19)

Extending this to three steps and considering passage p(x | t) from x to t, via y

and z, gives another associativity relationship,(
p(x | y) 
 p(y | z)

)

 p(z | t) = p(x | y) 


(
p(y | z) 
 p(z | t)

)
, (1.20)

representing (((x ≤ y) ≤ z) ≤ t) = (x ≤ (y ≤ (z ≤ t))). As before, this induces
some invertable function Φ of our valuations p such that

Φ
(
p(x | z)

)
= Φ

(
p(x | y)

)
+ Φ

(
p(y | z)

)
. (1.21)

Again, we require consistency with the sum rule p(x ∨ y | t) = p(x | t) + p(y | t)
for arbitrary context t. A variant of the context theorem (Knuth and Skilling, in
preparation) then shows that Φ has to be logarithmic as before, so 
 was multipli-
cation. Specifically, we recognize p as probability, hereafter “pr”,

0 = pr(∅) ≤ pr(x) ≤ pr(t) = 1 Range
pr(x ∨ y) = pr(x) + pr(y) Sum rule for disjoint x, y

pr(x ∧ y) = pr(x | y) pr(y) Product rule

⎫⎬⎭ ‖ t (1.22)

(The “ ‖ t ” notation means that all probabilities are conditional on t, and avoids
proliferation of “ | t ” without introducing ambiguity.)

Just as measure theory was forced for valuations, so probability theory is forced
for bi-valuations. We need not be distracted by claimed alternatives because they
conflict with very general requirements. It is all very simple. There’s only this one
calculus for numerical bi-valuations on a lattice. If, say, we seek a calculus for
conditional beliefs, then this has to be it. But the calculus itself is abstract and
motive-free. We don’t have to subscribe to an undefined idea like ‘belief’ in order
to use it. In fact, the reverse holds. It is probability, with its defined properties, that
would underpin belief, not the other way round.

Most simply of all, probability calculus can be subsumed in the single definition
of probability as a ratio definition of measures:

pr(x | t) =
m(x ∧ t)

m(t) (1.23)

This is the original discredited frequentist definition, as the ratio of number of
successes to number of trials, now retrieved at an abstract level, which bypasses
the catastrophic difficulties of literal frequentism when faced with isolated non-
reproducible situations. The calculus of probability is no more than the calculus of
proportions.
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1.3 Inference

Henceforward, in accordance with traditional accounts, we take all foundation ele-
ments to be disjoint, and work in terms of these. The OR operator ∨ can be replaced
by the summation to which it reduces, while the AND operator ∧ can be written as
the traditional comma. It is also usual to use I for context, and allow the discrete
choice x to be continuous θ. The rules of probability calculus then reduce to

pr(θ) ≥ 0 Positivity∫
pr(θ) dθ = 1 Sum rule

pr(φ, θ) = pr(φ | θ) pr(θ) Product rule

⎫⎪⎬⎪⎭ ‖ I (1.24)

1.3.1 Bayes’ theorem

In inference, we need to consider both parameter(s) θ and data D, all in the over-
arching context I of all possibilities we are currently considering. By the product
law, the joint probability of model and data factorizes:

pr(θ) pr(D | θ) = pr(θ, D) = pr(D) pr(θ | D) ‖ I

Prior × Likelihood = Joint = Evidence × Posterior
π(θ) L(θ) = · · · · · · = E P(θ)

Inputs =====⇒ Outputs

(1.25)

On the left lies the prior probability π(θ) = pr(θ | I), representing how we orig-
inally distributed the parameters’ unit mass of probability. This assignment has
provoked legendary argumentation, and we discuss it below. Also on the left is the
likelihood L(θ) = pr(D | θ), representing the probability distribution of the data
for each allowed input θ. This is less controversial. The instrument acquiring the
data can usually be calibrated with known inputs θ to find how often it produces
specific outputs D, which effectively fixes the likelihood to any desired precision.
If there remain any unknown calibration parameters in the likelihood, they can be
incorporated in θ as extra parameters to be determined, leading to extra computa-
tion but no difficulty of principle.

On the far right is the posterior P(θ) = pr(θ | D, I), representing our inferred
distribution of probability among the models, after using the data. The difference
between prior and posterior is the information (1.17)

H(P | π) =
∫

P(θ) log
(
P(θ)/π(θ)

)
dθ (1.26)

gleaned about θ. Also on the right is the evidence E = pr(D | I), representing
how well our original assignments managed to predict the data. E is also known
as ‘prior predictive’ (how it is often used), ‘marginal likelihood’ (how it is often
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computed), and various similar terms. However, there ought to be a simple moniker
(what it is) for this key quantity in Bayesian analysis, and ‘evidence’ (not to be
confused with dataset) is that name (MacKay 2003).

