
http://www.cambridge.org/9780521876254

This page intentionally left blank

THE DESCRIPTION LOGIC HANDBOOK

Description Logics are embodied in several knowledge-based systems and are
used to develop various real-life applications. The Description Logic Hand-
book provides a thorough account of the subject, covering all aspects of
research in this field; namely, theory, implementation, and applications. Its
appeal will be broad, ranging from more theoretically oriented readers to
those with more practically oriented interests who need a sound and mod-
ern understanding of knowledge representation systems based on Description
Logics. As well as general revision throughout the book, this new edition
presents a new chapter on ontology languages for the Semantic Web, an
area of great importance for the future development of the web. In sum, the
book will serve as a unique reference for the subject, and can also be used for
self-study or in conjunction with Knowledge Representation and Artificial
Intelligence courses.

THE DESCRIPTION LOGIC HANDBOOK

Theory, implementation, and applications

Edited by

FRANZ BAADER
DIEGO CALVANESE

DEBORAH L. McGUINNESS
DANIELE NARDI

PETER F. PATEL-SCHNEIDER

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-87625-4

ISBN-13 978-0-511-71738-3

© Cambridge University Press 2003, 2007

2007

Information on this title: www.cambridge.org/9780521876254

This publication is in copyright. Subject to statutory exception and to the

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy

of urls for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (Adobe Reader)

Hardback

http://www.cambridge.org
http://www.cambridge.org/9780521876254

Contents

List of contributors page ix
Preface to the second edition xiii
Preface xv

1 An Introduction to Description Logics D. Nardi and
R. J. Brachman 1

1.1 Introduction 1
1.2 From networks to Description Logics 5
1.3 Knowledge representation in Description Logics 13
1.4 From theory to practice: Description Logic systems 17
1.5 Applications developed with Description Logic systems 22
1.6 Extensions of Description Logics 32
1.7 Relationship to other fields of Computer Science 39
1.8 Conclusion 42

Part I Theory 45
2 Basic Description Logics F. Baader and W. Nutt 47

2.1 Introduction 47
2.2 Definition of the basic formalism 50
2.3 Reasoning algorithms 81
2.4 Language extensions 98

3 Complexity of Reasoning F. M. Donini 105
3.1 Introduction 105
3.2 OR-branching: finding a model 109
3.3 AND-branching: finding a clash 117
3.4 Combining sources of complexity 124
3.5 Reasoning in the presence of axioms 127
3.6 Undecidability 133
3.7 Reasoning about individuals in ABoxes 140
3.8 Discussion 144

v

vi Contents

3.9 A list of complexity results for subsumption and
satisfiability 145

4 Relationships with other Formalisms U. Sattler,
D. Calvanese, and R. Molitor 149

4.1 AI knowledge representation formalisms 149
4.2 Logical formalisms 161
4.3 Database models 174

5 Expressive Description Logics D. Calvanese and
G. De Giacomo 193

5.1 Introduction 193
5.2 Correspondence between Description Logics and

Propositional Dynamic Logics 195
5.3 Functional restrictions 202
5.4 Qualified number restrictions 209
5.5 Objects 213
5.6 Fixpoint constructs 217
5.7 Relations of arbitrary arity 221
5.8 Finite model reasoning 226
5.9 Undecidability results 232

6 Extensions to Description Logics F. Baader, R. Küsters,
and F. Wolter 237

6.1 Introduction 237
6.2 Language extensions 238
6.3 Non-standard inference problems 270

Part II Implementation 283
7 From Description Logic Provers to Knowledge Representation

Systems D. L. McGuinness and P. F. Patel-Schneider 285
7.1 Introduction 285
7.2 Basic access 287
7.3 Advanced application access 290
7.4 Advanced human access 295
7.5 Other technical concerns 301
7.6 Public relations concerns 301
7.7 Summary 303

8 Description Logic Systems R. Möller and V. Haarslev 304
8.1 New light through old windows? 304
8.2 The first generation 305
8.3 Second generation Description Logic systems 313
8.4 The next generation: Fact, Dlp and Racer 324
8.5 Lessons learned 327

Contents vii

9 Implementation and Optimization Techniques I. Horrocks 329
9.1 Introduction 329
9.2 Preliminaries 331
9.3 Subsumption-testing algorithms 336
9.4 Theory versus practice 341
9.5 Optimization techniques 347
9.6 Discussion 371

Part III Applications 375
10 Conceptual Modeling with Description Logics A. Borgida

and R. J. Brachman 377
10.1 Background 377
10.2 Elementary Description Logic modeling 379
10.3 Individuals in the world 381
10.4 Concepts 384
10.5 Subconcepts 387
10.6 Modeling relationships 390
10.7 Modeling ontological aspects of relationships 392
10.8 A conceptual modeling methodology 399
10.9 The ABox: modeling specific states of the world 399
10.10 Conclusions 401

11 Software Engineering C. A. Welty 402
11.1 Introduction 402
11.2 Background 402
11.3 Lassie 403
11.4 CodeBase 408
11.5 CSIS and CBMS 409

12 Configuration D. L. McGuinness 417
12.1 Introduction 417
12.2 Configuration description and requirements 419
12.3 The Prose and Questar family of configurators 433
12.4 Summary 434

13 Medical Informatics A. Rector 436
13.1 Background and history 437
13.2 Example applications 441
13.3 Technical issues in medical ontologies 447
13.4 Ontological issues in medical ontologies 453
13.5 Architectures: terminology servers, views, and change

management 456
13.6 Discussion: key lessons from medical ontologies 457

viii Contents

14 OWL: a Description-Logic-Based Ontology Language for the
Semantic Web I. Horrocks, P. F. Patel-Schneider,
D. L. McGuinness, and C. A. Welty 458

14.1 Background and history 458
14.2 Steps towards integration with the Semantic Web: OIL

and DAML+OIL 461
14.3 Full integration into the Semantic Web: OWL 467
14.4 Summary 484

15 Natural Language Processing E. Franconi 487
15.1 Introduction 487
15.2 Semantic interpretation 488
15.3 Reasoning with the logical form 492
15.4 Knowledge-based natural language generation 497

16 Description Logics for Databases A. Borgida, M. Lenzerini,
and R. Rosati 500

16.1 Introduction 500
16.2 Data models and Description Logics 504
16.3 Description Logics and database querying 513
16.4 Data integration 517
16.5 Conclusions 523

Appendix Description Logic Terminology F. Baader 525
A.1 Notational conventions 525
A.2 Syntax and semantics of common Description Logics 526
A.3 Additional constructors 531
A.4 A note on the naming scheme for Description Logics 534

Bibliography 537
Index 593

Contributors

Franz Baader
Institut für Theoretische Informatik
Fakultät Informatik
TU Dresden
01062 Dresden, Germany
http: // wwwtcs. inf. tu-dresden. de/ ~baader/

Alex Borgida
Department of Computer Science
Rutgers University
Piscataway, NJ 08855, U.S.A.
http: // www. cs. rutgers. edu/ ~borgida/

Ronald J. Brachman
Yahoo!
http: // www. brachman. org/

Diego Calvanese
Faculty of Computer Science
Free University of Bozen-Bolzano
Piazza Domenicani 3, 39100 Bolzano, Italy
http: // www. inf. unibz. it/ ~calvanese/

Giuseppe De Giacomo
Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy
http: // www. dis. uniroma1. it/ ~degiacomo/

Francesco M. Donini
Political Science Department, Information Systems Research Group
University of Tuscia
Via San Carlo 32, 01100 Viterbo, Italy
http: // dee. poliba. it/ dee-web/ doniniweb/ donini. html

ix

x List of contributors

Enrico Franconi
Faculty of Computer Science
Free University of Bozen-Bolzano
Piazza Domenicani 3, 39100 Bolzano, Italy
http: // www. inf. unibz. it/ ~franconi/

Volker Haarslev
Computer Science Department
Concordia University
1455 de Maisonneuve Blvd. W., Montreal, Quebec H3G IM8, Canada
http: // www. cs. concordia. ca/ ~faculty/ haarslev/

Ian Horrocks
School of Computer Science
University of Manchester
Manchester M13 9PL, U.K.
http: // www. cs. man. ac. uk/ ~horrocks/

Ralf Küsters
Institut für Informatik und Praktische Mathematik
Christian-Albrechts-Universität zu Kiel
Olshausenstraße 40, 24098 Kiel, Germany
http: // www. ti. informatik. uni-kiel. de/ ~kuesters/

Maurizio Lenzerini
Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy
http: // www. dis. uniroma1. it/ ~lenzerini/

Deborah L. McGuinness
Knowledge Systems Laboratory
Gates Building 2A, Stanford University
Stanford, CA 94305-9020, U.S.A.
http: // ksl. stanford. edu/ people/ dlm/

Ralf Molitor
Swiss Life
IT Research and Development Group
General Guisan Quai 40, CH-8002 Zürich, Switzerland
http: // research. swisslife. ch/ ~molitor/

Ralf Möller
Computer Science Department
University of Hamburg
Vogt-Kölln-Straße 30, 22527 Hamburg, Germany
http: // kogs-www. informatik. uni-hamburg. de/ ~moeller/

Daniele Nardi
Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy
http: // www. dis. uniroma1. it/ ~nardi/

List of contributors xi

Werner Nutt
Faculty of Computer Science
Free University of Bozen-Bolzano
Piazza Domenicani 3, 39100 Bolzano, Italy
http: // www. inf. unibz. it/ ~nutt/

Peter F. Patel-Schneider
Bell Labs Research
600 Mountain Avenue
Murray Hill, NJ 07974, U.S.A.
http: // www. bell-labs. com/ user/ pfps/

Alan Rector
Medical Informatics Group
Department of Computer Science
University of Manchester
Manchester M13 9PL, U.K.
http: // www. cs. man. ac. uk/ mig/

Riccardo Rosati
Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy
http: // www. dis. uniroma1. it/ ~rosati/

Ulrike Sattler
School of Computer Science
University of Manchester
Manchester M13 9PL, U.K.
http: // www. cs. man. ac. uk/ ~sattler/

Christopher A. Welty
Knowledge Structures Group
IBM Watson Research Center
19 Skyline Dr., Hawthorne, NY 10532, U.S.A.

Frank Wolter
Department of Computer Science
University of Liverpool
Ashton Building, Ashton Street
Liverpool L69 3BX, U.K.
http: // www. csc. liv. ac. uk/ ~frank/

Preface to the second edition

Since the publication of the first edition of The Description Logic Handbook
in 2003, the interest in Description Logics (DL) has steadily increased. This
applies both to the number of active DL researchers working on DL theory
and implementations of reasoning services, and to the number of applications
based on DL technology. One effect of this growing interest was that the
first edition of the Handbook has gone through quite a number of reprints.
Another effect is, of course, that in the last three years there have been
interesting new developments in the three areas (theory, implementation,
and applications) that the Handbook covers. Despite that, we feel that most
chapters of the Handbook still provide a good introduction to the field and
lay a solid foundation that enables the reader to understand and put into
context the research articles describing results since 2003. For this reason,
we have decided to leave most of the chapters unchanged.

The principal exception is Chapter 14, which in the first edition was enti-
tled “Digital Libraries and Web-Based Information Systems.” This chapter
provided a selected history of the use of Description Logics in web-based in-
formation systems, and the developments related to emerging web ontology
languages such as OIL and DAML+OIL. Since the writing of this chap-
ter, the new language OWL has been developed and recommended by the
World Wide Web consortium as the standard web ontology language for
the Semantic Web. In the second edition, Chapter 14, now co-authored by
Peter Patel-Schneider, concentrates on OWL, which is reflected by its new
title: “OWL: a Description-Logic-Based Ontology Language for the Seman-
tic Web.” The chapter still briefly reviews some early efforts that combine
Description Logics and the Web, including predecessors of OWL such as OIL

and DAML+OIL. But then it goes on to describe OWL in some detail, in-
cluding the various influences on its design, its relationship with RDFS, its
syntax and semantics, and a range of tools and applications.

xiii

xiv Preface to the second edition

A minor change was made in Chapter 2. In fact, Proposition 2.9 in the
first edition, which tried to give a syntactic criterion for the existence of
fixpoint models of cyclic terminologies, turned out to be wrong.1 In the
second edition, it has been replaced by a correct criterion, now given in
Proposition 2.10. The new material starts with (the new) Proposition 2.8
and ends with Proposition 2.10.

We are indebted to David Tranah, our editor at Cambridge University
Press, for his patience during the preparation of this second edition, but
also for the gentle pressure he exerted, without which this second edition
would probably not have been completed.

1 This problem was independently detected by several Ph.D. students, including Yuming Shen,
Hongkai Liu, and Boontawee Suntisrivaraporn. Thank you for your careful reading!

