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Random Networks for Communication

When is a network (almost) connected? How much information can it carry? How can
you find a particular destination within the network? And how do you approach these
questions – and others – when the network is random?

The analysis of communication networks requires a fascinating synthesis of random
graph theory, stochastic geometry and percolation theory to provide models for both
structure and information flow. This book is the first comprehensive introduction for
graduate students and scientists to techniques and problems in the field of spatial random
networks. The selection of material is driven by applications arising in engineering, and
the treatment is both readable and mathematically rigorous. Though mainly concerned
with information-flow-related questions motivated by wireless data networks, the models
developed are also of interest in a broader context, ranging from engineering to social
networks, biology, and physics.

Massimo Franceschetti is assistant professor of electrical and computer engineering
at the University of California, San Diego. His work in communication system theory
sits at the interface between networks, information theory, control, and electromagnetics.

Ronald Meester is professor of mathematics at the Vrije Universiteit Amsterdam. He
has published broadly in percolation theory, spatial random processes, self-organised crit-
icality, ergodic theory, and forensic statistics and is the author of Continuum Percolation
(with Rahul Roy) and A Natural Introduction to Probability Theory.
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Preface

What is this book about, and who is it written for? To start with the first question, this book
introduces a subject placed at the interface between mathematics, physics, and information
theory of systems. In doing so, it is not intended to be a comprehensive monograph and
collect all the mathematical results available in the literature, but rather pursues the more
ambitious goal of laying the foundations. We have tried to give emphasis to the relevant
mathematical techniques that are the essential ingredients for anybody interested in the
field of random networks. Dynamic coupling, renormalisation, ergodicity and deviations
from the mean, correlation inequalities, Poisson approximation, as well as some other
tricks and constructions that often arise in the proofs are not only applied, but also
discussed with the objective of clarifying the philosophy behind their arguments. We
have also tried to make available to a larger community the main mathematical results
on random networks, and to place them into a new communication theory framework,
trying not to sacrifice mathematical rigour. As a result, the choice of the topics was
influenced by personal taste, by the willingness to keep the flow consistent, and by
the desire to present a modern, communication-theoretic view of a topic that originated
some fifty years ago and that has had an incredible impact in mathematics and statistical
physics since then. Sometimes this has come at the price of sacrificing the presentation
of results that either did not fit well in what we thought was the ideal flow of the
book, or that could be obtained using the same basic ideas, but at the expense of
highly technical complications. One important topic that the reader will find missing,
for example, is a complete treatment of the classic Erdös–Rényi model of random graphs
and of its more recent extensions, including preferential attachment models used to
describe properties of the Internet. Indeed, we felt that these models, lacking a geometric
component, did not fit well in our framework and the reader is referred to the recent
account of Durrett (2007) for a rigorous treatment of preferential attachment models. Other
omissions are certainly present, and hopefully similarly justified. We also refer to the
monographs by Bollobás (2001), Bollobás and Riordan (2006), Grimmett (1999), Meester
and Roy (1996), and Penrose (2003), for a compendium of additional mathematical results.

Let us now turn to the second question: what is our intended readership? In the
first place, we hope to inspire people in electrical engineering, computer science, and
physics to learn more about very relevant mathematics. It is worthwhile to learn these
mathematics, as it provides valuable intuition and structure. We have noticed that there
is a tendency to re-invent the wheel when it comes to the use of mathematics, and we
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thought it would be very useful to have a standard reference text. But also, we want to
inspire mathematicians to learn more about the communication setting. It raises specific
questions that are mathematically interesting, and deep. Such questions would be hard to
think about without the context of communication networks.

In summary: the mathematics is not too abstract for engineers, and the applications
are certainly not too mechanical for mathematicians. The authors being from both com-
munities – engineering and mathematics – have enjoyed over the years an interesting and
fruitful collaboration, and we are convinced that both communities can profit from this
book. In a way, our main concern is the interaction between people at either side of the
interface, who desire to break on through to the other side.

A final word about the prerequisites. We assume that the reader is familiar with basic
probability theory, with the basic notions of graph theory and with basic calculus. When
we need concepts that go beyond these basics, we will introduce and explain them. We
believe the book is suitable, and we have used it, for a first-year graduate course in
mathematics or electrical engineering.

We thank Patrick Thiran and the School of Computer and Communication Sciences of
the École Politechnique Fédérale de Lausanne for hosting us during the Summer of 2005,
while working on this book. Massimo Franceschetti is also grateful to the Department
of Mathematics of the Vrije Universiteit Amsterdam for hosting him several times. We
thank Misja Nuyens who read the entire manuscript and provided many useful comments.
We are also grateful to Nikhil Karamchandani, Young-Han Kim, and Olivier Lévêque,
who have also provided useful feedback on different portions of the manuscript. Massimo
Franceschetti also thanks Olivier Dousse, a close research collaborator of several years.