Of course, the terminology is for convenience only. It is not hard and fast. A pos-
terior to a first analyst may become a prior to a second with new data. Evidence
values become likelihoods if the context is widened, so that I becomes merely
a provisional model within a wider analysis, and so on. There is really just one
quantity, probability.

The two outputs, evidence and posterior, can be disentangled by noting that the
posterior, being a probability, sums to 1. Here, then, is the complete calculus of
inference:

∫
π(θ) dθ = 1 Prior

E =
∫

π(θ)L(θ) dθ Evidence

P(θ) =
π(θ)L(θ)

E
Bayes’ theorem

(1.27)

Bayes’ theorem shows how the prior is modulated into posterior through the likeli-
hood/evidence ratio. The same ratio L/E = P/π shows up in the information H ,
alternatively known as the negative entropy.

1.3.2 Prior probability

Before using the data, we need to assign a distribution of prior probability. Prob-
ability calculus tells us how to manipulate probability values, but not what they
should be in the first place. Neither does the world tell us. The only restriction is
that, by the sum rule, all the possibilities must add to 1. Beyond that, we are free to
invent any model we want. In that sense, anything goes. It is a challenge. However,
the world does give its opinion through data. Better hypotheses predict the data
better, through having high values of evidence. That and that alone is what we get,
and it is all we need for understanding and for technology. The quest for certainty
is mistaken and naive.

Guidelines have been developed for assigning priors, but beware the dangers!
The first step is to decide on a model – which parameters are to be used to predict
the data? The range of these parameters defines what is known as the ‘hypothesis
space’, over which unit mass of prior probability is to be distributed.
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Informal

No matter how sophisticated the methodology, there is in the end no escape from
an informal assessment of what is judged reasonable in the light of whatever back-
ground knowledge is available. Your author proceeds by contemplating perhaps ten
points, each representing 10% of the prior, and assigning plausible θ to them. This
introspection gives a rough range and indication of shape for the prior, which is
then assigned some algebraic form conforming to these. Instead of putting prior
mass onto θ, this procedure puts θ onto prior mass, which seems more sympathetic
to the basic equations. It is also more sympathetic to the computational require-
ments, because the prior is uniform by definition when prior mass is the underly-
ing coordinate. Either way, the prior doesn’t have to be ‘right’ in some undefinable
sense – it just has to be reasonable.

For a location parameter, an informal centre c and width w might suggest a
Cauchy distribution,

π(θ) =
w/3.14159 . . .

(θ − c)2 + w2
, (−∞ < θ < ∞), (1.28)

which comfortably tolerates quite wide excursions from the guessed centre if the
data demand them. Note that we don’t need to interpret c and w as moments, and
indeed we may be wiser not to. Probability calculus requires normalization, but
not the existence of mean and standard deviation. To some extent, moments are a
holdover from the days of manual paper-and-pencil calculation.

A necessarily positive intensity parameter of plausible magnitude a might be
assigned either a truncated Cauchy or an exponential distribution,

π(θ) = a−1e−θ/a , (θ > 0) . (1.29)

If magnitude was accompanied by width, then a Gamma distribution

π(θ) =
θ−1+μe−θ/λ

Γ(μ)λμ
, (θ > 0) (1.30)

might be appropriate. Whatever the choice, the prior has to be normalized because
it is a probability.

Symmetry

Sometimes, our knowledge of some or all of the states is invariant to exchange.
The classic example is a six-sided die, for which θ can be 1 or 2 or 3 or 4 or 5 or 6.
Given this knowledge and nothing more, we can only assign equal probability to
each: π(1) = π(2) = · · · = π(6) = 1

6 . If we did anything else, say π(1) > π(2),
then we could exchange the labels 1 and 2 and reach a different assignment with
π(2) > π(1) on the basis of a null change to our prior knowledge. So the same state
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of knowledge would be coded two different ways, which is unlikely to be helpful.
Prior assignments should conform to any symmetry in our prior knowledge. This
does not mean that the object being investigated need be symmetric. Indeed, data
may well tell us it is not.

Symmetry arguments can be over-played. Here, the classic example is a loca-
tion parameter θ for which the hypothesis space is unbounded, −∞ < θ < ∞.
Given this, and nothing more, one’s prior knowledge would be invariant to offset
of origin, implying π(θ) = constant. After acquiring data, the posterior distribution
P = πL/E would be independent of whatever constant was chosen. P would be
proportional to the likelihood, which would plausibly prohibit infinite values. With
non-zero constant, the prior would become un-normalized (the dreaded ‘improper
prior’), but otherwise all might be well.