Preface

Knowledge Representation is the field of Artificial Intelligence that focuses
on the design of formalisms that are both epistemologically and computa-
tionally adequate for expressing knowledge about a particular domain. One
of the main lines of investigation has been concerned with the principle that
knowledge should be represented by characterizing classes of objects and the
relationships between them The organization of the classes used to describe
a domain of interest is based on a hierarchical structure, which not only
provides an effective and compact representation of information, but also
allows the relevant reasoning tasks to be performed in a computationally
effective way.

The above principle drove the development of the first frame-based sys-
tems and semantic networks in the 1970s. However, these systems were
in general not formally defined and the associated reasoning tools were
strongly dependent on the implementation strategies. A fundamental step
towards a logic-based characterization of required formalisms was accom-
plished through the work on the Kl-One system, which collected many of
the ideas stemming from earlier semantic networks and frame-based systems,
and provided a logical basis for interpreting objects, classes (or concepts),
and relationships (or links, roles) between them. The first goal of such a log-
ical reconstruction was the precise characterization of the set of constructs
used to build class and link expressions. The second goal was to provide
reasoning procedures that are sound and complete with respect to the se-
mantics. The article “The tractability of subsumption in Frame-Based De-
scription Languages” by Ron Brachman and Hector Levesque, presented at
AAAI 1984, addressing the tradeoff between the expressiveness of Kl-One–
like languages and the computational complexity of reasoning, is usually re-
garded as the origin of research on Description Logics.

xv

xvi Preface

Subsequent research came under the label terminological systems to em-
phasize the fact that classes and relationships were used to establish the
basic terminology adopted in the modeled domain. Still later, the emphasis
was on the set of concept forming constructs admitted in the language, giv-
ing rise to the name concept languages. Recently, attention has moved closer
to the properties of the underlying logical systems, and the term Description
Logics has become popular.

Research on Description Logics has covered theoretical aspects, implemen-
tation of knowledge representation systems (modern frame-based systems)
and the use of such systems to realize applications in several areas. This pat-
tern of development is an example of one of the standard research method-
ologies, as is recognized by the Artificial Intelligence community. The key
element has been the very close interaction between theory and practice. On
the one hand, there are various implemented systems based on Description
Logics, offering a palette of description formalisms with differing expressive
power, and which are employed in various application domains (such as nat-
ural language processing, configuration of technical systems, databases). On
the other hand, the formal and computational properties (like decidability,
complexity) of various description formalisms have been studied in detail.
These investigations are usually motivated by the use of certain constructors
in systems or the need for these constructors in specific applications, and
the results of such investigations have strongly influenced the design of new
systems.

The Description Logics research community currently consists of at least
100 active researchers. In addition, other communities are now becoming
interested in Description Logics, most notably the Databases community
and, more recently, the Semantic Web one. After more than a decade of
research on Description Logics there is a substantial body of work and well-
established technical literature. However, there is no comprehensive presen-
tation of the major achievements in the field, although survey papers have
been published and workshop proceedings are available.

Now, since 1989 a workshop dedicated to Description Logics has been
held, initially every two years but annually from 1994. At the 1997 work-
shop a Working Group was formed to develop a proposal for a book that
would provide a systematic introduction to Description Logics, covering all
aspects of the research in the field, namely: theory, implementation, and
applications. Following the spirit that fostered this research, The Descrip-
tion Logic Handbook would provide a thorough introduction to Descrip-
tion Logics both for the more theoretically oriented reader interested in the

Preface xvii

formal study of Description Logics and for the more practically oriented
reader aiming at a principled usage of knowledge representation systems
based on Description Logics. Although some refinements have been made
to the initial proposal to embody recent developments in the field, the final
structure of the Handbook reflects the original intentions.

The Handbook is organized into three parts plus an initial chapter pro-
viding a general introduction to the field.

Part I addresses the theoretical work in Description Logics and includes
five chapters. Chapter 2 introduces Description Logics as a formal language
for representing knowledge and reasoning about it. Chapter 3 addresses the
computational complexity of reasoning in several Description Logics. Chap-
ter 4 explores the relationship with other representation formalisms, within
and outside the field of Knowledge Representation. Chapter 5 covers ex-
tensions of the basic Description Logics introduced in Chapter 2 by very
expressive constructs that require advanced reasoning techniques.

Chapter 6 considers extensions of Description Logics by representation
features and non-standard inference problems not available in the basic
framework.

Part II is concerned with the implementation of knowledge representation
systems based on Description Logics. Chapter 7 describes the features that
need to be provided, in addition to the inference engine for a particular
Description Logic, to build a knowledge representation system. Chapter 8
reviews implemented knowledge representation systems based on Descrip-
tion Logics that have played or play an important role in the field. Chapter 9
describes the implementation of the reasoning services which form the core
of Description Logic knowledge representation systems.

Part III addresses the deployment of Description Logics in the design and
implementation of fielded applications. Chapter 10 discusses the issues in-
volved in the development of an ontology for some universe of discourse,
which is to become a conceptual model or knowledge base represented and
reasoned with using Description Logics. Chapter 11 presents applications of
Description Logics in the area of software engineering. Chapter 12 introduces
the problem of configuration and the largest and longest lived family of De-
scription Logic-based configurators. Chapter 13 is concerned with the use of
Description Logics in various kinds of applications in medical informatics –
terminology, intelligent user interfaces, decision support and semantic index-
ing, language technology, and systems integration. Chapter 14 reviews the
applications of Description Logics in web-based information systems, and
the more recent developments related to languages for the Semantic Web.

xviii Preface

Chapter 15 analyzes the uses of Description Logics for natural language
processing to encode syntactic, semantic, and pragmatic elements needed
to drive semantic interpretation and natural language generation processes.
Chapter 16 surveys the major classes of application of Description Logics
and their reasoning facilities to the issues of data management, including
the expression of the conceptual domain model/ontology of the data source,
the integration of multiple data sources, and the formulation and evaluation
of queries.

The syntax and semantics for Description Logics is summarized in an Ap-
pendix, which has been used as a reference to unify the notation throughout
the book. Finally, an extended, integrated bibliography is provided and,
within each chapter, comprehensive guides through the relevant literature
are given.

The chapters are written by some of the most prominent researchers in
the field, introducing the basic technical material before taking the reader to
the current state of the subject. The chapters have been reviewed in a two
step process, which involved two or three reviewers for each chapter. We have
relied on the work of several external reviewers, selected both within the De-
scription Logic community, and outside the field, to increase the readability
for non experts. In addition, each chapter has been read also by authors of
other chapters, to improve the overall coherence.

As such, the book is conceived as a unique reference for the subject. Al-
though not intended as a textbook, the Handbook can be used as a basis for
specialized courses on Description Logics. In addition, some of the chapters
can be used as teaching material in Knowledge Representation courses. The
Handbook is also a comprehensive reference to the subject in more introduc-
tory courses in the field of Artificial Intelligence.

We want to acknowledge the contribution and help of several people. First
of all, the authors, who have successfully accomplished the hardest task of
writing the chapters, carefully addressing the reviewers’ comments as well
as the issues raised by the effort in making the presentation and notation
uniform. Second, we thank the reviewers for their precious work, which led
to significant improvements in the final outcome. The external reviewers
were:

Premkumar T. Devanbu,
Peter L. Elkin,
Jerome Euzenat,
Erich Grädel,
Michael Gruninger,

Preface xix

Frank van Harmelen,
Jana Koehler,
Diane Litman,
Robert M. MacGregor,
Amedeo Napoli,
Hans-Jürgen Ohlbach,
Marie-Christine Rousset,
Nestor Rychtyckyj,
Renate Schmidt,
James G. Schmolze,
Roberto Sebastiani,
Michael Uschold,
Moshe Y. Vardi,
Grant Weddell,
Robert A. Weida.

A special thank you goes also to Christopher A. Welty who, besides serving
as a reviewer, also coordinated the reviewing process for some of the chap-
ters. Third, we express our gratitude to the Description Logics community as
a whole (see also the Description Logics homepage at http://dl.kr.org/)
for the outstanding research achievements and for applying the pressure that
enabled us to complete the Handbook. Finally, we are indebted to Cambridge
University Press, and, in particular, to David Tranah, for giving us the op-
portunity to put the Handbook together and for the excellent support in the
editing process.

1

An Introduction to Description Logics

Daniele Nardi
Ronald J. Brachman

Abstract

This introduction presents the main motivations for the development of De-
scription Logics (DLs) as a formalism for representing knowledge, as well as
some important basic notions underlying all systems that have been created
in the DL tradition. In addition, we provide the reader with an overview of
the entire book and some guidelines for reading it.

We first address the relationship between Description Logics and earlier
semantic network and frame systems, which represent the original heritage
of the field. We delve into some of the key problems encountered with the
older efforts. Subsequently, we introduce the basic features of DL languages
and related reasoning techniques.

DL languages are then viewed as the core of knowledge representation
systems, considering both the structure of a DL knowledge base and its asso-
ciated reasoning services. The development of some implemented knowledge
representation systems based on Description Logics and the first applications
built with such systems are then reviewed.

Finally, we address the relationship of Description Logics to other fields of
Computer Science. We also discuss some extensions of the basic representa-
tion language machinery; these include features proposed for incorporation
in the formalism that originally arose in implemented systems, and features
proposed to cope with the needs of certain application domains.

1.1 Introduction

Research in the field of knowledge representation and reasoning is usually
focused on methods for providing high-level descriptions of the world that
can be effectively used to build intelligent applications. In this context,

1

2 D. Nardi and R. J. Brachman

“intelligent” refers to the ability of a system to find implicit consequences
of its explicitly represented knowledge. Such systems are therefore charac-
terized as knowledge-based systems.

Approaches to knowledge representation developed in the 1970s –
when the field enjoyed great popularity – are sometimes divided roughly
into two categories: logic-based formalisms, which evolved out of the intu-
ition that predicate calculus could be used unambiguously to capture facts
about the world; and other, non-logic-based representations. The latter were
often developed by building on more cognitive notions – for example, net-
work structures and rule-based representations derived from experiments on
recall from human memory and human execution of tasks like mathematical
puzzle solving. Even though such approaches were often developed for spe-
cific representational chores, the resulting formalisms were usually expected
to serve in general use. In other words, the non-logical systems created from
very specific lines of thinking (e.g., early production systems) evolved to
be treated as general-purpose tools, expected to be applicable in different
domains and to different types of problems.

On the other hand, since first-order logic provides very powerful and gen-
eral machinery, logic-based approaches were more general-purpose from the
very start. In a logic-based approach, the representation language is usu-
ally a variant of first-order predicate calculus, and reasoning amounts to
verifying logical consequence. In the non-logical approaches, often based on
the use of graphical interfaces, knowledge is represented by means of some
ad hoc data structures, and reasoning is accomplished by similarly ad hoc
procedures that manipulate the structures. Among these specialized repre-
sentations we find semantic networks and frames. Semantic networks were
developed after the work of Quillian [1967], with the goal of characteriz-
ing by means of network-shaped cognitive structures the knowledge and the
reasoning of the system. Similar goals were shared by later frame systems
[Minsky, 1981], which rely on the notion of a “frame” as a prototype and on
the capability of expressing relationships between frames. Although there are
significant differences between semantic networks and frames, both in their
motivating cognitive intuitions and in their features, they have a strong com-
mon basis. In fact, they can both be regarded as network structures, where
the structure of the network aims at representing sets of individuals and
their relationships. Consequently, we use the term network-based structures
to refer to the representation networks underlying semantic networks and
frames (see [Lehmann, 1992] for a collection of papers concerning various
families of network-based structures).

An Introduction to Description Logics 3

Owing to their more human-centered origins, the network-based systems
were often considered more appealing and more effective from a practical
viewpoint than the logical systems. Unfortunately, they were not fully satis-
factory, because of their usual lack of precise semantic characterization. The
end result of this was that every system behaved differently from the oth-
ers, in many cases despite virtually identical-looking components and even
identical relationship names. The question then arose as to how to provide
semantics to representation structures, in particular to semantic networks
and frames, which carried the intuition that, by exploiting the notion of hi-
erarchical structure, one could gain both in terms of ease of representation
and in terms of the efficiency of reasoning.

One important step in this direction was the recognition that frames (at
least their core features) could be given a semantics by relying on first-order
logic [Hayes, 1979]. The basic elements of the representation are character-
ized as unary predicates, denoting sets of individuals, and binary predicates,
denoting relationships between individuals. However, such a characterization
does not capture the constraints of semantic networks and frames with re-
spect to logic. Indeed, although logic is the natural basis for specifying a
meaning for these structures, it turns out that frames and semantic net-
works (for the most part) did not require all the machinery of first-order
logic, but could be regarded as fragments of it [Brachman and Levesque,
1985]. In addition, different features of the representation language would
lead to different fragments of first-order logic. The most important con-
sequence of this fact is the recognition that the typical forms of reasoning
used in structure-based representations could be accomplished by specialized
reasoning techniques, without necessarily requiring first-order logic theorem
provers. Moreover, reasoning in different fragments of first-order logic leads
to computational problems of differing complexity.

