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An Ode to the Unity of Time and Space

Time, ah, time,

how you go off like this!

Physical things, ah, things,

so abundant you are!

The Ruo’s waters are three thousand,

how can they not have the same source?

Time and space are one body,

mind and things sustain each other.

Time, o time,

does not time come again?

Heaven, o heaven,

how many are the appearances of heaven!

From ancient days constantly shifting on,

black holes flaring up.

Time and space are one body,

is it without end?

Great indeed

is the riddle of the universe.

Beautiful indeed

is the source of truth.

To quantize space and time

the smartest are nothing.

To measure the Great Universe with a long thin tube

the learning is vast.

Shing-Tung Yau
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Preface

String theory is one of the most exciting and challenging areas of modern

theoretical physics. It was developed in the late 1960s for the purpose of de-

scribing the strong nuclear force. Problems were encountered that prevented

this program from attaining complete success. In particular, it was realized

that the spectrum of a fundamental string contains an undesired massless

spin-two particle. Quantum chromodynamics eventually proved to be the

correct theory for describing the strong force and the properties of hadrons.

New doors opened for string theory when in 1974 it was proposed to identify

the massless spin-two particle in the string’s spectrum with the graviton, the

quantum of gravitation. String theory became then the most promising can-

didate for a quantum theory of gravity unified with the other forces and has

developed into one of the most fascinating theories of high-energy physics.

The understanding of string theory has evolved enormously over the years

thanks to the efforts of many very clever people. In some periods progress

was much more rapid than in others. In particular, the theory has experi-

enced two major revolutions. The one in the mid-1980s led to the subject

achieving widespread acceptance. In the mid-1990s a second superstring

revolution took place that featured the discovery of nonperturbative duali-

ties that provided convincing evidence of the uniqueness of the underlying

theory. It also led to the recognition of an eleven-dimensional manifesta-

tion, called M-theory. Subsequent developments have made the connection

between string theory, particle physics phenomenology, cosmology, and pure

mathematics closer than ever before. As a result, string theory is becoming

a mainstream research field at many universities in the US and elsewhere.

Due to the mathematically challenging nature of the subject and the

above-mentioned rapid development of the field, it is often difficult for some-

one new to the subject to cope with the large amount of material that needs

to be learned before doing actual string-theory research. One could spend

several years studying the requisite background mathematics and physics,

but by the end of that time, much more would have already been developed,

xi
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and one still wouldn’t be up to date. An alternative approach is to shorten

the learning process so that the student can jump into research more quickly.

In this spirit, the aim of this book is to guide the student through the fasci-

nating subject of string theory in one academic year. This book starts with

the basics of string theory in the first few chapters and then introduces the

reader to some of the main topics of modern research. Since the subject is

enormous, it is only possible to introduce selected topics. Nevertheless, we

hope that it will provide a stimulating introduction to this beautiful subject

and that the dedicated student will want to explore further.

The reader is assumed to have some familiarity with quantum field theory

and general relativity. It is also very useful to have a broad mathematical

background. Group theory is essential, and some knowledge of differential

geometry and basics concepts of topology is very desirable. Some topics in

geometry and topology that are required in the later chapters are summa-

rized in an appendix.

The three main string-theory textbooks that precede this one are by

Green, Schwarz and Witten (1987), by Polchinski (1998) and by Zwiebach

(2004). Each of these was also published by Cambridge University Press.

This book is somewhat shorter and more up-to-date than the first two, and

it is more advanced than the third one. By the same token, those books

contain much material that is not repeated here, so the serious student will

want to refer to them, as well. Another distinguishing feature of this book

is that it contains many exercises with worked out solutions. These are in-

tended to be helpful to students who want problems that can be used to

practice and assimilate the material.

This book would not have been possible without the assistance of many

people. We have received many valuable suggestions and comments about

the entire manuscript from Rob Myers, and we have greatly benefited from

the assistance of Yu-Chieh Chung and Guangyu Guo, who have worked

diligently on many of the exercises and homework problems and have care-

fully read the whole manuscript. Moreover, we have received extremely

useful feedback from many colleagues including Keshav Dasgupta, Andrew

Frey, Davide Gaiotto, Sergei Gukov, Michael Haack, Axel Krause, Hong Lu,

Juan Maldacena, Lubos Motl, Hirosi Ooguri, Patricia Schwarz, Eric Sharpe,

James Sparks, Andy Strominger, Ian Swanson, Xi Yin and especially Cum-

run Vafa. We have further received great comments and suggestions from

many graduate students at Caltech and Harvard University. We thank Ram

Sriharsha for his assistance with some of the homework problems and Ke-

tan Vyas for writing up solutions to the homework problems, which will be

made available to instructors. We thank Sharlene Cartier and Carol Silber-
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stein of Caltech for their help in preparing parts of the manuscript, Simon

Capelin of Cambridge U. Press, whose help in coordinating the different

aspects of the publishing process has been indispensable, Elisabeth Krause

for help preparing some of the figures and Kovid Goyal for his assistance

with computer-related issues. We thank Steven Owen for translating from

Chinese the poem that precedes the preface.

During the preparation of the manuscript KB and MB have enjoyed the

warm hospitality of the Radcliffe Institute for Advanced Studies at Harvard

University, the physics department at Harvard University and the Perimeter

Institute for theoretical physics. They would like to thank the Radcliffe In-

stitute for Advanced Study at Harvard University, which through its Fellow-

ship program made the completion of this project possible. Special thanks

go to the Dean of Science, Barbara Grosz. Moreover, KB would also like

to thank the University of Utah for awarding a teaching grant to support

the work on this book. JHS is grateful to the Rutgers high-energy theory

group, the Aspen Center for Physics and the Kavli Institute for Theoretical

Physics for hospitality while he was working on the manuscript.

KB and MB would like to give their special thanks to their mother, Ingrid

Becker, for her support and encouragement, which has always been invalu-

able, especially during the long journey of completing this manuscript. Her

artistic talents made the design of the cover of this book possible. JHS

thanks his wife Patricia for love and support while he was preoccupied with

this project.

Katrin Becker

Melanie Becker

John H. Schwarz
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NOTATION AND CONVENTIONS

A area of event horizon

AdSD D-dimensional anti-de Sitter space-time

A3 three-form potential of D = 11 supergravity

b, c fermionic world-sheet ghosts

bn Betti numbers

bµr , r ∈ �
+ 1/2 fermionic oscillator modes in NS sector

B2 or B NS–NS two-form potential

c central charge of CFT

c1 = [R/2π] first Chern class

Cn R–R n-form potential

dµm, m ∈ �
fermionic oscillator modes in R sector

D number of space-time dimensions

F = dA+ A ∧ A Yang–Mills curvature two-form (antihermitian)

F = dA+ iA ∧A Yang–Mills curvature two-form (hermitian)

F4 = dA3 four-form field strength of D = 11 supergravity

Fm, m ∈ �
odd super-Virasoro generators in R sector

Fn+1 = dCn (n+ 1)-form R–R field strength

gs = 〈exp Φ〉 closed-string coupling constant

Gr, r ∈
�

+ 1/2 odd super-Virasoro generators in NS sector

GD Newton’s constant in D dimensions

H3 = dB2 NS–NS three-form field strength

hp,q Hodge numbers

j(τ) elliptic modular function

J = igab̄dz
a ∧ dz̄b̄ Kähler form

J = J + iB complexified Kähler form

k level of Kac–Moody algebra

K Kaluza–Klein excitation number

K Kähler potential

lp = 1.6× 10−33 cm Planck length for D = 4

`p Planck length for D = 11

ls =
√

2α′, `s =
√
α′ string length scale

Ln, n ∈ �
generators of Virasoro algebra

mp = 1.2× 1019GeV/c2 Planck mass for D = 4

Mp = 2.4× 1018GeV/c2 reduced Planck mass mp/
√

8π

M,N, . . . space-time indices for D = 11

M moduli space
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NL, NR left- and right-moving excitation numbers

QB BRST charge

R = dω + ω ∧ ω Riemann curvature two-form

Rµν = Rλµλν Ricci tensor

R = Rab̄dz
a ∧ dz̄b̄ Ricci form

S entropy

Sa world-sheet fermions in light-cone gauge GS formalism

Tαβ world-sheet energy–momentum tensor

Tp tension of p-brane

W winding number

xµ, µ = 0, 1, . . .D − 1 space-time coordinates

Xµ, µ = 0, 1, . . .D − 1 space-time embedding functions of a string

x± = (x0 ± xD−1)/
√

2 light-cone coordinates in space-time

xI , I = 1, 2, . . . ,D − 2 transverse coordinates in space-time

Z central charge

αµm, m ∈ �
bosonic oscillator modes

α′ Regge-slope parameter

β, γ bosonic world-sheet ghosts

γµ Dirac matrices in four dimensions

ΓM Dirac matrices in 11 dimensions

Γµν
ρ affine connection

η(τ) Dedekind eta function

ΘAa world-volume fermions in covariant GS formalism

λA left-moving world-sheet fermions of heterotic string

Λ ∼ 10−120M4
p observed vacuum energy density

σα, α = 0, 1, . . . , p world-volume coordinates of a p-brane

σ0 = τ , σ1 = σ world-sheet coordinates of a string

σ± = τ ± σ light-cone coordinates on the world sheet

σµ
αβ̇

Dirac matrices in two-component spinor notation

Φ dilaton field

χ(M) Euler characteristic of M

ψµ world-sheet fermion in RNS formalism

ΨM gravitino field of D = 11 supergravity

ωµ
α
β spin connection

Ω world-sheet parity transformation

Ωn holomorphic n-form
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• h̄ = c = 1.