List of notation

In the following, we collect some of the notation used throughout the book. Definitions
are repeated within the text, in the specific context where they are used. Occasionally, in
some local contexts, we introduce new notation and redefine terms to mean something
different.

� · � Lebesgue measure
Euclidean distance
L1 distance
cardinality

�·� floor function, the argument is rounded down to the previous integer
�·� ceiling function, the argument is rounded up to the next integer
A an algorithm

a region of the plane
a.a.s. asymptotic almost surely
a.s. almost surely
� mean square constraint on the codeword symbols
Bn box of side length

√
n

box of side length n
B↔
n the event that there is a crossing path connecting

the left side of Bn with its right side
C�x� connected component containing the point x
C connected component containing the origin

channel capacity
C�x� y� channel capacity between points x and y

chemical distance between points x and y
Cn sum of the information rates across a cut
��·� inner boundary
D�G� diameter of the graph G
D�A� navigation length of the algorithm A
dTV total variation distance
E�·� expectation
g�x� connection function in a random connection model



xii List of notation

g��x�� connection function depending only on the Euclidian distance,
i.e., g ��+ → �0�1	 such that g��x��= g�x�

G a graph
GX generating function of random variable X

 interference reduction factor in the SNIR model
I�z� shot-noise process
Ĩ�z� shifted shot-noise process
I indicator random variable
i.i.d. independent, identically distributed
kc critical value in nearest neighbour model
� density of a Poisson process, or parameter of a Poisson distribution
�c critical density for boolean or random connection model
��x� density function of an inhomogeneous Poisson process
�x� y� attenuation function between points x and y
l��x−y�� attenuation function depending only on the Euclidian distance,

i.e., l ��+ → �+ such that l��x−y��= �x� y�

N environmental noise
N�A� number of pivotal edges for the event A
N
�Bn� number of Poisson points in the box Bn that are also part

of the unbounded component on the whole plane
N�n� number of paths of length n in the random grid starting at the origin
O origin point on the plane
P power of a signal, or just a probability measure
Po��� Poisson random variable of parameter �
pc critical probability for undirected percolation
�pc critical probability for directed percolation
psitec critical probability for site percolation
pbondc critical probability for bond percolation
p� critical probability for �-almost connectivity
��·� probability that there exists an unbounded connected component
Q the event that there exists at most one unbounded connected component
r� critical radius for �-almost connectivity in the boolean model
rc critical radius for the boolean model
R rate of the information flow
R�x� y� achievable information rate between x and y
R�n� simultaneous achievable per-node rate in a box of area n
SNR signal to noise ratio
SNIR signal to noise plus interference ratio
T a tree

a threshold value
��·� percolation function, i.e., the probability that there exists

an unbounded connected component at the origin
U the event that there exists an unbounded connected component
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U0 the event that there exists an unbounded connected component at the
origin, when there is a Poisson point at the origin

W channel bandwidth
sum of indicator random variables

w.h.p. with high probability
X Poisson process

a random variable
Xn a sequence of random variables
Xm a codeword of length m
X�A� number of points of the Poisson process X falling in the set A
X�e� uniform random variable in �0�1	,

where e is a random edge coupled with the outcome of X
x↔ y the event that there is a path connecting point x with point y
Zn nth generation in a branching process
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Introduction

Random networks arise when nodes are randomly deployed on the plane and randomly
connected to each other. Depending on the specific rules used to construct them, they
create structures that can resemble what is observed in real natural, as well as in artificial,
complex systems. Thus, they provide simple models that allow us to use probability
theory as a tool to explain the observable behaviour of real systems and to formally study
and predict phenomena that are not amenable to analysis with a deterministic approach.
This often leads to useful design guidelines for the development and optimal operation
of real systems.

Historically, random networks has been a field of study in mathematics and statistical
physics, although many models were inspired by practical questions of engineering inter-
est. One of the early mathematical models appeared in a series of papers starting in 1959
by the two Hungarian mathematicians Paul Erdös and Alfréd Rényi. They investigated
what a ‘typical’ graph of n vertices and m edges looks like, by connecting nodes at ran-
dom. They showed that many properties of these graphs are almost always predictable,
as they suddenly arise with very high probability when the model parameters are chosen
appropriately. This peculiar property generated much interest among mathematicians, and
their papers marked the starting point of the field of random graph theory. The graphs
they considered, however, were abstract mathematical objects and there was no notion of
geometric position of vertices and edges.

Mathematical models inspired by more practical questions appeared around the same
time and relied on some notion of geometric locality of the random network connec-
tions. In 1957, British engineer Simon Broadbent and mathematician John Hammersley
published a paper introducing a simple discrete mathematical model of a random grid in
which vertices are arranged on a square lattice, and edges between neighbouring vertices
are added at random, by flipping a coin to decide on the presence of each edge. This
simple model revealed extreme mathematical depth, and became one of the most studied
mathematical objects in statistical physics.