Subsequent to this realization, research in the area of Description Logics
began under the label terminological systems, to emphasize that the repre-
sentation language was used to establish the basic terminology adopted in
the modeled domain. Later, the emphasis was on the set of concept-forming
constructs admitted in the language, giving rise to the name concept lan-
guages. In more recent years, after attention was further moved towards the
properties of the underlying logical systems, the term Description Logics
became popular.

In this book we mainly use the term “Description Logics” for the represen-
tation systems, but often use the word “concept” to refer to the expressions
of a DL language, denoting sets of individuals, and the word “terminology”

4 D. Nardi and R. J. Brachman

to denote a (hierarchical) structure built to provide an intensional represen-
tation of the domain of interest.

Research on Description Logics has covered theoretical underpinnings as
well as implementation of knowledge representation systems and the de-
velopment of applications in several areas. This kind of development has
been quite successful. The key element has been the methodology of re-
search, based on a very close interaction between theory and practice. On
the one hand, there are various implemented systems based on Descrip-
tion Logics, which offer a palette of description formalisms with differing
expressive power, and which are employed in various application domains
(such as natural language processing, configuration of technical products,
or databases). On the other hand, the formal and computational proper-
ties of reasoning (like decidability and complexity) of various description
formalisms have been investigated in detail. The investigations are usually
motivated by the use of certain constructors in implemented systems or by
the need for these constructors in specific applications – and the results have
influenced the design of new systems.

This book is meant to provide a thorough introduction to Description
Logics, covering all the above-mentioned aspects of DL research – namely
theory, implementation, and applications. Consequently, the book is divided
into three parts:

� Part I introduces the theoretical foundations of Description Logics, addressing
some of the most recent developments in theoretical research in the area;

� Part II focuses on the implementation of knowledge representation systems based
on Description Logics, describing the basic functionality of a DL system, survey-
ing the most influential knowledge representation systems based on Description
Logics, and addressing specialized implementation techniques;

� Part III addresses the use of Description Logics and of DL-based systems in the
design of several applications of practical interest.

In the remainder of this introductory chapter, we review the main steps
in the development of Description Logics, and introduce the main issues
that are dealt with later in the book, providing pointers for its reading. In
particular, in the next section we address the origins of Description Logics
and then we review knowledge representation systems based on Description
Logics, the main applications developed with Description Logics, the main
extensions to the basic DL framework, and relationships with other fields of
Computer Science.

An Introduction to Description Logics 5

1.2 From networks to Description Logics

In this section we begin by recalling approaches to representing knowledge
that were developed before research on Description Logics began (i.e., se-
mantic networks and frames). We then provide a very brief introduction to
the basic elements of these approaches, based on Tarski-style semantics. Fi-
nally, we discuss the importance of computational analyses of the reasoning
methods developed for Description Logics, a major ingredient of research in
this field.

1.2.1 Network-based representation structures

In order to provide some intuition about the ideas behind representations
of knowledge in network form, we here speak in terms of a generic network,
avoiding references to any particular system. The elements of a network are
nodes and links. Typically, nodes are used to characterize concepts, i.e., sets
or classes of individual objects, and links are used to characterize relation-
ships among them. In some cases, more complex relationships are themselves
represented as nodes; these are carefully distinguished from nodes represent-
ing concepts. In addition, concepts can have simple properties, often called
attributes, which are typically attached to the corresponding nodes. Finally,
in many of the early networks both individual objects and concepts were
represented by nodes. Here, however, we restrict our attention to knowl-
edge about concepts and their relationships, deferring for now treatment of
knowledge about specific individuals.

Let us consider a simple example, whose pictorial representation is given
in Figure 1.1, which represents knowledge concerning persons, parents, chil-
dren, etc. The structure in the figure is also referred to as a terminology,
and it is indeed meant to represent the generality or specificity of the con-
cepts involved. For example the link between Mother and Parent says that
“mothers are parents”; this is sometimes called an “IS-A” relationship.

The IS-A relationship defines a hierarchy over the concepts and provides
the basis for the “inheritance of properties”: when a concept is more specific
than some other concept, it inherits the properties of the more general one.
For example, if a person has an age, then a woman has an age, too. This
is the typical setting of the so-called (monotonic) inheritance networks (see
[Brachman, 1979]).

A characteristic feature of Description Logics is their ability to represent
other kinds of relationships that can hold between concepts, beyond IS-
A relationships. For example, in Figure 1.1, which follows the notation of

6 D. Nardi and R. J. Brachman

v/r
hasChild

Female

Mother

Woman

(1,NIL)

Person

Parent

Fig. 1.1. An example network.

[Brachman and Schmolze, 1985], the concept of Parent has a property that
is usually called a “role”, expressed by a link from the concept to a node for
the role labeled hasChild. The role has what is called a “value restriction”,
denoted by the label v/r, which expresses a limitation on the range of types of
objects that can fill that role. In addition, the node has a number restriction
expressed as (1,NIL), where the first number is a lower bound on the number
of children and the second element is the upper bound, and NIL denotes
infinity. Overall, the representation of the concept of Parent here can be
read as “A parent is a person having at least one child, and all of his/her
children are persons.”

Relationships of this kind are inherited from concepts to their subcon-
cepts. For example, the concept Mother, i.e., a female parent, is a more
specific descendant of both the concepts Female and Parent, and as a result
inherits from Parent the link to Person through the role hasChild; in other
words, Mother inherits the restriction on its hasChild role from Parent.

Observe that there may be implicit relationships between concepts. For
example, if we define Woman as the concept of a female person, it is the case
that every Mother is a Woman. It is the task of the knowledge representation
system to find implicit relationships such as these (many are more complex
than this one). Typically, such inferences have been characterized in terms of
properties of the network. In this case one might observe that both Mother

and Woman are connected to both Female and Person, but the path from
Mother to Person includes a node Parent, which is more specific then Person,
thus enabling us to conclude that Mother is more specific than Person.

However, the more complex the relationships established among concepts,
the more difficult it becomes to give a precise characterization of what kind

An Introduction to Description Logics 7

of relationships can be computed, and how this can be done without failing
to recognize some of the relationships or without providing wrong answers.

1.2.2 A logical account of network-based representation

structures

Building on the above ideas, a number of systems were implemented and
used in many kinds of applications. As a result, the need emerged for a
precise characterization of the meaning of the structures used in the rep-
resentations and of the set of inferences that could be drawn from those
structures.

A precise characterization of the meaning of a network can be given by
defining a language for the elements of the structure and by providing an
interpretation for the strings of that language. While the syntax may have
different flavors in different settings, the semantics is typically given as a
Tarski-style semantics.

For the syntax we introduce a kind of abstract language, which resembles
other logical formalisms. The basic step of the construction is provided by
two disjoint alphabets of symbols that are used to denote atomic concepts,
designated by unary predicate symbols, and atomic roles, designated by bi-
nary predicate symbols; the latter are used to express relationships between
concepts.

Terms are then built from the basic symbols using several kinds of con-
structors. For example, intersection of concepts, which is denoted C � D,
is used to restrict the set of individuals under consideration to those that
belong to both C and D. Notice that, in the syntax of Description Logics,
concept expressions are variable-free. In fact, a concept expression denotes
the set of all individuals satisfying the properties specified in the expres-
sion. Therefore, C � D can be regarded as the first-order logic sentence,
C(x) ∧ D(x), where the variable ranges over all individuals in the interpre-
tation domain and C(x) is true for those individuals that belong to the
concept C.

In this book, we will present other syntactic notations that are more
closely related to the concrete syntax adopted by implemented DL systems,
and which are more suitable for the development of applications. One ex-
ample of concrete syntax proposed in [Patel-Schneider and Swartout, 1993]
is based on a Lisp-like notation, where the concept of female persons, for
example, is denoted by (and Person Female).

The key characteristic features of Description Logics reside in the con-
structs for establishing relationships between concepts. The basic ones are

8 D. Nardi and R. J. Brachman

value restrictions. For example, a value restriction, written ∀R.C, requires
that all the individuals that are in the relationship R with the concept being
described belong to the concept C (technically, it is all individuals that are
in the relationship R with an individual described by the concept in question
that are themselves describable as C’s).

As for the semantics, concepts are given a set-theoretic interpretation:
a concept is interpreted as a set of individuals, and roles are interpreted
as sets of pairs of individuals. The domain of interpretation can be chosen
arbitrarily, and it can be infinite. The non-finiteness of the domain and
the open-world assumption are distinguishing features of Description Logics
with respect to the modeling languages developed in the study of databases
(see Chapters 4 and 16).

Atomic concepts are thus interpreted as subsets of the intepretation do-
main, while the semantics of the other constructs is then specified by defining
the set of individuals denoted by each construct. For example, the concept
C � D is the set of individuals obtained by intersecting the sets of indi-
viduals denoted by C and D, respectively. Similarly, the interpretation of
∀R.C is the set of individuals that are in the relationship R with individuals
belonging to the set denoted by the concept C.

As an example, let us suppose that Female, Person, and Woman are atomic
concepts and that hasChild and hasFemaleRelative are atomic roles. Using the
operators intersection, union and complement of concepts, interpreted as set
operations, we can describe the concept of “persons that are not female” and
the concept of “individuals that are female or male” by the expressions

Person � ¬Female and Female � Male.

It is worth mentioning that intersection, union, and complement of concepts
have been also referred to as concept conjunction, concept disjunction and
concept negation, respectively, to emphasize the relationship to logic.

Let us now turn our attention to role restrictions by looking first at quan-
tified role restrictions and, subsequently, at what we call “number restric-
tions”. Most languages provide (full) existential quantification and value
restriction that allow one to describe, for example, the concept of “individ-
uals having a female child” as ∃hasChild.Female, and to describe the concept
of “individuals all of whose children are female” by the concept expression
∀hasChild.Female. In order to distinguish the function of each concept in the
relationship, the individual object that corresponds to the second argument
of the role viewed as a binary predicate is called a role filler. In the above
expressions, which describe the properties of parents having female children,

An Introduction to Description Logics 9

individual objects belonging to the concept Female are the fillers of the role
hasChild.

Existential quantification and value restrictions are thus meant to charac-
terize relationships between concepts. In fact, the role link between Parent

and Person in Figure 1.1 can be expressed by the concept expression

∃hasChild.Person � ∀hasChild.Person.

Such an expression therefore characterizes the concept of Parent as the set
of individuals having at least one filler of the role hasChild belonging to the
concept Person; moreover, every filler of the role hasChild must be a person.

Finally, notice that in quantified role restrictions the variable being quan-
tified is not explicitly mentioned. The corresponding sentence in first-order
logic is ∀y.R(x, y) ⊃ C(y), where x is again a free variable ranging over the
interpretation domain.

Another important kind of role restriction is given by number restrictions,
which restrict the cardinality of the sets of role fillers. For instance, the
concept

(� 3 hasChild) � (� 2 hasFemaleRelative)

represents the concept of “individuals having at least three children and at
most two female relatives”. Number restrictions are sometimes viewed as
a distinguishing feature of Description Logics, although one can find some
similar constructs in some database modeling languages (notably Entity–
Relationship models).

Beyond the constructs to form concept expressions, Description Logics
provide constructs for roles, which can, for example, establish role hierar-
chies. However, the use of role expressions is generally limited to expressing
relationships between concepts.

Intersection of roles is an example of a role-forming construct. Intuitively,
hasChild � hasFemaleRelative yields the role “has-daughter”, so that the con-
cept expression

Woman � � 2 (hasChild � hasFemaleRelative)

denotes the concept of “a woman having at most 2 daughters”.
A more comprehensive view of the basic definitions of DL languages will

be given in Chapter 2.

1.2.3 Reasoning

The basic inference on concept expressions in Description Logics is subsump-
tion, typically written as C � D. Determining subsumption is the problem

10 D. Nardi and R. J. Brachman

of checking whether the concept denoted by D (the subsumer) is considered
more general than the one denoted by C (the subsumee). In other words,
subsumption checks whether the first concept always denotes a subset of the
set denoted by the second one.