• The signature of any metric is ‘mostly +’, that is, (−,+, . . . ,+).

• The space-time metric is ds2 = gµνdx
µdxν .

• In Minkowski space-time gµν = ηµν .

• The world-sheet metric tensor is hαβ.

• A hermitian metric has the form ds2 = 2gab̄dz
adz̄b̄.

• The space-time Dirac algebra in D = d+1 dimensions is {Γµ,Γν} = 2gµν .

• Γµ1µ2···µn = Γ[µ1Γµ2 · · ·Γµn].

• The world-sheet Dirac algebra is {ρα, ρβ} = 2hαβ.

• |Fn|2 = 1
n!g

µ1ν1 · · · gµnνnFµ1...µnFν1...νn .

• The Levi–Civita tensor εµ1···µD is totally antisymmetric with ε01···d = 1.
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Introduction

There were two major breakthroughs that revolutionized theoretical physics

in the twentieth century: general relativity and quantum mechanics. Gen-

eral relativity is central to our current understanding of the large-scale ex-

pansion of the Universe. It gives small corrections to the predictions of

Newtonian gravity for the motion of planets and the deflection of light rays,

and it predicts the existence of gravitational radiation and black holes. Its

description of the gravitational force in terms of the curvature of space-

time has fundamentally changed our view of space and time: they are now

viewed as dynamical. Quantum mechanics, on the other hand, is the essen-

tial tool for understanding microscopic physics. The evidence continues to

build that it is an exact property of Nature. Certainly, its exact validity is

a basic assumption in all string theory research.

The understanding of the fundamental laws of Nature is surely incomplete

until general relativity and quantum mechanics are successfully reconciled

and unified. That this is very challenging can be seen from many differ-

ent viewpoints. The concepts, observables and types of calculations that

characterize the two subjects are strikingly different. Moreover, until about

1980 the two fields developed almost independently of one another. Very

few physicists were experts in both. With the goal of unifying both subjects,

string theory has dramatically altered the sociology as well as the science.

In relativistic quantum mechanics, called quantum field theory, one re-

quires that two fields that are defined at space-time points with a space-like

separation should commute (or anticommute if they are fermionic). In the

gravitational context one doesn’t know whether or not two space-time points

have a space-like separation until the metric has been computed, which is

part of the dynamical problem. Worse yet, the metric is subject to quan-

tum fluctuations just like other quantum fields. Clearly, these are rather

challenging issues. Another set of challenges is associated with the quantum

1



2 Introduction

description of black holes and the description of the Universe in the very

early stages of its history.

The most straightforward attempts to combine quantum mechanics and

general relativity, in the framework of perturbative quantum field theory,

run into problems due to uncontrollable infinities. Ultraviolet divergences

are a characteristic feature of radiative corrections to gravitational processes,

and they become worse at each order in perturbation theory. Because New-

ton’s constant is proportional to (length)2 in four dimensions, simple power-

counting arguments show that it is not possible to remove these infinities by

the conventional renormalization methods of quantum field theory. Detailed

calculations demonstrate that there is no miracle that invalidates this simple

dimensional analysis.1

String theory purports to overcome these difficulties and to provide a

consistent quantum theory of gravity. How the theory does this is not yet

understood in full detail. As we have learned time and time again, string

theory contains many deep truths that are there to be discovered. Gradually

a consistent picture is emerging of how this remarkable and fascinating the-

ory deals with the many challenges that need to be addressed for a successful

unification of quantum mechanics and general relativity.

1.1 Historical origins

String theory arose in the late 1960s in an attempt to understand the strong

nuclear force. This is the force that is responsible for holding protons and

neutrons together inside the nucleus of an atom as well as quarks together

inside the protons and neutrons. A theory based on fundamental one-

dimensional extended objects, called strings, rather than point-like particles,

can account qualitatively for various features of the strong nuclear force and

the strongly interacting particles (or hadrons).

The basic idea in the string description of the strong interactions is that

specific particles correspond to specific oscillation modes (or quantum states)

of the string. This proposal gives a very satisfying unified picture in that it

postulates a single fundamental object (namely, the string) to explain the

myriad of different observed hadrons, as indicated in Fig. 1.1.

In the early 1970s another theory of the strong nuclear force – called

quantum chromodynamics (or QCD) – was developed. As a result of this,

as well as various technical problems in the string theory approach, string

1 Some physicists believe that perturbative renormalizability is not a fundamental requirement
and try to “quantize” pure general relativity despite its nonrenormalizability. Loop quantum
gravity is an example of this approach. Whatever one thinks of the logic, it is fair to say that
despite a considerable amount of effort such attempts have not yet been very fruitful.
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theory fell out of favor. The current viewpoint is that this program made

good sense, and so it has again become an active area of research. The

concrete string theory that describes the strong interaction is still not known,

though one now has a much better understanding of how to approach the

problem.

String theory turned out to be well suited for an even more ambitious

purpose: the construction of a quantum theory that unifies the description

of gravity and the other fundamental forces of nature. In principle, it has

the potential to provide a complete understanding of particle physics and of

cosmology. Even though this is still a distant dream, it is clear that in this

fascinating theory surprises arise over and over.

1.2 General features

Even though string theory is not yet fully formulated, and we cannot yet

give a detailed description of how the standard model of elementary particles

should emerge at low energies, or how the Universe originated, there are

some general features of the theory that have been well understood. These

are features that seem to be quite generic irrespective of what the final

formulation of string theory might be.

Gravity

The first general feature of string theory, and perhaps the most important,

is that general relativity is naturally incorporated in the theory. The theory

gets modified at very short distances/high energies but at ordinary distances

and energies it is present in exactly the form as proposed by Einstein. This

is significant, because general relativity is arising within the framework of a

Fig. 1.1. Different particles are different vibrational modes of a string.
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consistent quantum theory. Ordinary quantum field theory does not allow

gravity to exist; string theory requires it.

Yang–Mills gauge theory

In order to fulfill the goal of describing all of elementary particle physics, the

presence of a graviton in the string spectrum is not enough. One also needs

to account for the standard model, which is a Yang–Mills theory based on

the gauge group SU(3)×SU(2)×U(1). The appearance of Yang–Mills gauge

theories of the sort that comprise the standard model is a general feature

of string theory. Moreover, matter can appear in complex chiral representa-

tions, which is an essential feature of the standard model. However, it is not

yet understood why the specific SU(3) × SU(2) × U(1) gauge theory with

three generations of quarks and leptons is singled out in nature.

Supersymmetry

The third general feature of string theory is that its consistency requires

supersymmetry, which is a symmetry that relates bosons to fermions is re-

quired. There exist nonsupersymmetric bosonic string theories (discussed

in Chapters 2 and 3), but lacking fermions, they are completely unrealis-

tic. The mathematical consistency of string theories with fermions depends

crucially on local supersymmetry. Supersymmetry is a generic feature of all

potentially realistic string theories. The fact that this symmetry has not yet

been discovered is an indication that the characteristic energy scale of su-

persymmetry breaking and the masses of supersymmetry partners of known

particles are above experimentally determined lower bounds.

Space-time supersymmetry is one of the major predictions of superstring

theory that could be confirmed experimentally at accessible energies. A vari-

ety of arguments, not specific to string theory, suggest that the characteristic

energy scale associated with supersymmetry breaking should be related to

the electroweak scale, in other words in the range 100 GeV to a few TeV.

If this is correct, superpartners should be observable at the CERN Large

Hadron Collider (LHC), which is scheduled to begin operating in 2007.

Extra dimensions of space

In contrast to many theories in physics, superstring theories are able to

predict the dimension of the space-time in which they live. The theory
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is only consistent in a ten-dimensional space-time and in some cases an

eleventh dimension is also possible.

To make contact between string theory and the four-dimensional world of

everyday experience, the most straightforward possibility is that six or seven

of the dimensions are compactified on an internal manifold, whose size is

sufficiently small to have escaped detection. For purposes of particle physics,

the other four dimensions should give our four-dimensional space-time. Of

course, for purposes of cosmology, other (time-dependent) geometries may

also arise.

Fig. 1.2. From far away a two-dimensional cylinder looks one-dimensional.

The idea of an extra compact dimension was first discussed by Kaluza

and Klein in the 1920s. Their goal was to construct a unified description

of electromagnetism and gravity in four dimensions by compactifying five-

dimensional general relativity on a circle. Even though we now know that

this is not how electromagnetism arises, the essence of this beautiful ap-

proach reappears in string theory. The Kaluza–Klein idea, nowadays re-

ferred to as compactification, can be illustrated in terms of the two cylinders

of Fig. 1.2. The surface of the first cylinder is two-dimensional. However,

if the radius of the circle becomes extremely small, or equivalently if the

cylinder is viewed from a large distance, the cylinder looks effectively one-

dimensional. One now imagines that the long dimension of the cylinder is

replaced by our four-dimensional space-time and the short dimension by an

appropriate six, or seven-dimensional compact manifold. At large distances

or low energies the compact internal space cannot be seen and the world

looks effectively four-dimensional. As discussed in Chapters 9 and 10, even

if the internal manifolds are invisible, their topological properties determine

the particle content and structure of the four-dimensional theory. In the

mid-1980s Calabi–Yau manifolds were first considered for compactifying six

extra dimensions, and they were shown to be phenomenologically rather

promising, even though some serious drawbacks (such as the moduli space

problem discussed in Chapter 10) posed a problem for the predictive power
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of string theory. In contrast to the circle, Calabi–Yau manifolds do not have

isometries, and part of their role is to break symmetries rather than to make

them.