Actually, no. The posterior is the lesser half of Bayesian inference. The evi-
dence comes first. As the allowed range W of θ increases indefinitely, the prior
π = 1/W decreases indefinitely, and so does the evidence. This means that the
model with W → ∞ loses by an infinite factor when compared with any prior
that includes even the slightest knowledge of the expected range. In the limit, the
posterior becomes P(θ) = 0×L(θ) / 0, and total ignorance is seen to be total stu-
pidity. Moreover, the improper prior extending arbitrarily far fails the sanity check
of informal assessment. Are you really almost certain that |θ| > 10100?

Approximate invariance to small offsets of origin suggests that the prior should
be smooth, but that’s as far as the argument should go.

Maximum entropy

Sometimes, informal background knowledge is accompanied by ‘testable’ con-
straints in the form of known means 〈Q〉 =

∫
Q(θ)p(θ) dθ. Here, the informal

prior π can be modified to a revised p by minimizing the information H(p | π).
‘Entropy’ is just the traditional word for the negative of information, so that max-
imum entropy just means minimum information. Note that maximum entropy is
a method of assignment, not inference. It assigns a single p to be used in later
inference. It does not infer a probabilistic distribution of plausible p’s.

The variational equation is

δ
(∫

p(θ) log
p(θ)
π(θ)

dθ + λ0

∫
p(θ) dθ + λ1

∫
Q(θ)p(θ) dθ + · · ·

)
= 0, (1.31)

where the first term is H , λ0 is the Lagrange multiplier for normalization, λ1 is the
multiplier for the constraint, and so on for as many constraints as are given. The
solution is

p(θ) = π(θ) exp(−1 − λ0 − λ1Q(θ) − · · · ), (1.32)
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where the λ’s fit the constraints to their required values.
One standard example is a location parameter subject to first and second

moments:

μ =
∫

θ p(θ) dθ , μ2 + σ2 =
∫

θ2p(θ) dθ. (1.33)

The original π becomes modified by a Gaussian,

p(θ) = π(θ) exp(−1 − λ0 − λ1θ − λ2θ
2). (1.34)

If the original informal knowledge was weaker than the new constraints, so that
π was effectively constant within a few σ of μ, the Gaussian modification would
dominate, leading to the standard normal (or Gaussian) distribution:

p(θ) =
exp

[
−(θ − μ)2/2σ2

]
√

2πσ2
, (π = 3.14159 . . .) . (1.35)

Another standard example is an intensity parameter subject to mean value μ.
Here, the original π becomes modified by an exponential,

p(θ) = π(θ) exp(−1 − λ0 − λ1θ) , (θ > 0) . (1.36)

Again, if the original knowledge was appropriately weaker than the new con-
straints, so that π was effectively constant for small or moderate θ, this result be-
comes of standard exponential form:

p(θ) = μ−1 exp(−θ/μ) , (θ > 0) . (1.37)

On the other hand, if the original knowledge was weak but different, perhaps
effectively uniform over θ2 so that π ∝ θ, the result

p(θ) = (θ/μ2) exp(−θ/μ) , (θ > 0) (1.38)

would be different too. Maximum entropy refines prior knowledge, but does not
replace it.

Continuous problems

Here, we want to infer a measure mi defined over so many states i that we may as
well use continuum notation m(x). Such a model might represent a spectrum or
image, whose intensity is distributed across frequency or spatial coordinate(s) x. In
practice, x is digitized into cells i, with the continuum limit merely meaning that
macroscopic results stop changing when the digitization gets arbitrarily fine.

We commonly want cell boundaries to be invisible. This means that, in the ab-
sence of data saying otherwise, we have the same expectation for the intensity
accumulated in a domain Δx whether the domain is treated as a whole, or as the
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sum of two or more subdivisions. In symbols, with cell k = i∪ j decomposed into
i and j (known as ‘stick-breaking’), we require

π(mk) =
∫∫

δ(mk − mi − mj)π(mi, mj) dmi dmj (1.39)

so that the intensities add correctly as mk = mi + mj . Additionally, we often
suppose that each cell is to behave independently,

π(mi, mj) = π(mi)π(mj), (1.40)

so that there is no prior expectation of internal correlation.
These conditions are actually quite restrictive on the form of prior. As an exam-

ple of a prior that does not work, take the candidate π(mk) = δ(mk−1)+δ(mk−2)
with two-point support (1 and 2) for the values. This cannot be subdivided at all,
let alone infinitely. In any subdivision into symmetric halves, each half would need
at least two points of support, because giving each only one would be insufficient.
But the combination would then cover at least three points, which is too many:
QED. Another prior that does not work is π(m) ∝ exp(−H(m)), proposed in
the hope that maximum entropy assignment of a single m might be promoted to a
distribution of m’s. That cannot be subdivided either.