For example, one might be interested in knowing whether Woman �
Mother. In order to verify this kind of relationship one has in general to
take into account the relationships defined in the terminology. As we ex-
plain in the next section, under appropriate restrictions, one can embody
such knowledge directly in concept expressions, thus making subsumption
over concept expressions the basic reasoning task. Another typical infer-
ence on concept expressions is concept satisfiability, which is the problem
of checking whether a concept expression does not necessarily denote the
empty concept. In fact, concept satisfiability is a special case of subsump-
tion, with the subsumer being the empty concept, meaning that a concept
is not satisfiable.

Although the meaning of concepts had already been specified with a log-
ical semantics, the design of inference procedures in Description Logics was
influenced for a long time by the tradition of semantic networks, where con-
cepts were viewed as nodes and roles as links in a network. Subsumption
between concept expressions was recognized as the key inference and the ba-
sic idea of the earliest subsumption algorithms was to transform two input
concepts into labeled graphs and test whether one could be embedded into
the other; the embedded graph would correspond to the more general con-
cept (the subsumer) [Lipkis, 1982]. This method is called structural compar-
ison, and the relation between concepts being computed is called structural
subsumption. However, a careful analysis of the algorithms for structural
subsumption shows that they are sound, but not always complete in terms
of the logical semantics: whenever they return “yes” the answer is correct,
but when they report “no” the answer may be incorrect. In other words,
structural subsumption is in general weaker than logical subsumption.

The need for complete subsumption algorithms is motivated by the fact
that in the usage of knowledge representation systems it is often necessary
to have a guarantee that the system has not failed in verifying subsumption.
Consequently, new algorithms for computing subsumption have been devised
that are no longer based on a network representation, and these can be
proven to be complete. Such algorithms have been developed by specializing
classical settings for deductive reasoning to the DL subsets of first-order
logics, as done for tableau calculi by Schmidt-Schauß and Smolka [1991],
and also by more specialized methods.

An Introduction to Description Logics 11

In the paper “The tractability of subsumption in frame-based description
languages”, Brachman and Levesque [1984] argued that there is a tradeoff
between the expressiveness of a representation language and the difficulty of
reasoning over the representations built using that language. In other words,
the more expressive the language, the harder the reasoning. They also pro-
vided a first example of this tradeoff by analyzing the language FL− (Frame
Language), which included intersection of concepts, value restrictions and a
simple form of existential quantification. They showed that for such a lan-
guage the subsumption problem could be solved in polynomial time, while
adding a construct called role restriction to the language makes subsumption
a conp-hard problem (the extended language was called FL).

The paper by Brachman and Levesque introduced at least two new ideas:

1. “efficiency of reasoning” over knowledge structures can be studied using the
tools of computational complexity theory;

2. different combinations of constructs can give rise to languages with different
computational properties.

An immediate consequence of the above observations is that one can study
formally and methodically the tradeoff between the computational com-
plexity of reasoning and the expressiveness of the language, which it-
self is defined in terms of the constructs that are admitted in the lan-
guage. After the initial paper, a number of results on this tradeoff for
concept languages were obtained (see Chapters 2 and 3), and these re-
sults allow us to draw a fairly complete picture of the complexity of
reasoning for a wide class of concept languages. Moreover, the problem
of finding the optimal tradeoff, namely the most expressive extensions
of FL− with respect to a given set of constructs that still keep sub-
sumption polynomial, has been studied extensively [Donini et al., 1991b;
1999].

One of the assumptions underlying this line of research is to use worst-
case complexity as a measure of the efficiency of reasoning in Description
Logics (and more generally in knowledge representation formalisms). Such
an assumption has sometimes been criticized (see for example [Doyle and
Patil, 1991]) as not adequately characterizing system performance or ac-
counting for more average-case behavior. While this observation suggests
that computational complexity alone may not be sufficient for addressing
performance issues, research on the computational complexity of reasoning
in Description Logics has most definitely led to a much deeper understand-
ing of the problems arising in implementing reasoning tools. Let us briefly
address some of the contributions of this body of work.

12 D. Nardi and R. J. Brachman

First of all, the study of the computational complexity of reasoning in
Description Logics has led to a clear understanding of the properties of the
language constructs and their interaction. This is not only valuable from a
theoretical viewpoint, but gives insight to the designer of deduction proce-
dures, with clear indications of the language constructs and their combina-
tions that are difficult to deal with, as well as general methods to cope with
them.

Secondly, the complexity results have been obtained by exploiting a gen-
eral technique for satisfiability checking in concept languages, which relies on
a form of tableau calculus [Schmidt-Schauß and Smolka, 1991]. Such a tech-
nique has proved extremely useful for studying both the correctness and the
complexity of the algorithms. More specifically, it provides an algorithmic
framework that is parametric with respect to the language constructs. The
algorithms for concept satisfiability and subsumption obtained in this way
have also led directly to practical implementations by application of clever
control strategies and optimization techniques. The most recent knowledge
representation systems based on Description Logics adopt tableau calculi
[Horrocks, 1998b].

Thirdly, the analysis of pathological cases in this formal framework has
led to the discovery of incompleteness in the algorithms developed for im-
plemented systems. This has also consequently proven useful in the defi-
nition of suitable test sets for verifying implementations. For example, the
comparison of implemented systems (see for example [Baader et al., 1992b;
Heinsohn et al., 1992]) has greatly benefitted from the results of the com-
plexity analysis.

The basic reasoning techniques for Description Logics are presented in
Chapter 2, while a detailed analysis of the complexity of reasoning problems
in several languages is developed in Chapter 3.

After the tradeoff between expressiveness and tractability of reasoning
was thoroughly analyzed and the range of applicability of the corresponding
inference techniques had been experimented with, there was a shift of focus
in the theoretical research on reasoning in Description Logics. Interest grew
in relating Description Logics to the modeling languages used in database
management. In addition, the discovery of strict relationships with expres-
sive modal logics stimulated the study of so-called very expressive Descrip-
tion Logics. These languages, besides admitting very general mechanisms for
defining concepts (for example cyclic definitions, addressed in the next sec-
tion), provide a richer set of concept-forming constructs and constructs for
forming complex role expressions. For these languages, the expressiveness is

An Introduction to Description Logics 13

great enough that the new challenge became enriching the language while
retaining the decidability of reasoning. It is worth pointing out that this new
direction of theoretical research was accompanied by a corresponding shift
in the implementation of knowledge representation systems based on very
expressive DL languages. The study of reasoning methods for very expressive
Description Logics is addressed in Chapter 5.

1.3 Knowledge representation in Description Logics

In the previous section a basic representation language for Description Log-
ics was introduced along with some key associated reasoning techniques. Our
goal now is to illustrate how Description Logics can be useful in the design
of knowledge-based applications, that is to say, how a DL language is used
in a knowledge representation system that provides a language for defining
a knowledge base and tools to carry out inferences over it. The realization of
knowledge systems involves two primary aspects. The first consists in pro-
viding a precise characterization of a knowledge base; this involves precisely
characterizing the type of knowledge to be specified to the system as well
as clearly defining the reasoning services the system needs to provide – the
kind of questions that the system should be able to answer. The second
aspect consists in providing a rich development environment where users
can benefit from different services that can make their interaction with the
system more effective. In this section we address the logical structure of the
knowledge base, while the design of systems and tools for the development
of applications is addressed in the next section.

One of the products of some important historical efforts to provide pre-
cise characterizations of the behavior of semantic networks and frames was
a functional approach to knowledge representation [Levesque, 1984]. The
idea was to give a precise specification of the functionality to be provided
by a knowledge base and, specifically, of the inferences performed by the
knowledge base – independent of any implementation. In practice, the func-
tional description of a reasoning system is productively specified through a
so-called “Tell&Ask” interface. Such an interface specifies operations that
enable knowledge base construction (Tell operations) and operations that
allow one to get information out of the knowledge base (Ask operations). In
the following we shall adopt this view for characterizing both the definition
of a DL knowledge base and the deductive services it provides.

Within a knowledge base one can see a clear distinction between inten-
sional knowledge, or general knowledge about the problem domain, and ex-
tensional knowledge, which is specific to a particular problem. A typical DL

14 D. Nardi and R. J. Brachman

knowledge base analogously comprises two components – a TBox and an
ABox. The TBox contains intensional knowledge in the form of a termi-
nology (hence the term “TBox”, but “taxonomy” could be used as well)
and is built through declarations that describe general properties of con-
cepts. Because of the nature of the subsumption relationships among the
concepts that constitute the terminology, TBoxes are usually thought of
as having a lattice-like structure; this mathematical structure is entailed
by the subsumption relationship – it has nothing to do with any imple-
mentation. The ABox contains extensional knowledge – also called asser-
tional knowledge (hence the term “ABox”) – knowledge that is specific to
the individuals of the domain of discourse. Intensional knowledge is usu-
ally thought not to change – to be “timeless”, in a way – and extensional
knowledge is usually thought to be contingent, or dependent on a single
set of circumstances, and therefore subject to occasional or even constant
change.

In the rest of the section we present a basic Tell&Ask interface by ana-
lyzing the TBox and the ABox of a DL knowledge base.

1.3.1 The TBox

One key element of a DL knowledge base is given by the operations used to
build the terminology. Such operations are directly related to the forms and
the meaning of the declarations allowed in the TBox.

The basic form of declaration in a TBox is a concept definition, that is, the
definition of a new concept in terms of other previously defined concepts.
For example, a woman can be defined as a female person by writing this
declaration:

Woman ≡ Person � Female.

Such a declaration is usually interpreted as a logical equivalence, which
amounts to providing both sufficient and necessary conditions for classifying
an individual as a woman. This form of definition is much stronger than the
ones used in other kinds of representations of knowledge, which typically
impose only necessary conditions; the strength of this kind of declaration
is usually considered a characteristic feature of DL knowledge bases. In DL
knowledge bases, therefore, a terminology is constituted by a set of concept
definitions of the above form.

However, there are some important common assumptions usually made
about DL terminologies:

An Introduction to Description Logics 15

� Only one definition for a concept name is allowed.
� Definitions are acyclic in the sense that concepts are neither defined in terms of
themselves nor in terms of other concepts that indirectly refer to them.

This kind of restriction is common to many DL knowledge bases and implies
that every defined concept can be expanded in a unique way into a com-
plex expression containing only atomic concepts by replacing every defined
concept with the right-hand side of its definition.

Nebel [1990b] showed that even simple expansion of definitions like this
gives rise to an unavoidable source of complexity; in practice, however, defi-
nitions that inordinately increase the complexity of reasoning do not seem to
occur. Under these assumptions the computational complexity of inferences
can be studied by abstracting from the terminology and by considering all
given concepts as fully expanded expressions. Therefore, much of the study
of reasoning methods in Description Logics has been focused on concept
expressions and, more specifically, as discussed in the previous section, on
subsumption, which can be considered the basic reasoning service for the
TBox.

In particular, the basic task in constructing a terminology is classification,
which amounts to placing a new concept expression in the proper place
in a taxonomic hierarchy of concepts. Classification can be accomplished
by verifying the subsumption relation between each defined concept in the
hierarchy and the new concept expression. The placement of the concept
will be in between the most specific concepts that subsume the new concept
and the most general concepts that the new concept subsumes.

More general settings for concept definitions have recently received some
attention, deriving from attempts to establish formal relationships between
Description Logics and other formalisms and from attempts to satisfy a need
for increased expressive power. In particular, the admission of cyclic defini-
tions has led to different semantic interpretations of the declarations, known
as greatest/least fixpoint, and descriptive semantics. Although it has been
argued that different semantics may be adopted depending on the target ap-
plication, the more commonly adopted one is descriptive semantics, which
simply requires that all the declarations be satisfied in the interpretation.
Moreover, by dropping the requirement that on the left-hand side of a defi-
nition there can only be an atomic concept name, one can consider so-called
(general) inclusion axioms of the form

C � D

where C and D are arbitrary concept expressions. Notice that a concept

16 D. Nardi and R. J. Brachman

definition can be expressed by two general inclusions. As a result of several
theoretical studies concerning both the decidability of and implementation
techniques for cyclic TBoxes, the most recent DL systems admit rather pow-
erful constructs for defining concepts.

The basic deduction service for such TBoxes can be viewed as logical
implication and it amounts to verifying whether a generic relationship (for
example a subsumption relationship between two concept expressions) is a
logical consequence of the declarations in the TBox. The issues arising in
the semantic characterization of cyclic TBoxes are dealt with in Chapter 2,
while techniques for reasoning in cyclic TBoxes are addressed in Chapter 2
and in Chapter 5, where very expressive Description Logics are presented.

1.3.2 The ABox

The ABox contains extensional knowledge about the domain of interest, that
is, assertions about individuals, usually called membership assertions. For
example,

Female � Person(ANNA)

states that the individual ANNA is a female person. Given the above defini-
tion of woman, one can derive from this assertion that ANNA is an instance
of the concept Woman. Similarly,

hasChild(ANNA, JACOPO)

specifies that ANNA has JACOPO as a child. Assertions of the first kind are
also called concept assertions, while assertions of the second kind are also
called role assertions.