The size of strings

In conventional quantum field theory the elementary particles are mathemat-

ical points, whereas in perturbative string theory the fundamental objects

are one-dimensional loops (of zero thickness). Strings have a characteristic

length scale, denoted ls, which can be estimated by dimensional analysis.

Since string theory is a relativistic quantum theory that includes gravity it

must involve the fundamental constants c (the speed of light), h̄ (Planck’s

constant divided by 2π), and G (Newton’s gravitational constant). From

these one can form a length, known as the Planck length

lp =

(
h̄G

c3

)1/2

= 1.6× 10−33 cm.

Similarly, the Planck mass is

mp =

(
h̄c

G

)1/2

= 1.2× 1019 GeV/c2.

The Planck scale is the natural first guess for a rough estimate of the fun-

damental string length scale as well as the characteristic size of compact

extra dimensions. Experiments at energies far below the Planck energy can-

not resolve distances as short as the Planck length. Thus, at such energies,

strings can be accurately approximated by point particles. This explains

why quantum field theory has been so successful in describing our world.

1.3 Basic string theory

As a string evolves in time it sweeps out a two-dimensional surface in space-

time, which is called the string world sheet of the string. This is the string

counterpart of the world line for a point particle. In quantum field theory,

analyzed in perturbation theory, contributions to amplitudes are associated

with Feynman diagrams, which depict possible configurations of world lines.

In particular, interactions correspond to junctions of world lines. Similarly,

perturbation expansions in string theory involve string world sheets of var-

ious topologies.

The existence of interactions in string theory can be understood as a con-

sequence of world-sheet topology rather than of a local singularity on the



1.3 Basic string theory 7

world sheet. This difference from point-particle theories has two important

implications. First, in string theory the structure of interactions is uniquely

determined by the free theory. There are no arbitrary interactions to be cho-

sen. Second, since string interactions are not associated with short-distance

singularities, string theory amplitudes have no ultraviolet divergences. The

string scale 1/ls acts as a UV cutoff.

World-volume actions and the critical dimension

A string can be regarded as a special case of a p-brane, which is an object

with p spatial dimensions and tension (or energy density) Tp. In fact, various

p-branes do appear in superstring theory as nonperturbative excitations.

The classical motion of a p-brane extremizes the (p+1)-dimensional volume

V that it sweeps out in space-time. Thus there is a p-brane action that

is given by Sp = −TpV . In the case of the fundamental string, which has

p = 1, V is the area of the string world sheet and the action is called the

Nambu–Goto action.

Classically, the Nambu–Goto action is equivalent to the string sigma-

model action

Sσ = −T
2

∫ √
−hhαβηµν∂αXµ∂βX

νdσdτ,

where hαβ(σ, τ) is an auxiliary world-sheet metric, h = dethαβ, and hαβ is

the inverse of hαβ. The functions Xµ(σ, τ) describe the space-time embed-

ding of the string world sheet. The Euler–Lagrange equation for hαβ can be

used to eliminate it from the action and recover the Nambu–Goto action.

Quantum mechanically, the story is more subtle. Instead of eliminating h

via its classical field equations, one should perform a Feynman path integral,

using standard machinery to deal with the local symmetries and gauge fixing.

When this is done correctly, one finds that there is a conformal anomaly

unless the space-time dimension is D = 26. These matters are explored in

Chapters 2 and 3. An analogous analysis for superstrings gives the critical

dimension D = 10.

Closed strings and open strings

The parameter τ in the embedding functionsXµ(σ, τ) is the world-sheet time

coordinate and σ parametrizes the string at a given world-sheet time. For a

closed string, which is topologically a circle, one should impose periodicity

in the spatial parameter σ. Choosing its range to be π one identifies both
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ends of the string Xµ(σ, τ) = Xµ(σ + π, τ). All string theories contain

closed strings, and the graviton always appears as a massless mode in the

closed-string spectrum of critical string theories.

For an open string, which is topologically a line interval, each end can

be required to satisfy either Neumann or Dirichlet boundary conditions (for

each value of µ). The Dirichlet condition specifies a space-time hypersurface

on which the string ends. The only way this makes sense is if the open string

ends on a physical object, which is called a D-brane. (D stands for Dirichlet.)

If all the open-string boundary conditions are Neumann, then the ends of

the string can be anywhere in the space-time. The modern interpretation is

that this means that space-time-filling D-branes are present.

Perturbation theory

Perturbation theory is useful in a quantum theory that has a small dimen-

sionless coupling constant, such as quantum electrodynamics (QED), since it

allows one to compute physical quantities as expansions in the small param-

eter. In QED the small parameter is the fine-structure constant α ∼ 1/137.

For a physical quantity T (α), one computes (using Feynman diagrams)

T (α) = T0 + αT1 + α2T2 + . . .

Perturbation series are usually asymptotic expansions with zero radius of

convergence. Still, they can be useful, if the expansion parameter is small,

because the first terms in the expansion provide an accurate approximation.

The heterotic and type II superstring theories contain oriented closed

strings only. As a result, the only world sheets in their perturbation expan-

sions are closed oriented Riemann surfaces. There is a unique world-sheet

topology at each order of the perturbation expansion, and its contribution

is UV finite. The fact that there is just one string theory Feynman diagram

at each order in the perturbation expansion is in striking contrast to the

large number of Feynman diagrams that appear in quantum field theory. In

the case of string theory there is no particular reason to expect the coupling

constant gs to be small. So it is unlikely that a realistic vacuum could be

analyzed accurately using only perturbation theory. For this reason, it is

important to understand nonperturbative effects in string theory.

Superstrings

The first superstring revolution began in 1984 with the discovery that quan-

tum mechanical consistency of a ten-dimensional theory with N = 1 super-
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symmetry requires a local Yang–Mills gauge symmetry based on one of two

possible Lie algebras: SO(32) or E8×E8. As is explained in Chapter 5, only

for these two choices do certain quantum mechanical anomalies cancel. The

fact that only these two groups are possible suggested that string theory has

a very constrained structure, and therefore it might be very predictive. 2

When one uses the superstring formalism for both left-moving modes and

right-moving modes, the supersymmetries associated with the left-movers

and the right-movers can have either opposite handedness or the same hand-

edness. These two possibilities give different theories called the type IIA and

type IIB superstring theories, respectively. A third possibility, called type I

superstring theory, can be derived from the type IIB theory by modding out

by its left–right symmetry, a procedure called orientifold projection. The

strings that survive this projection are unoriented. The type I and type

II superstring theories are described in Chapters 4 and 5 using formalisms

with world-sheet and space-time supersymmetry, respectively.

A more surprising possibility is to use the formalism of the 26-dimensional

bosonic string for the left-movers and the formalism of the 10-dimensional

superstring for the right-movers. The string theories constructed in this

way are called “heterotic.” Heterotic string theory is discussed in Chap-

ter 7. The mismatch in space-time dimensions may sound strange, but it is

actually exactly what is needed. The extra 16 left-moving dimensions must

describe a torus with very special properties to give a consistent theory.

There are precisely two distinct tori that have the required properties, and

they correspond to the Lie algebras SO(32) and E8 × E8.

Altogether, there are five distinct superstring theories, each in ten dimen-

sions. Three of them, the type I theory and the two heterotic theories, have

N = 1 supersymmetry in the ten-dimensional sense. The minimal spinor

in ten dimensions has 16 real components, so these theories have 16 con-

served supercharges. The type I superstring theory has the gauge group

SO(32), whereas the heterotic theories realize both SO(32) and E8 × E8.

The other two theories, type IIA and type IIB, have N = 2 supersymmetry

or equivalently 32 supercharges.

1.4 Modern developments in superstring theory

The realization that there are five different superstring theories was some-

what puzzling. Certainly, there is only one Universe, so it would be most

satisfying if there were only one possible theory. In the late 1980s it was

2 Anomaly analysis alone also allows U(1)496 and E8 × U(1)248. However, there are no string
theories with these gauge groups.
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realized that there is a property known as T-duality that relates the two

type II theories and the two heterotic theories, so that they shouldn’t really

be regarded as distinct theories.

Progress in understanding nonperturbative phenomena was achieved in

the 1990s. Nonperturbative S-dualities and the opening up of an eleventh

dimension at strong coupling in certain cases led to new identifications. Once

all of these correspondences are taken into account, one ends up with the

best possible conclusion: there is a unique underlying theory. Some of these

developments are summarized below and are discussed in detail in the later

chapters.

T-duality

String theory exhibits many surprising properties. One of them, called T-

duality, is discussed in Chapter 6. T-duality implies that in many cases two

different geometries for the extra dimensions are physically equivalent! In

the simplest example, a circle of radius R is equivalent to a circle of radius

`2s/R, where (as before) `s is the fundamental string length scale.

T-duality typically relates two different theories. For example, it relates

the two type II and the two heterotic theories. Therefore, the type IIA and

type IIB theories (also the two heterotic theories) should be regarded as a

single theory. More precisely, they represent opposite ends of a continuum

of geometries as one varies the radius of a circular dimension. This radius is

not a parameter of the underlying theory. Rather, it arises as the vacuum

expectation value of a scalar field, and it is determined dynamically.

There are also fancier examples of duality equivalences. For example,

there is an equivalence of type IIA superstring theory compactified on a

Calabi–Yau manifold and type IIB compactified on the “mirror” Calabi–Yau

manifold. This mirror pairing of topologically distinct Calabi–Yau manifolds

is discussed in Chapter 9. A surprising connection to T-duality will emerge.