Broadbent and Hammersley were inspired by the work they had done during World
War II and their paper’s motivation was the optimal design of filters in gas masks. The
gas masks of the time used granules of activated charcoal, and the authors realised that
proper functioning of the mask required careful operation between two extremes. At
one extreme, the charcoal was highly permeable, air flowed easily through the cannister,
but the wearer of the mask breathed insufficiently filtered air. At the other extreme,
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the charcoal pack was nearly impermeable, and while no poisonous gases got through,
neither did sufficient air. The optimum was to have high charcoal surface area and
tortuous paths for air flow, ensuring sufficient time and contact to absorb the toxin. They
realised that this condition would be met in a critical operating regime, which would
occur with very high probability just like Erdös and Rényi showed later for random graph
properties, and they named the mathematical framework that they developed percolation
theory, because the meandering paths reminded them of water trickling through a coffee
percolator.

A few years later, in 1961, American communication engineer Edgar Gilbert, working
at Bell Laboratories, generalised Broadbent and Hammersley’s theory introducing a model
of random planar networks in continuum space. He considered nodes randomly located in
the plane and formed a random network by connecting pairs of nodes that are sufficiently
close to each other. He was inspired by the possibility of providing long-range radio
connection using a large number of short-range radio transmitters, and marked the birth
of continuum percolation theory. Using this model, he formally proved the existence of
a critical transmission range for the nodes, beyond which an infinite chain of connected
transmitters forms and so long-distance communication is possible by successive relaying
of messages along the chain. By contrast, below critical transmission range, any connected
component of transmitters is bounded and it is impossible to communicate over large
distances. Gilbert’s ingenious proof, as we shall see, was based on the work of Broadbent
and Hammersley, and on the theory of branching processes, which dated back to the
nineteenth-century work of Sir Francis Galton and Reverend Henry William Watson on
the survival of surnames in the British peerage.

Additional pioneering work on random networks appears to be the product of commu-
nication engineers. In 1956, American computer scientist Edward Moore and information
theory’s father Claude Shannon wrote two papers concerned with random electrical net-
works, which became classics in reliability theory and established some key inequalities,
presented later in this book, which are important steps towards the celebrated threshold
behaviours arising in percolation theory and random graphs.

As these early visionary works have been generalised by mathematicians, and statistical
physicists have used these simple models to explain the behaviour of more complex natural
systems, the field of random networks has flourished; its application to communication,
however, has lagged behind. Today, however, there is great renewed interest in random
networks for communication. Technological advances have made it plausible to envisage
the development of massively large communication systems composed of small and
relatively simple devices that can be randomly deployed and ‘ad hoc’ organise into a
complex communication network using radio links. These networks can be used for human
communication, as well as for sensing the environment and collecting and exchanging
data for a variety of applications, such as environmental and habitat monitoring, industrial
process control, security and surveillance, and structural health monitoring. The behaviour
of these systems resembles that of disordered particle systems studied in statistical physics,
and their large scale deployment allows us to appreciate in a real setting the phenomena
predicted by the random models.
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Various questions are of interest in this renewed context. The first and most basic one
deals with connectivity, which expresses a global property of the system as a whole: can
information be transferred through the network? In other words, does the network allow
at least a large fraction of the nodes to be connected by paths of adjacent edges, or is it
composed of a multitude of disconnected clusters? The second question naturally follows
the first one: what is the network capacity in terms of sustainable information flow under
different connectivity regimes? Finally, there are questions of more algorithmic flavour,
asking about the form of the paths followed by the information flow and how these can
be traversed in an efficient way. All of these issues are strongly related to each other
and to the original ‘classic’ results on random networks, and we attempt here to give a
unifying view.

We now want to spend a few words on the organisation of the book. It starts by
introducing random network models on the infinite plane. This is useful to reveal phase
transitions that can be best observed over an infinite domain. A phase transition occurs
when a small variation of the local parameters of the model triggers a macroscopic
change that is observed over large scales. Obviously, one also expects the behaviour
that can be observed at the infinite scale to be a good indication of what happens when
we consider finite models that grow larger and larger in size, and we shall see that this
is indeed the case when considering scaling properties of finite networks. Hence, after
discussing in Chapter 2 phase transitions in infinite networks, we spend some words
in Chapter 3 on connectivity of finite networks, treating full connectivity and almost
connectivity in various models. In order to deal with the information capacity questions
in Chapter 5, we need more background on random networks on the infinite plane, and
Chapter 4 provides all the necessary ingredients for this. Finally, Chapter 5 is devoted
to studying the information capacity of a random network, applying the scaling limit
approach of statistical physics in an information-theoretic setting, and Chapter 6 presents
certain algorithmic aspects that arise in trying to find the best way to navigate through a
random network.