As illustrated by these examples, in the ABox one can typically specify
knowledge in the form of concept assertions and role assertions. In concept
assertions general concept expressions are typically allowed, while role as-
sertions, where the role is not a primitive role but a role expression, are
typically not allowed, being treated in the case of very expressive languages
only.

The basic reasoning task in an ABox is instance checking, which verifies
whether a given individual is an instance of (belongs to) a specified concept.
Although other reasoning services are usually considered and employed, they
can be defined in terms of instance checking. Among them we find knowledge
base consistency, which amounts to verifying whether every concept in the
knowledge base admits at least one individual; realization, which finds the
most specific concept an individual object is an instance of; and retrieval,

An Introduction to Description Logics 17

which finds the individuals in the knowledge base that are instances of a
given concept. These can all be accomplished by means of instance checking.

The presence of individuals in a knowledge base makes reasoning more
complex from a computational viewpoint [Donini et al., 1994b], and may
require significant extensions of some TBox reasoning techniques. Reasoning
in the ABox is addressed in Chapter 3.

It is worth emphasizing that, although we have separated out for conve-
nience the services for the ABox, when the TBox cannot be dealt with by
means of the simple substitution mechanism used for acyclic TBoxes, the
reasoning services may have to take into account all of the knowledge base
including both the TBox and the ABox, and the corresponding reasoning
problems become more complex. A full setting including general TBox and
ABox is addressed in Chapter 5, where very expressive Description Logics
are discussed.

More general languages for defining ABoxes have also been considered.
Knowledge representation systems providing a powerful logical language
for the ABox and a DL language for the TBox are often considered hy-
brid reasoning systems, since completely different knowledge representation
languages may be used to specify the knowledge in the different compo-
nents. Hybrid reasoning systems were popular in the 1980s (see for example
[Brachman et al., 1985]); lately, the topic has regained attention [Levy and
Rousset, 1997; Donini et al., 1998b], focusing on knowledge bases with a
DL component for concept definitions and a logic-programming component
for assertions about individuals. Sound and complete inference methods for
hybrid knowledge bases become difficult to devise whenever there is a strict
interaction between the knowledge components.

1.4 From theory to practice: Description Logic systems

A direct practical result of research on knowledge representation has been
the development of tools for the construction of knowledge-based applica-
tions. As already noted, research on Description Logics has been character-
ized by a tight connection between theoretical results and implementation
of systems. This has been achieved by maintaining a very close relationship
between theoreticians, system implementors and users of knowledge repre-
sentation systems based on Description Logics (DL-KRSs). The results of
work on reasoning algorithms and their complexity have influenced the de-
sign of systems, and research on reasoning algorithms has itself been focused
by a careful analysis of the capabilities and the limitations of implemented
systems. In this section we first sketch the functionality of some knowledge

18 D. Nardi and R. J. Brachman

representation systems and, subsequently, discuss the evolution of DL-KRSs.
The reader can find a deeper treatment of the first topic in Chapter 7, while
a survey of knowledge representation systems based on Description Logics
is provided in Chapter 8. Chapter 9 is devoted to more specialized imple-
mentation and optimization techniques.

1.4.1 The design of knowledge representation systems based on

Description Logics

In order to appreciate the difficulties of implementing and maintaining a
knowledge representation system, it is necessary to consider that in the us-
age of a knowledge representation system, the reasoning service is really only
one aspect of a complex system, one which may even be hidden from the
final user. The user, before getting to “push the reasoning button”, has to
model the domain of interest, and input knowledge into the system. Further,
in many cases, a simple yes/no answer is of little use, so a simplistic imple-
mentation of the Tell&Ask paradigm may be inadequate. As a consequence,
the path one follows to get from the identification of a suitable knowledge
representation system to the design of applications based on it is a complex
and demanding one (see for example [Brachman, 1992]). In the case of De-
scription Logics, this is especially true if the goal is to devise a system to be
used by users who are not DL experts and who need to obtain a working sys-
tem as quickly as possible. In the 1980s, when frame-based systems (such as,
for example, Kee [Fikes and Kehler, 1985]; see [Karp, 1992] for an overview)
had reached the strength of commercial products, the burden on a user of
moving to the more modern DL-KRSs had to be kept small. Consequently,
a stream of research addressed important aspects of the pragmatic usability
of DL systems. This issue was especially relevant for those systems aiming
at limiting the expressiveness of the language, but providing the user with
sound, complete and efficient reasoning services. The issue of embedding a
DL language within an environment suitable for application development is
further addressed in Chapter 7.

In recent years, we might add, useful DL systems have often come as in-
ternal components of larger environments whose interfaces could completely
hide the DL language and its core reasoning services. Systems like Imacs

[Brachman et al., 1993] and Prose [Wright et al., 1993] were quite successful
in classifying data and configuring products, respectively, without the need
for any user to understand the details of the DL representation language
(Classic) they were built upon.

An Introduction to Description Logics 19

Nowadays, applications for gathering information from the World Wide
Web, where the interface can be specifically designed to support the retrieval
of such information, also hide the knowledge representation and reasoning
component. In addition, some data modeling tools, where the system pro-
vides a more conventional interface, can provide additional facilities based
on the capability of reasoning about models with a DL inference engine. The
possible settings for taking advantage of Description Logics as components
of larger systems are discussed in Part III; more specifically, Chapter 14
presents Web applications and Chapter 15 natural language applications,
while the reasoning capabilities of Description Logics in database applica-
tions are addressed in Chapter 16.

1.4.2 Knowledge representation systems based on

Description Logics

The history of knowledge representation is covered in the literature in nu-
merous ways (see for example [Woods and Schmolze, 1992; Rich, 1991;
Baader et al., 1992b]). Here we identify three generations of systems, high-
lighting their historical evolution rather than their specific functionality. We
shall characterize them as Pre-DL systems, DL systems and Current Gen-
eration DL systems. Detailed references to implemented systems are given
in Chapter 8.

1.4.2.1 Pre-Description Logic systems

The ancestor of DL systems is Kl-One [Brachman and Schmolze, 1985],
which signaled the transition from semantic networks to more well-founded
terminological (description) logics. The influence of Kl-One was profound
and it is considered the root of the entire family of languages [Woods and
Schmolze, 1990].

Semantic networks were introduced around 1966 as a representation for
the concepts underlying English words, and became a popular type of frame-
work for representing a wide variety of concepts in AI applications. Impor-
tant and commonsensical ideas evolved in this work, from named nodes and
links for representing concepts and relationships, to hierarchical networks
with inheritance of properties, to the notion of “instantiation” of a concept
by an individual object. But semantic network systems were fraught with
problems, including vagueness and inconsistency in the meaning of various
constructs, and the lack of a level of structure on which to base application-
independent inference procedures. In his PhD thesis [Brachman, 1977a]
and subsequent work (e.g., see [Brachman, 1979]), Brachman addressed

20 D. Nardi and R. J. Brachman

representation at what he called an “epistemological”, or knowledge-
structuring level. This led to a set of primitives for structuring knowledge
that was less application- and world-knowledge-dependent than “semantic”
representations (like those for processing natural language case structures),
yet richer than the impoverished set of primitives available in strictly logical
languages. The main result of this work was a new knowledge representa-
tion framework whose primitive elements allowed cleaner, more application-
independent representations than prior network formalisms. In the late
1970s, Brachman and his colleagues explored the utility and implications
of this kind of framework in the Kl-One system.

Kl-One introduced most of the key notions explored in the extensive
work on Description Logics that followed. These included, for example,
the notions of concepts and roles and how they were to be interrelated;
the important ideas of “value restriction” and “number restriction”, which
modified the use of roles in the definitions of concepts; and the crucial
inferences of subsumption and classification. It also sowed the seeds for the
later distinction between the TBox and ABox and a host of other significant
notions that greatly influenced subsequent work. Kl-One also was the
initial example of the substantial interplay between theory and practice
that characterizes the history of Description Logics. It was influenced
by work in logic and philosophy (and in turn itself influenced work in
philosophy and psychology), and significant care was taken in its design
to allow it to be consistent and semantically sound. But it was also used
in multiple applications, covering intelligent information presentation and
natural language understanding, among other things.

Most of the focus of the original work on Kl-One was on the representa-
tion of and reasoning with concepts, with only a small amount of attention
paid to reasoning with individual objects. The first descendants of Kl-One

were focused on architectures providing a clear distinction between a pow-
erful logic-based (or rule-based) component and a specialized terminological
component. These systems came to be referred to as hybrid systems. A major
research issue was the integration of the two components to provide unified
reasoning services over the whole knowledge base.

1.4.2.2 Description Logic systems

The earliest “pre-DL” systems derived directly from Kl-One, which, while
itself a direct result of formal analysis of the shortcomings of semantic net-
works, was mainly about the implementation of a viable classification algo-
rithm and the data structures to adequately represent concepts. DL systems,
per se, which followed as the next generation, were more derived from a wave

An Introduction to Description Logics 21

of theoretical research on terminological logics that resulted from examina-
tion of Kl-One and some other early systems. This work was initiated in
roughly 1984, inspired by a paper by Brachman and Levesque [Brachman
and Levesque, 1984] on the formal complexity of reasoning in Description
Logics. Subsequent results on the tradeoff between the expressiveness of a
DL language and the complexity of reasoning with it, and more generally,
the identification of the sources of complexity in DL systems, showed that a
careful selection of language constructs was needed and that the reasoning
services provided by the system are deeply influenced by the set of constructs
provided to the user. We can thus characterize three different approaches to
the implementation of reasoning services. The first can be referred to as lim-
ited+complete, and includes systems that are designed by restricting the set
of constructs in such a way that subsumption would be computed efficiently,
possibly in polynomial time. The Classic system [Brachman et al., 1991] is
the most significant example of this kind. The second approach can be de-
noted as expressive+incomplete, since the idea is to provide both an expres-
sive language and efficient reasoning. The drawback is, however, that reason-
ing algorithms turn out to be incomplete in these systems. Notable examples
of this kind of system are Loom [MacGregor and Bates, 1987], and Back

[Nebel and von Luck, 1988]. After some of the sources of incompleteness were
discovered, often by identifying the constructs – or, more precisely, combi-
nations of constructs – that would require an exponential algorithm to pre-
serve the completeness of reasoning, systems with complete reasoning algo-
rithms were designed. Systems of this sort (see for example Kris [Baader and
Hollunder, 1991a]) are therefore characterized as expressive+complete; they
were not as efficient as those following the other approaches, but they pro-
vided a testbed for the implementation of reasoning techniques developed in
the theoretical investigations, and they played an important role in stimulat-
ing comparison and benchmarking with other systems [Heinsohn et al., 1992;
Baader et al., 1992b].

1.4.2.3 Current generation Description Logic systems

In the current generation of DL-KRSs, the need for complete algorithms for
expressive languages has been the focus of attention. The expressiveness of
the DL language required for reasoning on data models and semistructured
data has contributed to the identification of the most important extensions
for practical applications.

The design of complete algorithms for expressive Description Logic has led
to significant extensions of tableau-based techniques and to the introduction
of several optimization techniques, partly borrowed from theorem proving

22 D. Nardi and R. J. Brachman

and partly specifically developed for Description Logics. Recent systems that
allow for expressive DL languages, while providing efficient implementations
of reasoning are Fact [Horrocks, 1998b] and Racer [Haarslev and Möller,
2001e].

This research has also been influenced by newly discovered relationships
between Description Logics and other logics, leading to exchanging bench-
marks and experimental comparisons with other deduction systems.

The techniques that have been used in the implementation of very expres-
sive Description Logics are addressed in detail in Chapter 9.

1.5 Applications developed with Description Logic systems

The third component in the picture of the development of Description Log-
ics is the implementation of applications in different domains. Some of the
applications created over the years may have only reached the level of pro-
totype, but many of them have the completeness of industrial systems and
have been deployed in production use.

A critical element in the development of applications based on Descrip-
tion Logics is the usability of the knowledge representation system. We have
already emphasized that building a tool to be used in the design and im-
plementation of knowledge-based applications requires significant work to
make it suitable for interactive development, explanation and debugging,
interface implementation, and so on. In addition, here we focus on the effec-
tiveness of Description Logics as a modeling language. A modeling language
should have intuitive semantics and the syntax must help convey the in-
tended meaning. To this end, a somewhat different syntax than we have
seen so far, closer to that of natural language, has often been adopted, and
graphical interfaces that provide an operational view of the process of knowl-
edge base construction have been developed. The issues arising in modeling
application domains using Description Logics are dealt with in Chapter 10,
and will be briefly addressed in the next subsection.