S-duality

Another kind of duality – called S-duality – was discovered as part of the

second superstring revolution in the mid-1990s. It is discussed in Chapter 8.

S-duality relates the string coupling constant gs to 1/gs in the same way

that T-duality relates R to `2s/R. The two basic examples relate the type

I superstring theory to the SO(32) heterotic string theory and the type

IIB superstring theory to itself. Thus, given our knowledge of the small

gs behavior of these theories, given by perturbation theory, we learn how
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these three theories behave when gs � 1. For example, strongly coupled

type I theory is equivalent to weakly coupled SO(32) heterotic theory. In

the type IIB case the theory is related to itself, so one is actually dealing

with a symmetry. The string coupling constant gs is given by the vacuum

expectation value of expφ, where φ is the dilaton field. S-duality, like T-

duality, is actually a field transformation, φ→ −φ, and not just a statement

about vacuum expectation values.

D-branes

When studied nonperturbatively, one discovers that superstring theory con-

tains various p-branes, objects with p spatial dimensions, in addition to the

fundamental strings. All of the p-branes, with the single exception of the

fundamental string (which is a 1-brane), become infinitely heavy as gs → 0,

and therefore they do not appear in perturbation theory. On the other

hand, when the coupling gs is not small, this distinction is no longer signifi-

cant. When that is the case, all of the p-branes are just as important as the

fundamental strings, so there is p-brane democracy.

The type I and II superstring theories contain a class of p-branes called D-

branes, whose tension is proportional 1/gs. As was mentioned earlier, their

defining property is that they are objects on which fundamental strings can

end. The fact that fundamental strings can end on D-branes implies that

quantum field theories of the Yang–Mills type, like the standard model,

reside on the world volumes of D-branes. The Yang–Mills fields arise as

the massless modes of open strings attached to the D-branes. The fact

that theories resembling the standard model reside on D-branes has many

interesting implications. For example, it has led to the speculation that the

reason we experience four space-time dimensions is because we are confined

to live on three-dimensional D-branes (D3-branes), which are embedded in a

higher-dimensional space-time. Model-building along these lines, sometimes

called the brane-world approach or scenario, is discussed in Chapter 10.

What is M-theory?

S-duality explains how three of the five original superstring theories behave

at strong coupling. This raises the question: What happens to the other

two superstring theories – type IIA and E8×E8 heterotic – when gs is large?

The answer, which came as quite a surprise, is that they grow an eleventh

dimension of size gs`s. This new dimension is a circle in the type IIA case

and a line interval in the heterotic case. When the eleventh dimension is
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large, one is outside the regime of perturbative string theory, and new tech-

niques are required. Most importantly, a new type of quantum theory in 11

dimensions, called M-theory, emerges. At low energies it is approximated

by a classical field theory called 11-dimensional supergravity, but M-theory

is much more than that. The relation between M-theory and the two super-

string theories previously mentioned, together with the T and S dualities

discussed above, imply that the five superstring theories are connected by

a web of dualities, as depicted in Fig. 1.3. They can be viewed as different

corners of a single theory.

type IIA type IIB

SO(32)

type I
11d 
SUGRA

E8XE8

Fig. 1.3. Different string theories are connected through a web of dualities.

There are techniques for identifying large classes of superstring and M-

theory vacua, and describing them exactly, but there is not yet a succinct

and compelling formulation of the underlying theory that gives rise to these

vacua. Such a formulation should be completely unique, with no adjustable

dimensionless parameters or other arbitrariness. Many things that we usu-

ally take for granted, such as the existence of a space-time manifold, are

likely to be understood as emergent properties of specific vacua rather than

identifiable features of the underlying theory. If this is correct, then the

missing formulation of the theory must be quite unlike any previous theory.

Usual approaches based on quantum fields depend on the existence of an

ambient space-time manifold. It is not clear what the basic degrees of free-

dom should be in a theory that does not assume a space-time manifold at

the outset.

There is an interesting proposal for an exact quantum mechanical descrip-
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tion of M-theory, applicable to certain space-time backgrounds, that goes

by the name of Matrix theory. Matrix theory gives a dual description of M-

theory in flat 11-dimensional space-time in terms of the quantum mechanics

of N ×N matrices in the large N limit. When n of the spatial dimensions

are compactified on a torus, the dual Matrix theory becomes a quantum

field theory in n spatial dimensions (plus time). There is evidence that this

conjecture is correct when n is not too large. However, it is unclear how to

generalize it to other compactification geometries, so Matrix theory provides

only pieces of a more complete description of M-theory.

F-theory

As previously discussed, the type IIA and heterotic E8×E8 theories can be

viewed as arising from a more fundamental eleven-dimensional theory, M-

theory. One may wonder if the other superstring theories can be derived in

a similar fashion. An approach, called F-theory, is described in Chapter 9.

It utilizes the fact that ten-dimensional type IIB superstring theory has a

nonperturbative SL(2,
�

) symmetry. Moreover, this is the modular group

of a torus and the type IIB theory contains a complex scalar field τ that

transforms under SL(2,
�

) as the complex structure of a torus. Therefore,

this symmetry can be given a geometric interpretation if the type IIB theory

is viewed as having an auxiliary two-torus T 2 with complex structure τ . The

SL(2,
�

) symmetry then has a natural interpretation as the symmetry of the

torus.

Flux compactifications

One question that already bothered Kaluza and Klein is why should the

fifth dimension curl up? Another puzzle in those early days was the size of

the circle, and what stabilizes it at a particular value. These questions have

analogs in string theory, where they are part of what is called the moduli-

space problem. In string theory the shape and size of the internal manifold

is dynamically determined by the vacuum expectation values of scalar fields.

String theorists have recently been able to provide answers to these questions

in the context of flux compactifications , which is a rapidly developing area

of modern string theory research. This is discussed in Chapter 10.

Even though the underlying theory (M-theory) is unique, it admits an

enormous number of different solutions (or quantum vacua). One of these

solutions should consist of four-dimensional Minkowski space-time times a

compact manifold and accurately describes the world of particle physics.
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One of the major challenges of modern string theory research is to find this

solution.

It would be marvelous to identify the correct vacuum, and at the same

time to understand why it is the right one. Is it picked out by some spe-

cial mathematical property, or is it just an environmental accident of our

particular corner of the Universe? The way this question plays out will be

important in determining the extent to which the observed world of particle

physics can be deduced from first principles.

Black-hole entropy

It follows from general relativity that macroscopic black holes behave like

thermodynamic objects with a well-defined temperature and entropy. The

entropy is given (in gravitational units) by 1/4 the area of the event horizon,

which is the Bekenstein–Hawking entropy formula. In quantum theory, an

entropy S ordinarily implies that there are a large number of quantum states

(namely, expS of them) that contribute to the corresponding microscopic

description. So a natural question is whether this rule also applies to black

holes and their higher-dimensional generalizations, which are called black p-

branes. D-branes provide a set-up in which this question can be investigated.

In the early work on this subject, reliable techniques for counting mi-

crostates only existed for very special types of black holes having a large

amount of supersymmetry. In those cases one found agreement with the

entropy formula. More recently, one has learned how to analyze a much

larger class of black holes and black p-branes, and even how to compute

corrections to the area formula. This subject is described in Chapter 11.

Many examples have been studied and no discrepancies have been found,

aside from corrections that are expected. It is fair to say that these studies

have led to a much deeper understanding of the thermodynamic properties

of black holes in terms of string-theory microphysics, a fact that is one of

the most striking successes of string theory so far.

AdS/CFT duality

A remarkable discovery made in the late 1990s is the exact equivalence (or

duality) of conformally invariant quantum field theories and superstring the-

ory or M-theory in special space-time geometries. A collection of coincident

p-branes produces a space-time geometry with a horizon, like that of a black

hole. In the vicinity of the horizon, this geometry can be approximated by a

product of an anti-de Sitter space and a sphere. In the example that arises
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from considering N coincident D3-branes in the type IIB superstring the-

ory, one obtains a duality between SU(N) Yang–Mills theory with N = 4

supersymmetry in four dimensions and type IIB superstring theory in a

ten-dimensional geometry given by a product of a five-dimensional anti-de

Sitter space (AdS5) and a five-dimensional sphere (S5). There are N units of

five-form flux threading the five sphere. There are also analogous M-theory

dualities.

These dualities are sometimes referred to as AdS/CFT dualities. AdS

stands for anti-de Sitter space, a maximally symmetric space-time geom-

etry with negative scalar curvature. CFT stands for conformal field the-

ory, a quantum field theory that is invariant under the group of conformal

transformations. This type of equivalence is an example of a holographic

duality, since it is analogous to representing three-dimensional space on a

two-dimensional emulsion. The study of these dualities is teaching us a

great deal about string theory and M-theory as well as the dual quantum

field theories. Chapter 12 gives an introduction to this vast subject.

String and M-theory cosmology

The field of superstring cosmology is emerging as a new and exciting dis-

cipline. String theorists and string-theory considerations are injecting new

ideas into the study of cosmology. This might be the arena in which predic-

tions that are specific to string theory first confront data.

In a quantum theory that contains gravity, such as string theory, the cos-

mological constant, Λ, which characterizes the energy density of the vacuum,

is (at least in principle) a computable quantity. This energy (sometimes

called dark energy) has recently been measured to fairly good accuracy, and

found to account for about 70% of the total mass/energy in the present-day

Universe. This fraction is an increasing function of time. The observed

value of the cosmological constant/dark energy is important for cosmology,

but it is extremely tiny when expressed in Planck units (about 10−120).