The remainder of this chapter introduces different models of random networks and
briefly discusses their applications. In the course of the book, results for more complex
models often rely on similar ones that hold for simpler models, so the theory is built
incrementally from the bottom up.

1.1 Discrete network models

1.1.1 The random tree

We start with the simplest structure. Let us consider a tree T composed of an infinite
number of vertices, where each vertex has exactly k > 0 children, and draw each edge of
the tree with probability p > 0, or delete it otherwise, independently of all other edges.
We are then left with a random infinite subgraph of T , a finite realisation of which is
depicted in Figure 1.1. If we fix a vertex x0 ∈ T , we can ask how long is the line of
descent rooted at x0 in the resulting random network. Of course, we expect this to be on
average longer as p approaches one. This question can also be phrased in more general
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Fig. 1.1 A random tree T�k�p�, with k = 2, p = 1/2; deleted edges are represented by dashed
lines.

terms. The distribution of the number of children at each node of the tree is called the
offspring distribution, and in our example it has a Bernoulli distribution with parameters
k and p. A natural way to obtain a random tree with arbitrary offspring distribution is
by a so-called branching process. This has often been used to model the evolution of a
population from generation to generation and it is described as follows.

Let Zn be the number of members of the nth generation. Each member i of the nth
generation gives birth to a random number of children, Xi, which are the members of the
�n+ 1�th generation. Assuming Z0 = 1, the evolution of the Zi can be represented by a
random tree structure rooted at Z0 and where

Zn+1 = X1 +X2 +· · ·+XZn� (1.1)

see Figure 1.2. Note that the Xi are random variables and we make the following
assumptions,

(i) the Xi are independent of each other,
(ii) the Xi all have the same offspring distribution.

The process described above could in principle evolve forever, generating an infinite
tree. One expects that if the offspring distribution guarantees that individuals have a
sufficiently large number of children, then the population will grow indefinitely, with
positive probability at least. We shall see that there is a critical value for the expected

Z0 = 1

Z1 = 3

Z2 = 3

Z3 = 3

Z4 = 1

Fig. 1.2 A random tree obtained by a branching process.
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offspring that makes this possible and make a precise statement of this in the next chapter.
Finally, note that the branching process reduces to our original example if we take the
offspring distribution to be Bernoulli of parameters k and p.

1.1.2 The random grid

Another basic structure is the random grid. This is typically used in physics to model
flows in porous media (referred to as percolation processes). Consider an infinite square
lattice �2 and draw each edge between nearest neigbours with probability p, or delete
it otherwise, independently of all other edges. We are then left with a random infinite
subgraph of �2, see Figure 1.3 for a realisation of this on a finite domain. It is reasonable
to expect that larger values of p will lead to the existence of larger connected components
in such subgraphs, in some well-defined sense. There could in principle even be one
or more infinite connected subgraphs when p is large enough, and we note that this is
trivially the case when p= 1.

What we have described is usually referred to as a bond percolation model on the
square lattice. Another similar random grid model is obtained by considering a site
percolation model. In this case each box of the square lattice is occupied with probability
p and empty otherwise, independently of all other boxes. The resulting random structure,
depicted in Figure 1.4, also induces a random subgraph of �2. This is obtained by calling
boxes that share a side neighbours, and considering connected neighbouring boxes that
are occupied. It is also interesting to note that if we take a tree instead of a grid as the
underlying structure, then bond and site percolation can be viewed as the same process,
since each bond can be uniquely identified with a site and vice versa.

Fig. 1.3 The grid (bond percolation).
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Fig. 1.4 The grid (site percolation).

1.2 Continuum network models

1.2.1 Poisson processes

Although stochastic, the models described above are developed from a predefined deter-
ministic structure (tree and grid respectively). In continuum models this is no longer
the case as the positions of the nodes of the network themselves are random and are
formed by the realisation of a point process on the plane. This allows us to consider more
complex random structures that often more closely resemble real systems.

For our purposes, we can think of a point process as a random set of points on the
plane. Of course, one could think of a more formal mathematical definition, and we refer
to the book by Daley and Vere-Jones (1988) for this. We make use of two kinds of point
processes. The first one describes occurrences of unpredictable events, like the placement
of a node in the random network at a given point in space, which exhibit a certain amount
of statistical regularity. The second one accounts for more irregular network deployments,
while maintaining some of the most natural properties.

We start by motivating our first definition listing the following desirable features of a
somehow regular, random network deployment.

(i) Stationarity. We would like the distribution of the nodes in a given region of the
plane to be invariant under any translation of the region to another location of the
plane.

(ii) Independence. We would like the number of nodes deployed in disjoint regions of
the plane to be independent.

(iii) Absence of accumulation. We would like only finitely many nodes in every bounded
region of the plane and this number to be on average proportional to the area of
that region.