It is natural to expect that some classes of applications share similari-
ties both in methodological patterns and in the design of specific structures
or reasoning capabilities. Consequently, we identify several application do-
mains in Subsection 1.5.2; these include software engineering, configuration,
medicine, and digital libraries and Web-based information systems.

In Subsection 1.5.3 we consider several application areas where Descrip-
tion Logics play a major role; these include natural language processing
and database management, where Description Logics can be used in several
ways.

An Introduction to Description Logics 23

When addressing the design of applications it is also worth pointing out
that there has been significant evolution in the way Description Logics have
been used within complex applications. In particular, the DL-centered view
that underlies the earliest generation of systems, wherein an application was
developed in a single environment (the one provided by the DL system), was
characterized by very loose interaction, if any, between the DL system and
other applications. Later, an approach that viewed the Description Logic
more as a component became evident; in this view the DL system acts as
a component of a larger environment, typically leaving out functions, such
those for data management, that are more effectively implemented by other
technologies. The architecture where the component view is taken requires
the definition of a clear interface between the components, possibly adopting
different modeling languages, but focusing on Description Logics for the
implementation of the reasoning services that can add powerful capabilities
to the application. Obviously, the choice between the above architectural
views depends upon the needs of the application at hand.

Finally, we have already stressed that research in Description Logics has
benefited from tight interaction between language designers and developers
of DL-KRSs. Thus, another major impact on the development of DL re-
search was provided by the implementation of applications using DL-KRSs.
Indeed, work on DL applications not only demonstrated the effectiveness
of Description Logics and of DL-KRSs, but also provided mutual feedback
within the DL community concerning the weaknesses of both the represen-
tation language and the features of an implemented DL-KRS.

1.5.1 Modeling with Description Logics

In order for designers to be able to use Description Logics to model their
application domains, it is important for the DL constructs to be easily un-
derstandable; this helps facilitate the construction of convenient to use yet
effective tools. To this end, the abstract notation that we have previously
introduced and that is nowadays commonly used in the DL community is
not fully satisfactory.

As already mentioned, there are at least two major alternatives for in-
creasing the usability of Description Logics as a modeling language:

1. providing a syntax that resembles more closely natural language;
2. implementing interfaces where the user can specify the representation structures

through graphical operations.

Before addressing the above two possibilities, one brief remark is in order.

24 D. Nardi and R. J. Brachman

While alternative ways of specifying knowledge, such as natural-language-
style syntax, can be more appealing to the user, one should remember that
Description Logics in part arose from a need to respond to the inadequacy –
the lack of a formal semantic basis – of early semantic networks and frame
systems. Those early systems often relied on an assumption of intuitive
readings of natural-language-like constructs or graphical structures, which
in the end made them unsatisfactory. Therefore, we need to keep in mind
always the correspondence of the language used by the user and the abstract
DL syntax, and consequently correspondences with the formal semantics
should always be clear and available.

The option of a more readable syntax has been pursued in the major-
ity of DL-KRSs. In particular, we refer to the concrete syntax proposed
in [Patel-Schneider and Swartout, 1993], which is based on a Lisp-like no-
tation, where, for example, the concept of a female person is denoted by
(and Person Female). Similarly, the concept ∀hasChild.Female would be
written (all hasChild Female). In addition, there are shorthand expres-
sions, such as (the hasChild Female), which indicates the existence of a
unique female child, and can be phrased using qualified existential restric-
tion and number restriction. In Chapter 10 this kind of syntax is discussed
in detail and the possible sources for ambiguities in the natural language
reading of the constructs are discussed.

The second option for providing the user with a concrete syntax is to rely
on a graphical interface. Starting with the Kl-One system, this possibility
has been pursued by introducing a graphical notation for the representation
of concepts and roles, as well as their relationships. More recently, Web-
based interfaces for Description Logics have been proposed [Welty, 1996a];
in addition, an XML standard has been proposed [Bechhofer et al., 1999;
Euzenat, 2001], which is suitable not only for data interchange, but also for
providing full-fledged Web interfaces to DL-KRSs or applications embodying
them as components.

The modeling language is the vehicle for the expression of the modeling
notions that are provided to the designers. Modeling in Description Logics
requires the designer to specify the concepts of the domain of discourse and
characterize their relationships to other concepts and to specific individuals.
Concepts can be regarded as classes of individuals and Description Logics
as an object-centered modeling language, since they allow one to introduce
individuals (objects) and explicitly define their properties, as well as to ex-
press relationships among them. Concept definition, which provides for both
necessary and sufficient conditions, is a characteristic feature of Description

An Introduction to Description Logics 25

Logics. The basic relationship between concepts is subsumption, which al-
lows one to capture various kinds of subclassing mechanisms; however, other
kinds of relationships can be modeled, such as grouping, materialization, and
part–whole aggregation.

The model of a domain in Description Logics is embedded in a knowledge
base. We have already addressed the TBox–ABox characterization of the
knowledge base. We recall that the roles of TBox and ABox were motivated
by the need to distinguish general knowledge about the domain of interest
from specific knowledge about individuals characterizing a specific world or
situation under consideration. Besides the TBox–ABox, other mechanisms
for organizing a knowledge base such as contexts and views have been intro-
duced in Description Logics. The use of the modeling notions provided by
Description Logics and the organization of knowledge bases are addressed
in greater detail in Chapter 10.

Finally, we recall that Description Logics as modeling languages overlap
to a large extent with other modeling languages developed in fields such
as programming languages and database management. While we shall focus
on this relationship later, we recall here that, when compared to modeling
languages developed in other fields, the characteristic feature of Description
Logics is in the reasoning capabilities that are associated with them. In
other words, we believe that, while modeling has general significance, the
capability of exploiting the description of the model to draw conclusions
about the problem at hand is a particular advantage of modeling using
Description Logics.

1.5.2 Application domains

Description Logics have been used (and are being used) in the implementa-
tion of many systems that demonstrate their practical effectiveness. Some
of these systems have found their way into production use, despite the fact
that there was no real commercial platform that could be used for developing
them.

1.5.2.1 Software engineering

Software engineering was one of the first application domains for Desciption
Logics undertaken at AT&T, where the Classic system was developed.
The basic idea was to use a Description Logic to implement a software
information system, i.e., a system that would support the software developer
by helping him or her in finding out information about a large software
system.

26 D. Nardi and R. J. Brachman

More specifically, it was found that the information of interest for soft-
ware development was a combination of knowledge about the domain of
the application and code-specific information. However, while the structure
of the code can be determined automatically, the connection between code
elements and domain concepts needs to be specified by the user.

One of the most novel applications of Description Logics is the Lassie
system [Devanbu et al., 1991], which allowed users to incrementally build
a taxonomy of concepts relating domain notions to the code implementing
them. The system could thereafter provide useful information in response
to user queries concerning the code, such as, for example “the function to
generate a dial tone”. By exploiting the description of the domain, the infor-
mation retrieval capabilities of the system went significantly beyond those of
the standard tools used for software development. The Lassie system had
considerable success but ultimately stumbled because of the difficulty of
maintenance of the knowledge base, given the constantly changing nature of
industrial software. Both the ideas of a software information system and the
usage of Description Logics survived that particular application and have
been subsequently used in other systems. The usage of Description Logics
in applications for software engineering is described in Chapter 11.

1.5.2.2 Configuration

One very successful domain for knowledge-based applications built using
Description Logics is configuration, which includes applications that support
the design of complex systems created by combining multiple components.

The configuration task amounts to finding a proper set of components
that can be suitably connected in order to implement a system that meets a
given specification. For example, choosing computer components in order to
build a home PC is a relatively simple configuration task. When the number,
the type, and the connectivity of the components grow, the configuration
task can become rather complex. In particular, computer configuration has
been among the application fields of the first expert systems and can thus
be viewed as a standard application domain for knowledge-based systems.
Configuration tasks arise in many industrial domains, such as telecommuni-
cations, the automotive industry, building construction, etc.

DL-based knowledge representation systems meet the requirements for
the development of configuration applications. In particular, they enable
the object-oriented modeling of system components, which combines
powerfully with the ability to reason from incomplete specifications and
to automatically detect inconsistencies. Using Description Logics one
can exploit the ability to classify the components and organize them

An Introduction to Description Logics 27

within a taxonomy. In addition a DL-based approach supports incremental
specification and modularity. Applications for configuration tasks require
at least two features that were not in the original core of DL-KRSs: the
representation of rules (together with a rule propagation mechanism), and
the ability to provide explanations. However, extensions with so-called
“active rules” are now very common in DL-KRSs, and a precise semantic
account is given in Chapter 2; significant work on explanation capabilities of
DL-KRSs has been developed in connection with the design of configuration
applications [McGuinness and Borgida, 1995]. Chapter 12 is devoted
to the applications developed in Description Logics for configuration
tasks.

1.5.2.3 Medicine

Medicine is also a domain where expert systems have been developed since
the 1980s; however, the complexity of the medical domain calls for a variety
of uses for a DL-KRS. In practice, decision support for medical diagnosis
is only one of the tasks in need of automation. One focus has been on the
construction and maintenance of very large ontologies of medical knowl-
edge, the subject of some large government initiatives. The need to deal
with large-scale knowledge bases (hundreds of thousands of concepts) led to
the development of specialized systems, such as Galen [Rector et al., 1993],
while the requirement for standardization arising from the need to deal with
several sources of information led to the adoption of the DL standard lan-
guage Krss [Patel-Schneider and Swartout, 1993] in projects like Snomed

[Spackman et al., 1997].
In order to cope with the scalability of the knowledge base, the DL lan-

guage adopted in these applications is often limited to a few basic constructs
and the knowledge base turns out to be rather shallow, that is to say the
taxonomy does not have very many levels of subconcepts below the top con-
cepts. Nonetheless, there are several advanced language features that would
be very useful in the representation of medical knowledge, such as, for ex-
ample, specific support for PART-OF hierarchies (see Chapter 10), as well
as defaults and modalities to capture lack of knowledge (see Chapter 6).

Obviously, since medical applications most often must be used by doctors,
a formal logical language is not well-suited; therefore special attention is
given to the design of the user interface; in particular, natural language
processing (see Chapter 15) is important both in the construction of the
ontology and in the operational interfaces.

Further, the DL component of a medical application usually operates
within a larger information system, comprising several sources of informa-

28 D. Nardi and R. J. Brachman

tion, which need to be integrated in order to provide a coherent view of the
available data (on this topic see Chapter 16).

Finally, an important issue that arises in the medical domain is the man-
agement of ontologies, which not only requires common tools for project
management, such as versioning systems, but also tools to support knowl-
edge acquisition and re-use (on this topic see Chapter 8).

The use of Description Logics specifically in the design of medical appli-
cations is addressed in Chapter 13.

1.5.2.4 Digital libraries and Web-based information systems

The relationship between semantic networks and the linked structures im-
plied by hypertext has motivated the development of DL applications for
representing bibliographic information and for supporting classification and
retrieval in digital libraries [Welty and Jenkins, 2000]. These applications
have proven the effectiveness of Description Logics for representing the tax-
onomies that are commonly used in library classification schemes, and they
have shown the advantage of subsumption reasoning for classifying and re-
trieving information. In these instances, a number of technical questions,
mostly related to the use of individuals in the taxonomy, have motivated
the use of more expressive Description Logics.

The possibility of viewing the World Wide Web as a semantic net-
work has been considered since the advent of the Web itself. Even in
the early days of the Web, thought was given to the potential benefits of
enabling programs to handle not only simple unlabeled navigation struc-
tures, but also the information content of Web pages. The goal was to
build systems for querying the Web “semantically”, allowing the user to
pose queries of the Web as if it were a database, roughly speaking. Based
on the relationship between Description Logics and semantic networks,
a number of proposals were developed that used Description Logics to
model Web structures, allowing the exploitation of DL reasoning capabil-
ities in the acquisition and management of information [Kirk et al., 1995;
De Rosa et al., 1998].

More recently, there have been significant efforts based on the use of
markup languages to capture the information content of Web structures.
The relationship between Description Logics and markup languages, such as
XML, has been precisely characterized [Calvanese et al., 1999d], thus iden-
tifying DL language features for representing XML documents. Moreover,
interest in the standardization of knowledge representation mechanisms for
enabling knowledge exchange has led to the development of OWL (Ontol-
ogy Web Language) [Bechhofer et al., 2004; Patel-Schneider et al., 2004;

An Introduction to Description Logics 29

Smith et al., 2004] which is a product of the research on Description Log-
ics, and the theoretical investigations on the computability and complexity
of reasoning in Description Logics [Horrocks et al., 2003]. The use of De-
scription Logics in the design of digital libraries and Web applications is
addressed in Chapter 14, with specific discussion on OWL and its standard-
ization process.