The first attempts to account for Λ > 0 within string theory and M-theory,

based on compactifying 11-dimensional supergravity on time-independent

compact manifolds, were ruled out by “no-go” theorems. However, certain

nonperturbative effects allow these no-go theorems to be circumvented.

A viewpoint that has gained in popularity recently is that string theory

can accommodate almost any value of Λ, but only solutions for which Λ is

sufficiently small describe a Universe that can support life. So, if it were

much larger, we wouldn’t be here to ask the question. This type of reasoning

is called anthropic. While this may be correct, it would be satisfying to have
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another explanation of why Λ is so small that does not require this type of

reasoning.

Another important issue in cosmology concerns the accelerated expansion

of the very early Universe, which is referred to as inflation. The observa-

tional case for inflation is quite strong, and it is an important question to

understand how it arises from a fundamental theory. Before the period of

inflation was the Big Bang, the origin of the observable Universe, and much

effort is going into understanding that. Two radically different proposals

are quantum tunneling from nothing and a collision of branes.
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The bosonic string

This chapter introduces the simplest string theory, called the bosonic string.

Even though this theory is unrealistic and not suitable for phenomenology,

it is the natural place to start. The reason is that the same structures

and techniques, together with a number of additional ones, are required for

the analysis of more realistic superstring theories. This chapter describes

the free (noninteracting) theory both at the classical and quantum levels.

The next chapter discusses various techniques for introducing and analyzing

interactions.

A string can be regarded as a special case of a p-brane, a p-dimensional

extended object moving through space-time. In this notation a point particle

corresponds to the p = 0 case, in other words to a zero-brane. Strings

(whether fundamental or solitonic) correspond to the p = 1 case, so that they

can also be called one-branes. Two-dimensional extended objects or two-

branes are often called membranes. In fact, the name p-brane was chosen

to suggest a generalization of a membrane. Even though strings share some

properties with higher-dimensional extended objects at the classical level,

they are very special in the sense that their two-dimensional world-volume

quantum theories are renormalizable, something that is not the case for

branes of higher dimension. This is a crucial property that makes it possible

to base quantum theories on them. In this chapter we describe the string as

a special case of p-branes and describe the properties that hold only for the

special case p = 1.

2.1 p-brane actions

This section describes the free motion of p-branes in space-time using the

principle of minimal action. Let us begin with a point particle or zero-brane.

17
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Relativistic point particle

The motion of a relativistic particle of mass m in a curved D-dimensional

space-time can be formulated as a variational problem, that is, an action

principle. Since the classical motion of a point particle is along geodesics,

the action should be proportional to the invariant length of the particle’s

trajectory

S0 = −α
∫
ds, (2.1)

where α is a constant and h̄ = c = 1. This length is extremized in the

classical theory, as is illustrated in Fig. 2.1.

X

XXf

Xf

0

0

11

Fig. 2.1. The classical trajectory of a point particle minimizes the length of the
world line.

Requiring the action to be dimensionless, one learns that α has the di-

mensions of inverse length, which is equivalent to mass in our units, and

hence it must be proportional to m. As is demonstrated in Exercise 2.1, the

action has the correct nonrelativistic limit if α = m, so the action becomes

S0 = −m
∫
ds. (2.2)

In this formula the line element is given by

ds2 = −gµν(X)dXµdXν . (2.3)

Here gµν(X), with µ, ν = 0, . . . ,D − 1, describes the background geome-

try, which is chosen to have Minkowski signature (− + · · ·+). The minus

sign has been introduced here so that ds is real for a time-like trajectory.

The particle’s trajectory Xµ(τ), also called the world line of the particle, is

parametrized by a real parameter τ , but the action is independent of the
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choice of parametrization (see Exercise 2.2). The action (2.2) therefore takes

the form

S0 = −m
∫ √

−gµν(X)ẊµẊνdτ, (2.4)

where the dot represents the derivative with respect to τ .

The action S0 has the disadvantage that it contains a square root, so that

it is difficult to quantize. Furthermore, this action obviously cannot be used

to describe a massless particle. These problems can be circumvented by

introducing an action equivalent to the previous one at the classical level,

which is formulated in terms of an auxiliary field e(τ)

S̃0 =
1

2

∫
dτ
(
e−1Ẋ2 −m2e

)
, (2.5)

where Ẋ2 = gµν(X)ẊµẊν . Reparametrization invariance of S̃0 requires that

e(τ) transforms in an appropriate fashion (see Exercise 2.3). The equation

of motion of e(τ), given by setting the variational derivative of this action

with respect to e(τ) equal to zero, is m2e2 + Ẋ2 = 0. Solving for e(τ) and

substituting back into S̃0 gives S0.

Generalization to the p-brane action

The action (2.4) can be generalized to the case of a string sweeping out

a two-dimensional world sheet in space-time and, in general, to a p-brane

sweeping out a (p + 1)-dimensional world volume in D-dimensional space-

time. It is necessary, of course, that p < D. For example, a membrane or

two-brane sweeps out a three-dimensional world volume as it moves through

a higher-dimensional space-time. This is illustrated for a string in Fig. 2.2.

The generalization of the action (2.4) to a p-brane naturally takes the

form

Sp = −Tp
∫
dµp. (2.6)

Here Tp is called the p-brane tension and dµp is the (p + 1)-dimensional

volume element given by

dµp =
√
−detGαβ d

p+1σ, (2.7)

where the induced metric is given by

Gαβ = gµν(X)∂αX
µ∂βX

ν α, β = 0, . . . , p. (2.8)

To write down this form of the action, one has taken into account that p-

brane world volumes can be parametrized by the coordinates σ0 = τ , which
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is time-like, and σi, which are p space-like coordinates. Since dµp has units

of (length)p+1 the dimension of the p-brane tension is

[Tp] = (length)−p−1 =
mass

(length)p
, (2.9)

or energy per unit p-volume.

EXERCISES

EXERCISE 2.1

Show that the nonrelativistic limit of the action (2.1) in flat Minkowski

space-time determines the value of the constant α to be the mass of the

point particle.

SOLUTION

In the nonrelativistic limit the action (2.1) becomes

S0 = −α
∫ √

dt2 − d~x2 = −α
∫
dt
√

1− ~v2 ≈ −α
∫
dt

(
1− 1

2
~v2 + . . .

)
.

Comparing the above expansion with the action of a nonrelativistic point

X

X

X 0

1

2

Fig. 2.2. The classical trajectory of a string minimizes the area of the world sheet.
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particle, namely

Snr =

∫
dt

1

2
m~v2,

gives α = m. In the nonrelativistic limit an additional constant (the famous

E = mc2 term) appears in the above expansion of S0. This constant does

not contribute to the classical equations of motion. 2

EXERCISE 2.2

One important requirement for the point-particle world-line action is that

it should be invariant under reparametrizations of the parameter τ . Show

that the action S0 is invariant under reparametrizations of the world line by

substituting τ ′ = f(τ).

SOLUTION

The action

S0 = −m
∫ √

−dX
µ

dτ

dXµ

dτ
dτ

can be written in terms of primed quantities by taking into account

dτ ′ =
df(τ)

dτ
dτ = ḟ(τ)dτ and

dXµ

dτ
=
dXµ

dτ ′
dτ ′

dτ
=
dXµ

dτ ′
· ḟ(τ).

This gives,

S′0 = −m
∫ √

−dX
µ

dτ ′
dXµ

dτ ′
ḟ(τ) · dτ

′

ḟ(τ)
= −m

∫ √
−dX

µ

dτ ′
dXµ

dτ ′
· dτ ′,

which shows that the action S0 is invariant under reparametrizations. 2

EXERCISE 2.3

The action S̃0 in Eq. (2.5) is also invariant under reparametrizations of the

particle world line. Even though it is not hard to consider finite transfor-

mations, let us consider an infinitesimal change of parametrization

τ → τ ′ = f(τ) = τ − ξ(τ).

Verify the invariance of S̃0 under an infinitesimal reparametrization.

SOLUTION

The field Xµ transforms as a world-line scalar, Xµ′(τ ′) = Xµ(τ). Therefore,
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the first-order shift in Xµ is

δXµ = Xµ′(τ)−Xµ(τ) = ξ(τ)Ẋµ.

Notice that the fact that Xµ has a space-time vector index is irrelevant

to this argument. The auxiliary field e(τ) transforms at the same time

according to

e′(τ ′)dτ ′ = e(τ)dτ.

Infinitesimally, this leads to

δe = e′(τ)− e(τ) =
d

dτ
(ξe).

Let us analyze the special case of a flat space-time metric gµν(X) = ηµν ,

even though the result is true without this restriction. In this case the vector

index on Xµ can be raised and lowered inside derivatives. The expression

S̃0 has the variation

δS̃0 =
1

2

∫
dτ

(
2ẊµδẊµ

e
− ẊµẊµ

e2
δe−m2δe

)
.

Here δẊµ is given by

δẊµ =
d

dτ
δXµ = ξ̇Ẋµ + ξẌµ.

Together with the expression for δe, this yields

δS̃0 =
1

2

∫
dτ

[
2Ẋµ

e

(
ξ̇Ẋµ + ξẌµ

)
− ẊµẊµ

e2

(
ξ̇e+ ξė

)
−m2d(ξe)

dτ

]
.

The last term can be dropped because it is a total derivative. The remaining

terms can be written as

δS̃0 =
1

2

∫
dτ · d

dτ

(
ξ

e
ẊµẊµ

)
.