In technical parlance, a prior that behaves consistently on all scales right down
to the infinitesimal limit is called a ‘process’, and the property of such consistency
is called ‘infinite divisibility’ (Steutel 1979). One prior that does work, common in
physics, is the Poisson process. Each small cell i is usually empty, but has small
probability λi of receiving a quantum, and negligible chance of more than one.
By construction, this works in the infinitesimal limit. Occupancies r (usually 0,
occasionally 1, negligibly more) of small cells are distributed as

π(r1, r2, . . . , rn) =
n∏

i=1

(
(1 − λi)δ(ri − 0) + λiδ(ri − 1)

)
. (1.41)

If the quanta are allowed to have individually variable intensity, say exponential

π(m | quantum) = e−m (1.42)

in suitable units, the intensity pattern among the small cells is

π(m1, m2, . . . , mn) =
n∏

i=1

(
(1 − λi)δ(mi) + λie−mi

)
, (1.43)

with each small cell having a small chance of holding a macroscopic intensity. If
micro-cells are combined, their Poisson rates λ add, so that λ(x) is itself a measure
on x. In fact, there is an exact macroscopic formula,

π(m) = e−λ
(
δ(m) + e−m

√
λ/mI1(2

√
λm)

)
, (1.44)
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Fig. 1.1. (Left) Sample of Poisson process averaging 10 spikes of mean intensity 1. (Right)
Sample of Gamma process of same mean and variance.

for the Poisson model. It is parameterized by the unit of quantum intensity (here 1)
and by the production measure λ, and is not too difficult to program in terms of its
constituent quanta.

Another prior that works, more popular among statisticians, is the Gamma
process:

π(m1, m2, . . . , mn) =
n∏

i=1

m−1+λi
i

Γ(λi)
e−mi , (1.45)

where, as before, λ(x) is a measure over x. Although the formula is arguably sim-
pler algebraically, it is less interpretable and more expensive to program because
every micro-cell enters the prior (instead of a limited number of quanta). Not that
random samples look very different. As calculated at high resolution, both give
spiky results (Figure 1.1). The difference is that the Gamma process produces a lot
of extremely low-level grass which the Poisson process cuts away. If the Gamma
measure m is normalized, the formula reduces to the Dirichlet process (Ferguson
1973)

π(p1, p2, . . . , pn) = δ
(
1 −

∑
p
)
Γ
(∑

λ
) n∏

i=1

p−1+λi
i

Γ(λi)
(1.46)

for inferring a probability distribution p.

Geometry

When two measures m and m + δm are close, their information H becomes ap-
proximately symmetric,

H(m + δm | m) ≈
n∑

j=1

(δmj)2

mj
, (1.47)



18 Foundations and algorithms

and behaves as a distance-squared in parameter space, here digitized to n points
for notational clarity, and with coordinates written as contravariant superscripts
because the space is about to become Riemannian. The metric describing this dis-
tance is diagonal,

gjk =
{

1/mj if j = k,
0 otherwise,

(1.48)

and, locally, H = (ds)2 =
∑

gjk dmj dmk. Measures within a small fixed dis-
tance ε of m fill an ellipsoid of ‘radius’ ε and volume proportional to (det g)−1/2.
By supposing that ε-ellipsoids all contain the same mass, regardless of central lo-
cation, the m’s induce their own natural density proportional to (det g)1/2. In the
absence of any better guidance, one might try to use this as the prior on m.

For example, suppose parameter space has just two intensities (a 2-cell image,
perhaps), over which we seek a prior π(m1, m2). The proposal is

(det g)1/2 =

√
det

(
1/m1 0

0 1/m2

)
=

1√
m1m2

. (1.49)

An immediate objection is that this expression is not normalizable, leading to an
improper prior for m. However, the components of m could represent proportions
p and 1−p of some fixed total, and the proposed prior for p (the shape of the 2-cell
image) would then be

π(p) =
1/3.14159 . . .√

p(1 − p)
, (1.50)

which is normalized, and might well be acceptable.
The generalization to a larger number n of proportions p is a Dirichlet distri-

bution (1.46), but with all indices λ equal to 1
2 . This would not be acceptable for

inference about an image digitized to arbitrarily many cells. The reason is that
macroscopic structure is washed out. For example, the total proportion in any n/2
cells is almost certain to be very close to the uniform, featureless 1

2 . Dirichlet in-
dices λ need to be a measure, thereby getting individually smaller as cells are
subdivided. The geometrical indices of 1

2 do not get smaller. Here, the geometric
proposal fails to be infinitely divisible.

The geometrical formulation can be generalized to a parameterized subspace
mi = m(i | θ) restricted to the range of r parameters θ1, . . . , θr. The information
between neighbours becomes

H(θ+dθ | θ) =
n∑

i=1

(dmi)2

mi
=

n∑
i=1

1
mi

( r∑
j=1

∂mi

∂θj
dθj

)( r∑
k=1

∂mi

∂θk
dθk

)
, (1.51)