1.5.2.5 Other application domains

The above list of application domains, while presenting some of the most
relevant applications designed with DL-KRSs, is far from complete. There
are many other domains that have been addressed by the DL community.
Among the application areas that have resorted to Description Logics for
useful functions are planning and data mining.

With respect to planning, many knowledge-based applications rely on the
services of a planning component. While Description Logics do not provide
such a component themselves, they have been used to implement several
general-purpose planning systems. The basic idea is to represent plans and
actions, as well as their constituent elements, as concepts. The system can
thus maintain a taxonomy of plan types and provide several reasoning ser-
vices, such as plan recognition, plan subsumption, plan retrieval, and plan
refinement. Two examples of planning components developed in a DL-KRS
are Clasp [Yen et al., 1991b], developed on top of Classic, and Expect

[Swartout and Gil, 1996], developed on top of Loom. In addition, the in-
tegration of Description Logics and other formalisms, such as constraint
networks, has been proposed [Weida and Litman, 1992]. Planning systems
based on Description Logics have been used in many application domains
to support planning services in conjunction with a taxonomic representa-
tion of the domain knowledge. Such application domains include, among
others, software engineering, medicine, campaign planning, and information
integration.

It is worth mentioning that Description Logics have also been used to
represent dynamic systems and to automatically generate plans based on
such representations. However, in such cases the use of Description Logics
is limited to the formalization of properties that characterize the states of
the system, while plan generation is achieved through the use of a rule
propagation mechanism [De Giacomo et al., 1999]. Such use of Description
Logics is inspired by the correspondence between Description Logics and
Dynamic Logics described in Chapter 5.

Description Logics have also been used in data mining applications, where
their inferences can help the process of analyzing large amounts of data. In

30 D. Nardi and R. J. Brachman

this kind of application, DL structures can represent views, and DL systems
can be used to store and classify such views. The classification mechanism
can help in discovering interesting classes of items in the data. We address
this type of application briefly in the next subsection on database manage-
ment.

1.5.3 Application areas

From the beginning Description Logics have been considered general-
purpose languages for knowledge representation and reasoning, and
therefore suited for many applications. In particular, they were considered
especially effective for those domains where the knowledge could be easily
organized along a hierarchical structure, based on the “IS-A” relationship.
The ability to represent and reason about taxonomies in Description
Logics has motivated their use as a modeling language in the design and
maintenance of large, hierarchically structured bodies of knowledge as
well as their adoption as the representation language for formal ontologies
[Welty and Guarino, 2001].

We now briefly look at some other research areas that have a more gen-
eral relationship with Description Logics. Such a relationship exists either
because Description Logics are viewed as a basic representation language,
as in the case of natural language processing, or because they can be used
in a variety of ways in concert with the main technology of the area, as in
the field of database management.

1.5.3.1 Natural language

Description Logics, as well as semantic networks and frames, originally had
natural language processing as a major field for application (see for example
[Brachman, 1979]). In particular, when work on Description Logics began,
not only was a large part of the DL community working on natural language
applications, but Description Logics also bore a strong similarity to other
formalisms used in natural language work, such as Feature Logics [Nebel
and Smolka, 1991].

The use of Description Logics in natural language processing is mainly
concerned with the representation of semantic knowledge that can be used
to convey meanings of sentences. Such knowledge is typically concerned with
the meaning of words (the lexicon), and with context, that is, a representa-
tion of the situation and domain of discourse.

A significant body of work has been devoted to the problem of dis-
ambiguating different syntactic readings of sentences, based on semantic

An Introduction to Description Logics 31

knowledge, a process called semantic interpretation. Moreover, semantic
knowledge expressed in Description Logics has also been used to support
natural language generation.

Since the domain of discourse for a natural language application can be
arbitrarily broad, work on natural language has also involved the construc-
tion of ontologies [Welty and Guarino, 2001]. In addition, the expressiveness
of natural language has led also to investigations concerning extensions of
Description Logics, such as default reasoning (see Chapter 6).

Several large projects for natural language processing based on the use
of Description Logics have been undertaken, some reaching the level of in-
dustrially deployed applications. They are referenced in Chapter 15, where
the role of Description Logics in natural language processing is addressed in
more detail.

1.5.3.2 Database management

The relationship between Description Logics and databases is rather strong.
In fact, there is often the need to build systems where both a DL-KRS and
a DataBase Management System (DBMS) are present. DBMSs deal with
persistence of data and with the management of large amounts of it, while
a DL-KRS manages intensional knowledge, typically keeping the knowledge
base in memory (possibly including assertions about individuals that corre-
spond to data). While some of the applications created with DL-KRSs have
developed ad hoc solutions to the problem of dealing with large amounts
of persistent data, in a complex application domain it is very likely that a
DL-KRSs and a DBMS would both be components of a larger system, and
they would work together.

In addition, Description Logics provide a formal framework that has been
shown to be rather close to the languages used in semantic data modeling,
such as the Entity–Relationship model [Calvanese et al., 1998g]. Description
Logics are equipped with reasoning tools that can bring to the conceptual
modeling phase significant advantages, as compared with traditional lan-
guages, whose role is limited to modeling. For instance, by using concept
consistency one can verify at design time whether an entity can have at
least one instance, thus clearly saving all the difficulties arising from dis-
covering such a situation when the database is being populated [Borgida,
1995].

A second dimension of the enhancement of DBMSs with Description Log-
ics involves the query language. By expressing the queries to a database in
a Description Logic one gains the ability to classify them and therefore to
deal with issues such as query processing and optimization. However, the

32 D. Nardi and R. J. Brachman

basic DL machinery needs to be extended in order to deal with conjunctive
queries; otherwise DL expressiveness with respect to queries is rather lim-
ited. In addition, Description Logics can be used to express constraints and
intensional answers to queries.

A corollary of the relationship between Description Logics and DBMS
query languages is the utility of Description Logics in reasoning with and
about views. In the Imacs system [Brachman et al., 1993], the Classic

language was used as a “lens” [Brachman, 1994] with which data in a con-
ventional relational database could be viewed. The interface to the data was
made significantly more appropriate for a data analyst, and views that were
found to be productive could be saved; in fact, they were saved in a tax-
onomy and could be classified with respect to one another. In a sense, this
allows the schema to be viewed and queried explicitly, something normally
not available when using a raw DBMS directly.

A more recent use of Description Logics is concerned with so-called “semi-
structured” data models [Calvanese et al., 1998c], which are being proposed
in order to overcome the difficulties in treating data that are not structured
in a relational form, such as data on the Web, data in spreadsheets, etc. In
this area Description Logics are sufficiently expressive to represent models
and languages that are being used in practice, and they can offer significant
advantages over other approaches because of the reasoning services they
provide.

Another problem that has recently increased the applicability of Descrip-
tion Logics is information integration. As already remarked, data are nowa-
days available in large quantities and from a variety of sources. Information
integration is the task of providing a unique coherent view of the data stored
in the sources available. In order to create such a view, a proper relationship
needs to be established between the data in the sources and the unified view
of the data. Description Logics not only have the expressiveness needed in
order to model the data in the sources, but their reasoning services can help
in the selection of the sources that are relevant for a query of interest, as
well as to specify the extraction process [Calvanese et al., 2001c].

The uses of Description Logics with databases are addressed in more detail
in Chapter 16.

1.6 Extensions of Description Logics

In this section we look at several types of extensions that have been proposed
for Description Logics; these are addressed in more detail in Chapter 6. Such
extensions are generally motivated by needs arising in applications. Unfor-

An Introduction to Description Logics 33

tunately, some extended features in implemented DL-KRSs were created
without precise, formal accounts; in some other cases, such accounts have
been provided using a formal framework that is not restricted to first-order
logic.

A first group of extensions has the purpose of adding to DL languages
some representational features that were common in frame systems or that
are relevant for certain classes of applications. Such extensions provide a rep-
resentation of some novel epistemological notions and address the reasoning
problems that arise in the extended framework.

Extensions of a second sort are concerned with reasoning services that are
useful in the development of knowledge bases but are typically not provided
by DL-KRSs. The implementation of such services relies on additional infer-
ence techniques that are considered non-standard, because they go beyond
the basic reasoning services provided by DL-KRSs.

Below we first address the extensions of the knowledge representation
framework and then non-standard inferences.

1.6.1 Language extensions

Some of the research associated with language extensions has investigated
the semantics of the proposed extensions, but often the emphasis is only
on finding reasoning procedures for the extended languages. Within these
language extensions we find constructs for non-monotonic, epistemic, and
temporal reasoning, and constructs for representing belief and uncertain and
vague knowledge. In addition some constructs address reasoning in concrete
domains.

1.6.1.1 Non-monotonic reasoning

When frame-based systems began to be formally characterized as fragments
of first-order logic, it became clear that those frame-based systems as well
as some DL-KRSs that were used in practice occasionally provided the user
with constructs that could not be given a precise semantic characterization
within the framework of first-order logic. Notable among the problematic
constructs were those associated with the notion of defaults, which over
time have been extensively studied in the field of non-monotonic reasoning
[Brachman, 1985].

While one of the problems arising in semantic networks was the oft-cited
so-called “Nixon diamond” [Reiter and Criscuolo, 1981], a whole line of
research in non-monotonic reasoning was developed in trying to character-
ize the system behavior by studying structural properties of networks. For

34 D. Nardi and R. J. Brachman

example, the general property that “birds fly” might not be inherited by a
penguin, because a rule that penguins do not fly would give rise to an arc in
the network that would block the default inference. But as soon as the net-
work becomes relatively complex (see for example [Touretzky et al., 1991]),
we can see that attempts to provide semantic characterization in terms of
network structure are inadequate.

Another approach that has been pursued in the formalization of non-
monotonic reasoning in semantic networks is based on the use of default
logic [Reiter, 1980; Etherington, 1987; Nado and Fikes, 1987]. Following a
similar approach is the treatment of defaults in DL-based systems [Baader
and Hollunder, 1995a], where formal tools borrowed from work on non-
monotonic reasoning have been adapted to the framework of Description
Logics. Such adaptation is non-trivial, however, because Description Logics
are not, in general, propositional languages.

1.6.1.2 Modal representation of knowledge and belief

Modal logics have been widely studied to model a variety of features that
in first-order logic would require the application of special constraints on
certain elements of the formalization. For example, the notions of know-
ing something or believing that some sentence is true can be captured by
introducing modal operators, which characterize properties that sentences
have.

For instance the assertion

B(Married(ANNA))

states a fact explicitly concerning the system’s beliefs (the system believes
that Anna is married), rather than asserting the truth of something about
the world being modeled (the system could believe something to be true
without firm knowledge about its truth in the world).

In general, by introducing a modal operator one gains the ability to model
properties like knowledge, belief, time-dependence, obligation, and so on.
On the one hand, extensions of Description Logics with modal operators
can be viewed very much like the corresponding modal extensions of first-
order logic. In particular, the semantic issues arising in the interpretation
of quantified modal sentences (i.e., sentences with modal operators appear-
ing inside the scope of quantifiers) are the same. On the other hand, the
syntactic restrictions that are suited to a DL language lead to formalisms
whose expressiveness and reasoning problems inherit some of the features
of a specialized DL language. Extensions of Description Logics with modal

An Introduction to Description Logics 35

operators including those for representing knowledge and belief are discussed
in [Baader and Ohlbach, 1995].

1.6.1.3 Epistemic reasoning

It is not sufficient to provide a semantics for defaults to obtain a full se-
mantic account of frame-based systems. Frame-based systems have included
procedural rules as well as other forms of closure and epistemic reasoning
that need to be covered by the semantics as well as by the reasoning algo-
rithms. In particular, if one looks at the most widely-used systems based on
Description Logics, such features are still present, possibly in new flavors,
while their semantics is given informally and the consequences of reasoning
sometimes not adequately explained.

Among the non-first-order features that are used in the practice of
knowledge-based applications in both DL-based and frame-based systems
we point out these:

� procedural rules (also called trigger rules), which are normally described as if–then
statements and are used to infer new facts about known individuals;

� default rules, which enable default reasoning in inheritance hierarchies;
� role closure, which limits the reasoning involving role restrictions to the individ-
uals explicitly in the knowledge base;

� integrity constraints, which provide consistency restrictions on admissible knowl-
edge bases.