This is a total derivative, so it too can be dropped (for suitable boundary

conditions). Therefore, S̃0 is invariant under reparametrizations. 2

EXERCISE 2.4

The reparametrization invariance that was checked in the previous exercise

allows one to choose a gauge in which e = 1. As usual, when doing this one

should be careful to retain the e equation of motion (evaluated for e = 1).

What is the form and interpretation of the equations of motion for e and

Xµ resulting from S̃0?



2.1 p-brane actions 23

SOLUTION

The equation of motion for e derived from the action principle for S̃0 is given

by the vanishing of the variational derivative

δS̃0

δe
= −1

2

(
e−2ẊµẊµ +m2

)
= 0.

Choosing the gauge e(τ) = 1, we obtain the equation

ẊµẊµ +m2 = 0.

Since pµ = Ẋµ is the momentum conjugate to Xµ, this equation is simply

the mass-shell condition p2 +m2 = 0, so that m is the mass of the particle,

as was shown in Exercise 2.1. The variation with respect to Xµ gives the

second equation of motion

− d

dτ
(gµνẊ

ν) +
1

2
∂µgρλẊ

ρẊλ

= −(∂ρgµν)ẊρẊν − gµνẌν +
1

2
∂µgρλẊ

ρẊλ = 0.

This can be brought to the form

Ẍµ + ΓµρλẊ
ρẊλ = 0, (2.10)

where

Γµρλ =
1

2
gµν(∂ρgλν + ∂λgρν − ∂νgρλ)

is the Christoffel connection (or Levi–Civita connection). Equation (2.10)

is the geodesic equation. Note that, for a flat space-time, Γµρλ vanishes

in Cartesian coordinates, and one recovers the familiar equation of motion

for a point particle in flat space. Note also that the more conventional

normalization (ẊµẊµ + 1 = 0) would have been obtained by choosing the

gauge e = 1/m. 2

EXERCISE 2.5

The action of a p-brane is invariant under reparametrizations of the p + 1

world-volume coordinates. Show this explicitly by checking that the action

(2.6) is invariant under a change of variables σα → σα(σ̃).

SOLUTION

Under this change of variables the induced metric in Eq. (2.8) transforms in
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the following way:

Gαβ =
∂Xµ

∂σα
∂Xν

∂σβ
gµν = (f−1)γα

∂Xµ

∂σ̃γ
(f−1)δβ

∂Xν

∂σ̃δ
gµν ,

where

fαβ (σ̃) =
∂σα

∂σ̃β
.

Defining J to be the Jacobian of the world-volume coordinate transforma-

tion, that is, J = det fαβ , the determinant appearing in the action becomes

det

(
gµν

∂Xµ

∂σα
∂Xν

∂σβ

)
= J−2 det

(
gµν

∂Xµ

∂σ̃γ
∂Xν

∂σ̃δ

)
.

The measure of the integral transforms according to

dp+1σ = Jdp+1σ̃,

so that the Jacobian factors cancel, and the action becomes

S̃p = −Tp
∫
dp+1σ̃

√
−det

(
gµν

∂Xµ

∂σ̃γ
∂Xν

∂σ̃δ

)
.

Therefore, the action is invariant under reparametrizations of the world-

volume coordinates. 2

2.2 The string action

This section specializes the discussion to the case of a string (or one-brane)

propagating in D-dimensional flat Minkowski space-time. The string sweeps

out a two-dimensional surface as it moves through space-time, which is called

the world sheet. The points on the world sheet are parametrized by the two

coordinates σ0 = τ , which is time-like, and σ1 = σ, which is space-like. If

the variable σ is periodic, it describes a closed string. If it covers a finite

interval, the string is open. This is illustrated in Fig. 2.3.

The Nambu-Goto action

The space-time embedding of the string world sheet is described by functions

Xµ(σ, τ), as shown in Fig. 2.4. The action describing a string propagating

in a flat background geometry can be obtained as a special case of the

more general p-brane action of the previous section. This action, called the

Nambu–Goto action, takes the form

SNG = −T
∫
dσdτ

√
(Ẋ ·X ′)2 − Ẋ2X ′2, (2.11)



2.2 The string action 25

where

Ẋµ =
∂Xµ

∂τ
and Xµ′ =

∂Xµ

∂σ
, (2.12)

and the scalar products are defined in the case of a flat space-time by A·B =

ηµνA
µBν . The integral appearing in this action describes the area of the

world sheet. As a result, the classical string motion minimizes (or at least

extremizes) the world-sheet area, just as classical particle motion makes the

length of the world line extremal by moving along a geodesic.

X

X

X 0

1

2

Fig. 2.3. The world sheet for the free propagation of an open string is a rectangular
surface, while the free propagation of a closed string sweeps out a cylinder.

Fig. 2.4. The functions Xµ(σ, τ) describe the embedding of the string world sheet
in space-time.



26 The bosonic string

The string sigma model action

Even though the Nambu–Goto action has a nice physical interpretation as

the area of the string world sheet, its quantization is again awkward due to

the presence of the square root. An action that is equivalent to the Nambu–

Goto action at the classical level, because it gives rise to the same equations

of motion, is the string sigma model action.1

The string sigma-model action is expressed in terms of an auxiliary world-

sheet metric hαβ(σ, τ), which plays a role analogous to the auxiliary field

e(τ) introduced for the point particle. We shall use the notation hαβ for the

world-sheet metric, whereas gµν denotes a space-time metric. Also,

h = dethαβ and hαβ = (h−1)αβ , (2.13)

as is customary in relativity. In this notation the string sigma-model action

is

Sσ = −1

2
T

∫
d2σ
√
−hhαβ∂αX · ∂βX. (2.14)

At the classical level the string sigma-model action is equivalent to the

Nambu–Goto action. However, it is more convenient for quantization.

EXERCISES

EXERCISE 2.6

Derive the equations of motion for the auxiliary metric hαβ and the bosonic

field Xµ in the string sigma-model action. Show that classically the string

sigma-model action (2.14) is equivalent to the Nambu–Goto action (2.11).

SOLUTION

As for the point-particle case discussed earlier, the auxiliary metric hαβ ap-

pearing in the string sigma-model action can be eliminated using its equa-

tions of motion. Indeed, since there is no kinetic term for hαβ, its equation

of motion implies the vanishing of the world-sheet energy–momentum tensor

1 This action, traditionally called the Polyakov action, was discovered by Brink, Di Vecchia and
Howe and by Deser and Zumino several years before Polyakov skillfully used it for path-integral
quantization of the string.
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Tαβ, that is,

Tαβ = − 2

T

1√
−h

δSσ
δhαβ

= 0.

To evaluate the variation of the action, the following formula is useful:

δh = −hhαβδhαβ,

which implies that

δ
√
−h = −1

2

√
−hhαβδhαβ. (2.15)

After taking the variation of the action, the result for the energy–momentum

tensor takes the form

Tαβ = ∂αX · ∂βX −
1

2
hαβh

γδ∂γX · ∂δX = 0.

This is the equation of motion for hαβ, which can be used to eliminate

hαβ from the string sigma-model action. The result is the Nambu–Goto

action. The easiest way to see this is to take the square root of minus the

determinant of both sides of the equation

∂αX · ∂βX =
1

2
hαβh

γδ∂γX · ∂δX.

This gives
√
−det(∂αX · ∂βX) =

1

2

√
−hhγδ∂γX · ∂δX.

Finally, the equation of motion for Xµ, obtained from the Euler–Lagrange

condition, is

∆Xµ = − 1√
−h

∂α

(√
−hhαβ∂βXµ

)
= 0.

2

EXERCISE 2.7

Calculate the nonrelativistic limit of the Nambu–Goto action

SNG = −T
∫
dτdσ

√
−detGαβ, Gαβ = ∂αX

µ∂βXµ

for a string in Minkowski space-time. Use the static gauge, which fixes

the longitudinal directions X0 = τ , X1 = σ, while leaving the transverse

directions X i free. Show that the kinetic energy contains only the transverse

velocity. Determine the mass per unit length of the string.
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SOLUTION

In the static gauge

detGαβ = det

(
∂τX

µ∂τXµ ∂τX
µ∂σXµ

∂σX
µ∂τXµ ∂σX

µ∂σXµ

)

= det

(
−1 + ∂τX

i∂τXi ∂τX
i∂σXi

∂σX
i∂τXi 1 + ∂σX

i∂σXi

)
.

Then,

detGαβ ≈ −1 + ∂τX
i∂τXi − ∂σXi∂σXi + . . .

Here the dots indicate higher-order terms that can be dropped in the non-

relativistic limit for which the velocities are small. In this limit the action

becomes (after a Taylor expansion)

SNG = −T
∫
dτdσ

√
| − 1 + ∂τXi∂τXi − ∂σXi∂σXi|

≈ T
∫
dτdσ

(
−1 +

1

2
∂τX

i∂τXi −
1

2
∂σX

i∂σXi

)
.

The first term in the parentheses gives −m
∫
dτ , if L is the length of the σ

interval and m = LT . This is the rest-mass contribution to the potential

energy. Note that L is a distance in space, because of the choice of static

gauge. Thus the tension T can be interpreted as the mass per unit length, or

mass density, of the string. The last two terms of the above formula are the

kinetic energy and the negative of the potential energy of a nonrelativistic

string of tension T . 2

EXERCISE 2.8

Show that if a cosmological constant term is added to the string sigma-model

action, so that

Sσ = −T
2

∫
d2σ
√
−hhαβ∂αXµ∂βXµ + Λ

∫
d2σ
√
−h,

it leads to inconsistent classical equations of motion.

SOLUTION

The equation of motion for the world-sheet metric is

2√
−h

δSσ
δhγδ

= −T [∂γX
µ∂δXµ −

1

2
hγδ(h

αβ∂αX
µ∂βXµ)]− Λhγδ = 0,
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where we have used Eq. (2.15). Contracting with hγδ gives

hγδh
γδΛ = T (

1

2
hγδh

γδ − 1)hαβ∂αX
µ∂βXµ.

Since hγδh
γδ = 2, the right-hand side vanishes. Thus, assuming h 6= 0,

consistency requires Λ = 0. In other words, adding a cosmological constant

term gives inconsistent classical equations of motion. 2

EXERCISE 2.9

Show that the sigma-model form of the action of a p-brane, for p 6= 1,

requires a cosmological constant term.

SOLUTION

Consider a p-brane action of the form

Sσ = −Tp
2

∫
dp+1σ

√
−hhαβ∂αX · ∂βX + Λp

∫
dp+1σ

√
−h. (2.16)

The equation of motion for the world-volume metric is obtained exactly as

in the previous exercise, with the result

Tp[∂γX · ∂δX −
1

2
hγδ(h

αβ∂αX · ∂βX)] + Λphγδ = 0.

This equation is not so easy to solve directly, so let us instead investigate

whether it is solved by equating the world-volume metric to the induced

metric

hαβ = ∂αX · ∂βX. (2.17)

Substituting this ansatz in the previous equation and dropping common

factors gives

Tp(1−
1

2
hαβhαβ) + Λp = 0.

Substituting hαβhαβ = p+ 1, one learns that

Λp =
1

2
(p− 1)Tp. (2.18)

Thus, consistency requires this choice of Λp.
2 This confirms the previous

result that Λ1 = 0 and shows that Λp 6= 0 for p 6= 1. Substituting the

value of the metric in Eq. (2.17) and the value of Λp in Eq. (2.18), one finds

that Eq. (2.16) is equivalent classically to Eq. (2.6). For the special case of

2 A different value is actually equivalent, if one makes a corresponding rescaling of hαβ . However,
this results in a multiplicative factor in the relation (2.17).
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p = 0, this reproduces the result in Eq. (2.5) if one makes the identifications

T0 = m and h00 = −m2e2. 2

2.3 String sigma-model action: the classical theory

In this section we discuss the symmetries of the string sigma-model action in

Eq. (2.14). This is helpful for writing the string action in a gauge in which

quantization is particularly simple.

Symmetries

The string sigma-model action for the bosonic string in Minkowski space-

time has a number of symmetries:

• Poincaré transformations. These are global symmetries under which the

world-sheet fields transform as

δXµ = aµνX
ν + bµ and δhαβ = 0. (2.19)

Here the constants aµν (with aµν = −aνµ) describe infinitesimal Lorentz

transformations and bµ describe space-time translations.

• Reparametrizations. The string world sheet is parametrized by two coor-

dinates τ and σ, but a change in the parametrization does not change the

action. Indeed, the transformations

σα → fα(σ) = σ′α and hαβ(σ) =
∂fγ

∂σα
∂f δ

∂σβ
hγδ(σ

′) (2.20)

leave the action invariant. These local symmetries are also called diffeo-

morphisms. Strictly speaking, this implies that the transformations and

their inverses are infinitely differentiable.

• Weyl transformations. The action is invariant under the rescaling

hαβ → eφ(σ,τ)hαβ and δXµ = 0, (2.21)

since
√
−h → eφ

√
−h and hαβ → e−φhαβ give cancelling factors. This

local symmetry is the reason that the energy–momentum tensor is trace-

less.

Poincaré transformations are global symmetries, whereas reparametriza-

tions and Weyl transformations are local symmetries. The local symmetries

can be used to choose a gauge, such as the static gauge discussed earlier, or

else one in which some of the components of the world-sheet metric hαβ are

of a particular form.
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Gauge fixing

The gauge-fixing procedure described earlier for the point particle can be

generalized to the case of the string. In this case the auxiliary field has three

independent components, namely

hαβ =

(
h00 h01

h10 h11

)
, (2.22)

where h10 = h01. Reparametrization invariance allows us to choose two of

the components of h, so that only one independent component remains. But

this remaining component can be gauged away by using the invariance of the

action under Weyl rescalings. So in the case of the string there is sufficient

symmetry to gauge fix hαβ completely. As a result, the auxiliary field hαβ
can be chosen as

hαβ = ηαβ =

(
−1 0

0 1

)
. (2.23)

Actually such a flat world-sheet metric is only possible if there is no topo-

logical obstruction. This is the case when the world sheet has vanishing

Euler characteristic. Examples include a cylinder and a torus. When a flat

world-sheet metric is an allowed gauge choice, the string action takes the

simple form

S =
T

2

∫
d2σ(Ẋ2 −X ′2). (2.24)

The string actions discussed so far describe propagation in flat Minkowski

space-time. Keeping this requirement, one could consider the following two

additional terms, both of which are renormalizable (or super-renormalizable)

and compatible with Poincaré invariance,

S1 = λ1

∫
d2σ
√
−h and S2 = λ2

∫
d2σ
√
−hR(2)(h). (2.25)

S1 is a cosmological constant term on the world sheet. This term is not

allowed by the equations of motion (see Exercise 2.8). The term S2 involves

R(2)(h), the scalar curvature of the two-dimensional world-sheet geometry.

Such a contribution raises interesting issues, which are explored in the next

chapter. For now, let us assume that it can be ignored.

Equations of motion and boundary conditions

Equations of motion

Let us now suppose that the world-sheet topology allows a flat world-sheet

metric to be chosen. For a freely propagating closed string a natural choice
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is an infinite cylinder. Similarly, the natural choice for an open string is an

infinite strip. In both cases, the motion of the string in Minkowski space is

governed by the action in Eq. (2.24). This implies that the Xµ equation of

motion is the wave equation

∂α∂
αXµ = 0 or

(
∂2

∂σ2
− ∂2

∂τ2

)
Xµ = 0. (2.26)

Since the metric on the world sheet has been gauge fixed, the vanishing of the

energy–momentum tensor, that is, Tαβ = 0 originating from the equation

of motion of the world-sheet metric, must now be imposed as an additional

constraint condition. In the gauge hαβ = ηαβ the components of this tensor

are

T01 = T10 = Ẋ ·X ′ and T00 = T11 =
1

2
(Ẋ2 +X ′2). (2.27)

Using T00 = T11, we see the vanishing of the trace of the energy–momentum

tensor TrT = ηαβTαβ = T11−T00. This is a consequence of Weyl invariance,

as was mentioned before.

Boundary conditions

In order to give a fully defined variational problem, boundary conditions

need to be specified. A string can be either closed or open. For convenience,

let us choose the coordinate σ to have the range 0 ≤ σ ≤ π. The stationary

points of the action are determined by demanding invariance of the action

under the shifts

Xµ → Xµ + δXµ. (2.28)

In addition to the equations of motion, there is the boundary term

−T
∫
dτ
[
X ′µδX

µ|σ=π −X ′µδXµ|σ=0

]
, (2.29)

which must vanish. There are several different ways in which this can be

achieved. For an open string these possibilities are illustrated in Fig. 2.5.

• Closed string. In this case the embedding functions are periodic,

Xµ(σ, τ) = Xµ(σ + π, τ). (2.30)

• Open string with Neumann boundary conditions. In this case the com-

ponent of the momentum normal to the boundary of the world sheet

vanishes, that is,

X ′µ = 0 at σ = 0, π. (2.31)
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If this choice is made for all µ, these boundary conditions respect D-

dimensional Poincaré invariance. Physically, they mean that no momen-

tum is flowing through the ends of the string.

• Open string with Dirichlet boundary conditions. In this case the positions

of the two string ends are fixed so that δXµ = 0, and

Xµ|σ=0 = Xµ
0 and Xµ|σ=π = Xµ

π , (2.32)

where Xµ
0 and Xµ

π are constants and µ = 1, . . . ,D − p − 1. Neumann

boundary conditions are imposed for the other p+ 1 coordinates. Dirich-

let boundary conditions break Poincaré invariance, and for this reason

they were not considered for many years. But, as is discussed in Chap-

ter 6, there are circumstances in which Dirichlet boundary conditions are

unavoidable. The modern interpretation is that Xµ
0 and Xµ

π represent the

positions of Dp-branes. A Dp-brane is a special type of p-brane on which a

fundamental string can end. The presence of a Dp-brane breaks Poincaré

invariance unless it is space-time filling (p = D − 1).

Solution to the equations of motion

To find the solution to the equations of motion and constraint equations it

is convenient to introduce world-sheet light-cone coordinates, defined as

σ± = τ ± σ. (2.33)

In these coordinates the derivatives and the two-dimensional Lorentz metric

take the form

∂± =
1

2
(∂τ ± ∂σ) and

(
η++ η+−
η−+ η−−

)
= −1

2

(
0 1

1 0

)
. (2.34)

σ=0 σ=π σ=0 σ=π



X  (σ,τ)µ X  (σ,τ)µ

Fig. 2.5. Illustration of Dirichlet (left) and Neumann (right) boundary conditions.
The solid and dashed lines represent string positions at two different times.
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In light-cone coordinates the wave equation for Xµ is

∂+∂−Xµ = 0. (2.35)

The vanishing of the energy–momentum tensor becomes

T++ = ∂+X
µ∂+Xµ = 0, (2.36)

T−− = ∂−Xµ∂−Xµ = 0, (2.37)

while T+− = T−+ = 0 expresses the vanishing of the trace, which is auto-

matic. The general solution of the wave equation (2.35) is given by

Xµ(σ, τ) = Xµ
R(τ − σ) +Xµ

L(τ + σ), (2.38)

which is a sum of right-movers and left-movers. To find the explicit form of

XR andXL one should requireXµ(σ, τ) to be real and impose the constraints

(∂−XR)2 = (∂+XL)2 = 0. (2.39)

The quantum version of these constraints will be discussed in the next sec-

tion.