In Chapter 6, among other approaches an epistemic extension of Descrip-
tion Logics with a modal operator is addressed. In the resulting formalism
[Donini et al., 1998a] one can express epistemic queries and, by admitting a
simple form of epistemic sentences in the knowledge base, one can formal-
ize the aforementioned procedural rules. This characterization of procedural
rules in terms of an epistemic operator has been widely accepted in the DL
community and is thus also included in Chapter 2. The approach has been
further extended to what have been called Autoepistemic Description Logics
(ADLs) [Donini et al., 1997b, 2002], where it is combined with default rea-
soning. This combination is achieved by relying on the non-monotonic modal
logic MKNF [Lifschitz, 1991], thus introducing a second modal operator in-
terpreted as autoepistemic assumption. The features mentioned above can
be uniformly treated as epistemic sentences in the knowledge base, without
the need to give them special status as in the case of procedural rules,
defaults, and epistemic constraints on the knowledge base. This expres-
siveness does not come without making reasoning more difficult. An exten-
sion of the reasoning methods available for deduction in the propositional

36 D. Nardi and R. J. Brachman

formalizations of non-monotonic reasoning to the fragment of first-order
logic corresponding to Description Logics has nonetheless been shown to be
decidable.

1.6.1.4 Temporal reasoning

One notion that is often required in the formalization of application do-
mains is time. Temporal extensions of Description Logics have been treated
as a special kind of modal extension. The first proposal for handling time
in a DL framework [Schmiedel, 1990] was originated in the context of the
DL system Back. Later, following the standard approaches in the represen-
tation of time, both interval-based and point-based approaches have been
studied, specifically focusing on the decidability and complexity of the rea-
soning problems (see [Artale and Franconi, 2001] for a survey the temporal
extensions of Description Logics).

Time intervals can also be treated as a form of concrete domain (see
below).

1.6.1.5 Representation of uncertain and vague knowledge

Another aspect of knowledge that is sometimes useful in representing and
reasoning about application domains is uncertainty. As in other knowledge
representation frameworks there are several approaches to the representation
of uncertain knowledge in Description Logics. Two of them, namely proba-
bilistic logic and fuzzy logic, have been proposed in the context of Descrip-
tion Logics. In the case of probabilistic Description Logics [Heinsohn, 1994;
Jaeger, 1994] the knowledge about the domain is expressed in terms of prob-
abilistic terminological axioms, which allow one to represent statistical in-
formation about the domain, and in terms of probabilistic assertions, which
specify the degree of belief of asserted properties. The reasoning tasks aim at
finding the probability bounds for subsumption relations and assertions. A
more recent line of work tries to combine Description Logics with Bayesian
networks.

In the case of fuzzy Description Logics [Yen, 1991] the goal is to character-
ize notions that cannot be properly defined with a “crisp” numerical bound.
For example, the concept of living near Rome cannot be always defined with
a crisp boundary on the map, but must be represented with a membership
or degree function, which expresses closeness to the city in a continuous
way.

Proposed approaches to fuzzy Description Logics not only define the se-
mantics of assertions in terms of fuzzy sets, but also introduce new operators
to express notions like “mostly”, “very”, etc. Reasoning algorithms are also

An Introduction to Description Logics 37

provided for computing fuzzy subsumption within the framework of tableau-
based methods.

1.6.1.6 Concrete domains

One of the limitations of basic Description Logics is related to the difficulty of
integrating knowledge (and, consequently, performing reasoning) of specific
domains, such as numbers or strings, which are needed in many applications.
For example, in order to model the concept of a young person it seems rather
natural to introduce the (functional) role age and to use a concrete value (or
range of values) in the definition of the concept. In addition, one would like
to be able to conclude that a person of school age is also a young person.
Such a conclusion might require the use of properties of numbers to establish
that the expected subsumption relation holds.

While for some time such extensions were designed in ad hoc ways, in
[Baader and Hanschke, 1991a] a general method was established for integrat-
ing knowledge about concrete domains within a DL language. If a domain
can be properly formalized, it is shown that the tableau-based reasoning
technique can be suitably extended to handle the reasoning services in the
extended language.

Concrete domains include not only data types such as numerical types,
but also more elaborate domains, such as tuples of the relational calculus,
spatial regions, or time intervals.

1.6.2 Additional reasoning services

Non-standard inference tasks can serve a variety of purposes, among them
support in building and maintaining the knowledge base, as well as in ob-
taining information about the knowledge represented in it.

Among the more useful non-standard inference tasks in Description Logics
we find the computation of the least common subsumer and the most specific
concept, matching/unification, and concept rewriting.

1.6.2.1 Least common subsumer and most specific concept

The least common subsumer (lcs) of a set of concepts is the minimal con-
cept that subsumes all of them. The minimality condition implies there is
no other concept that subsumes all the concepts in the set and is less gen-
eral (subsumed by) the lcs. This notion was first studied in [Cohen et al.,
1992] and it has subsequently been used for several tasks: inductive learn-
ing of concept description from examples; knowledge base vivification (as a
way to represent disjunction in languages that do not admit it); and in the

38 D. Nardi and R. J. Brachman

bottom-up construction of DL knowledge bases (starting from instances of
the concepts).

The notion of lcs is closely related to that of most specific concept (msc)
of an individual, i.e., the least concept description that the individual is
an instance of, given the assertions in the knowledge base; the minimality
condition is specified as before. More generally, one can define the msc of a
set of assertions about individuals as the lcs of the msc associated with each
individual. Based on the computation of the msc of a set of assertions about
individuals one can incrementally construct a knowledge base [Baader and
Küsters, 1999].

It interesting to observe that the techniques that have been proposed to
compute the lcs and mcs rely on compact representations of concept expres-
sions, which are built either following the structural subsumption approach,
or through the definition of a well-suited normal form.

1.6.2.2 Unification and matching

Another tool to support the construction and maintenance of DL knowledge
bases that goes beyond the standard inference services provided by DL-KRSs
is the unification of concepts.

Concept unification [Baader and Narendran, 1998] is an operation that
can be regarded as weakening the equivalence between two concept expres-
sions. More precisely, two concept expressions unify if one can find a sub-
stitution of concept variables into concept expressions such that the result
of applying the substitution gives equivalent concepts. The intuition is that,
in order to find possible overlaps between concept definitions, one can treat
certain concept names as variables and discover, via unification, that two
concepts (possibly independently defined by distinct knowledge designers)
are in fact equivalent. The knowledge base can consequently be simplified
by introducing a single definition of the unifiable concepts.

As usual, matching is defined as a special case of unification, where vari-
ables occur only in one of the two concept expressions. In addition, in the
framework of Description Logics, one can define matching and unification
based on the subsumption relation instead of equivalence [Baader et al.,
1999a].

As with other non-standard inferences, the computation of matching and
unification relies on the use of specialized representations for concept expres-
sions, and it has been shown to be decidable for rather simple Description
Logics.

An Introduction to Description Logics 39

1.6.2.3 Concept rewriting

Finally, there has been a significant body of work on the problem of concept
rewriting. Given a concept expressed in a source language, concept rewriting
amounts to finding a concept, possibly expressed in a target language, which
is related to the given concept according to equivalence, subsumption, or
some other relation.

In order to specify the rewriting, one can provide a suitable set of con-
straints between concepts in the source language and concepts in the target
language. Concept rewriting can be applied to the translation of concepts
from one knowledge base to another, or in the reformulation of concepts
during the process of knowledge base construction and maintenance.

In addition, concept rewriting has been addressed in the context of the
rewriting of queries using views, in database management (see also Chap-
ter 16), and has recently been investigated in the framework of information
integration. In this setting, one can apply concept rewriting techniques to
automatically generate the queries that enable a system to gather informa-
tion from a set of sources [Beeri et al., 1997]. Given an initial specification of
the query according to a common, global language, and a set of constraints
expressing the relationship between the global schema and the individual
sources where information is stored, the problem is to compute the queries
to be posed to the local sources that provide answers, possibly approximate,
to the original query [Calvanese et al., 2000a].

1.7 Relationship to other fields of Computer Science

Description Logics were developed with the goals of providing formal, declar-
ative meanings to semantic networks and frames, and of showing that such
representation structures can be equipped with efficient reasoning tools.
However, the underlying ideas of concept/class and hierarchical structure
based upon the generality and specificity of a set of classes have appeared
in many other fields of Computer Science, such as database management
and programming languages. Consequently, there have been a number of
attempts to find commonalities and differences among formalisms with sim-
ilar underlying notions, but which were developed in different fields. More-
over, by looking at the syntactic form of Description Logics – logics that
are restricted to unary and binary predicates and allow restricted forms of
quantification – other logical formalisms that have strong relationships with
Description Logics have been identified. In this section we briefly address
such relationships; in particular, we focus our attention on the relationship

40 D. Nardi and R. J. Brachman

of Description Logics to other class-based languages, and then we address
the relationship between Description Logics and other logics. These topics
are addressed in more detail in Chapter 4.

1.7.1 Description Logics and other class-based formalisms

As we have mentioned, Description Logics can, in principle, be related to
other class-based formalisms. Before looking at other fields, it is worth re-
lating Description Logics to other formalisms developed within the field of
knowledge representation that share the intuitions underlying network-based
representation structure. In [Lehmann, 1992] several languages aiming at
structured representations of knowledge are reviewed. We have already dis-
cussed the relationship between Description Logics and semantic networks
and frames, since they provided the basic motivations for developing De-
scription Logics in the first place. Among others, conceptual graphs [Sowa,
1991] have been regarded as a way of representing conceptual structures
very closely related to semantic networks (and consequently, to Descrip-
tion Logics). However, only recently has there been a detailed analysis of
the relationship between conceptual graphs and Description Logics [Baader
et al., 1999c]. The outcome of this work makes it apparent that, although
one can establish a relationship between simple conceptual graphs and a
DL language, there are substantial differences between the two formalisms.
The most significant one is that Description Logics are characterized by
the universally quantified role restriction, which is not present in conceptual
graphs. Consequently, the interpretation of the representation structures be-
comes substantially different.

In many other fields of Computer Science we find formalisms for the repre-
sentation of objects and classes [Motschnig-Pitrik and Mylopoulous, 1992].
Such formalisms share the notion of a class that denotes a subset of the do-
main of discourse, and they allow one to express several kinds of relationships
and constraints (e.g., subclass constraints) that hold among classes. More-
over, class-based formalisms aim at taking advantage of the class structure in
order to provide various types of information, such as whether an element be-
longs to a class, whether a class is a subclass of another class, and more gen-
erally, whether a given constraint holds between two classes. In particular,
formalisms that are built upon the notions of class and class-based hierar-
chies have been developed in the field of database management, in semantic
data modeling (see for example [Hull and King, 1987]), in object-oriented
languages (see for example [Kim and Lochovsky, 1989]), and more generally,
in programming languages (see for example [Lenzerini et al., 1991]).

An Introduction to Description Logics 41

There have been several attempts to establish relationships among the
class-based formalisms developed in different fields. In particular, the com-
mon intuitions behind classes and concepts have stimulated several pieces
of work aimed at establishing a precise relationship between class-based for-
malisms and Description Logics. However, it is difficult to find a common
framework for carrying out a precise comparison.

In Chapter 4 a specific Description Logic is taken as a basis for identify-
ing the common features of frame systems and object-oriented and semantic
data models (see also [Calvanese et al., 1999e]). Specifically, a precise corre-
spondence between the chosen DL and the Entity–Relationship model [Chen,
1976], as well as with an object-oriented language in the style of [Abiteboul
and Kanellakis, 1989], is presented there.

This kind of comparison shows that one can indeed identify a large com-
mon basis, but also that there are features that are currently missing in each
formalism. For example, to capture semantic data models one needs a cyclic
form of inclusion assertion, as well as the inverses of roles for modeling rela-
tionships that work in both directions, while DL roles have a directionality
from one concept to another. Moreover, in order to make a comparison with
frame-based systems, one has to leave out both the non-monotonic features
of frames, such as defaults and closures (which are addressed among the
extensions of Description Logics in the previous section) and their dynamic
aspects such as daemons and and triggers (with the exception of trigger rules,
which are also addressed in the previous section). Finally, with respect to
object-oriented data models the main difference is that although Description
Logics provide the expressiveness to model record and set structures, they
are not explicitly available in Description Logics and thus their representa-
tion is a little cumbersome. On the other hand, semantic and object-oriented
data models are typically not equipped with reasoning tools that are avail-
able with Description Logics. This issue is further developed in Chapter 16,
where the applications of Description Logics in the field of database man-
agement are addressed. However, if the language is sufficiently expressive,
as it needs to be in order to establish relationships among various class-
based formalisms, one needs to distinguish between finite model reasoning,
which is required for database languages that are designed to represent a
closed domain of discourse, and unrestricted reasoning, which is typical of
knowledge representation formalisms and, therefore, of Description Logics.

1.7.2 Relationships to other logics

The initial observation for addressing the relationship of Description Logics
to other logics is the fact that Description Logics are subsets of first-order