Closed-string mode expansion

The most general solution of the wave equation satisfying the closed-string

boundary condition is given by

Xµ
R =

1

2
xµ +

1

2
l2sp

µ(τ − σ) +
i

2
ls
∑

n6=0

1

n
αµne

−2in(τ−σ), (2.40)

Xµ
L =

1

2
xµ +

1

2
l2sp

µ(τ + σ) +
i

2
ls
∑

n6=0

1

n
α̃µne

−2in(τ+σ), (2.41)

where xµ is a center-of-mass position and pµ is the total string momentum,

describing the free motion of the string center of mass. The exponential

terms represent the string excitation modes. Here we have introduced a new

parameter, the string length scale ls, which is related to the string tension

T and the open-string Regge slope parameter α′ by

T =
1

2πα′
and

1

2
l2s = α′. (2.42)

The requirement that Xµ
R and Xµ

L are real functions implies that xµ and pµ

are real, while positive and negative modes are conjugate to each other

αµ−n = (αµn)? and α̃µ−n = (α̃µn)? . (2.43)



2.3 String sigma-model action: the classical theory 35

The terms linear in σ cancel from the sum Xµ
R + Xµ

L , so that closed-string

boundary conditions are indeed satisfied. Note that the derivatives of the

expansions take the form

∂−X
µ
R = ls

+∞∑

m=−∞
αµme

−2im(τ−σ) (2.44)

∂+X
µ
L = ls

+∞∑

m=−∞
α̃µme

−2im(τ+σ), (2.45)

where

αµ0 = α̃µ0 =
1

2
lsp

µ. (2.46)

These expressions are useful later. In order to quantize the theory, let us

first introduce the canonical momentum conjugate to Xµ. It is given by

Pµ(σ, τ) =
δS

δẊµ

= TẊµ. (2.47)

With this definition of the canonical momentum, the classical Poisson brack-

ets are
[
Pµ(σ, τ), P ν(σ′, τ)

]
P.B.

=
[
Xµ(σ, τ),Xν(σ′, τ)

]
P.B.

= 0, (2.48)

[
Pµ(σ, τ),Xν(σ′, τ)

]
P.B.

= ηµνδ(σ − σ′). (2.49)

In terms of Ẋµ

[
Ẋµ(σ, τ),Xν(σ′, τ)

]
P.B.

= T−1ηµνδ(σ − σ′). (2.50)

Inserting the mode expansion for Xµ and Ẋµ into these equations gives the

Poisson brackets satisfied by the modes3

[
αµm, α

ν
n

]
P.B.

=
[
α̃µm, α̃

ν
n

]
P.B.

= imηµνδm+n,0 (2.51)

and
[
αµm, α̃

ν
n

]
P.B.

= 0. (2.52)

3 The derivation of the commutation relations for the modes uses the Fourier expansion of the
Dirac delta function

δ(σ − σ′) =
1

π

+∞X

n=−∞
e2in(σ−σ′).
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2.4 Canonical quantization

The world-sheet theory can now be quantized by replacing Poisson brackets

by commutators

[. . . ]P.B. → i [. . . ] . (2.53)

This gives

[αµm, α
ν
n] = [α̃µm, α̃

ν
n] = mηµνδm+n,0, [αµm, α̃

ν
n] = 0. (2.54)

Defining

aµm =
1√
m
αµm and aµ†m =

1√
m
αµ−m for m > 0, (2.55)

the algebra satisfied by the modes is essentially the algebra of raising and

lowering operators for quantum-mechanical harmonic oscillators

[aµm, a
ν†
n ] = [ãµm, ã

ν†
n ] = ηµνδm,n for m,n > 0. (2.56)

There is just one unusual feature: the commutators of time components

have a negative sign, that is,
[
a0
m, a

0†
m

]
= −1. (2.57)

This results in negative norm states, which will be discussed in a moment.

The spectrum is constructed by applying raising operators on the ground

state, which is denoted |0〉. By definition, the ground state is annihilated

by the lowering operators:

aµm|0〉 = 0 for m > 0. (2.58)

One can also specify the momentum kµ carried by a state |φ〉,

|φ〉 = aµ1†
m1
aµ2†
m2
· · · aµn†mn

|0; k〉, (2.59)

which is the eigenvalue of the momentum operator pµ,

pµ|φ〉 = kµ|φ〉. (2.60)

It should be emphasized that this is first quantization, and all of these states

(including the ground state) are one-particle states. Second quantization

requires string field theory, which is discussed briefly at the end of Chapter 3.

The states with an even number of time-component operators have pos-

itive norm, while those that are constructed with an odd number of time-



2.4 Canonical quantization 37

component operators have negative norm.4 A simple example of a negative-

norm state is given by

a0†
m |0〉 with norm 〈0|a0

ma
0†
m |0〉 = −1, (2.61)

where the ground state is normalized as 〈0|0〉 = 1. In order for the theory

to be physically sensible, it is essential that all physical states have positive

norm. Negative-norm states in the physical spectrum of an interacting the-

ory would lead to violations of causality and unitarity. The way in which the

negative-norm states are eliminated from the physical spectrum is explained

later in this chapter.

Open-string mode expansion

The general solution of the string equations of motion for an open string

with Neumann boundary conditions is given by

Xµ(τ, σ) = xµ + l2sp
µτ + ils

∑

m6=0

1

m
αµme

−imτ cos(mσ). (2.62)

Mode expansions for other type of boundary conditions are given as home-

work problems. Note that, for the open string, only one set of modes αµm
appears, whereas for the closed string there are two independent sets of

modes αµm and α̃µm. The open-string boundary conditions force the left- and

right-moving modes to combine into standing waves. For the open string

2∂±Xµ = Ẋµ ±X ′µ = ls

∞∑

m=−∞
αµme

−im(τ±σ), (2.63)

where, αµ0 = lsp
µ.

Hamiltonian and energy–momentum tensor

As discussed above, the string sigma-model action is invariant under various

symmetries.

Noether currents

Recall that there is a standard method, due to Noether, for constructing a

conserved current Jα associated with a global symmetry transformation

φ→ φ+ δεφ, (2.64)

4 States that have negative norm are sometimes called ghosts, but we reserve that word for the
ghost fields that are arise from covariant BRST quantization in the next chapter.
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where φ is any field of the theory and ε is an infinitesimal parameter. Such

a transformation is a symmetry of the theory if it leaves the equations of

motion invariant. This is the case if the action changes at most by a surface

term, which means that the Lagrangian density changes at most by a total

derivative. The Noether current is then determined from the change in the

action under the above transformation

L → L+ ε∂αJ α. (2.65)

When ε is a constant, this change is a total derivative, which reflects the

fact that there is a global symmetry. Then the equations of motion imply

that the current is conserved, ∂αJ α = 0. The Poincaré transformations

δXµ = aµνX
ν + bµ, (2.66)

are global symmetries of the string world-sheet theory. Therefore, they give

rise to conserved Noether currents. Applying the Noether method to derive

the conserved currents associated with the Poincaré transformation of Xµ,

one obtains

Pµα = T∂αX
µ, (2.67)

Jµνα = T (Xµ∂αX
ν −Xν∂αX

µ) , (2.68)

where the first current is associated with the translation symmetry, and the

second one originates from the invariance under Lorentz transformations.

Hamiltonian

World-sheet time evolution is generated by the Hamiltonian

H =

∫ π

0

(
ẊµP

µ
0 − L

)
dσ =

T

2

∫ π

0

(
Ẋ2 +X ′2

)
dσ, (2.69)

where

Pµ0 =
δS

δẊµ

= TẊµ, (2.70)

was previously called P µ(σ, τ). Inserting the mode expansions, the result

for the closed-string Hamiltonian is

H =
+∞∑

n=−∞
(α−n · αn + α̃−n · α̃n) , (2.71)

while for the open string the corresponding expression is

H =
1

2

+∞∑

n=−∞
α−n · αn. (2.72)
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These results hold for the classical theory. In the quantum theory there are

ordering ambiguities that need to be resolved.

Energy momentum tensor

Let us now consider the mode expansions of the energy–momentum tensor.

Inserting the closed-string mode expansions for XL and XR into the energy–

momentum tensor Eqs (2.36), (2.37), one obtains

T−− = 2 l2s

+∞∑

m=−∞
Lme

−2im(τ−σ) and T++ = 2 l2s

+∞∑

m=−∞
L̃me

−2im(τ+σ),

(2.73)

where the Fourier coefficients are the Virasoro generators

Lm =
1

2

+∞∑

n=−∞
αm−n · αn and L̃m =

1

2

+∞∑

n=−∞
α̃m−n · α̃n. (2.74)

In the same way, one can get the result for the modes of the energy–

momentum tensor of the open string. Comparing with the Hamiltonian,

results in the expression

1

2
H = L0 + L̃0 =

1

2

+∞∑

n=−∞
(α−n · αn + α̃−n · α̃n) , (2.75)

for a closed string, while for an open string

H = L0 =
1

2

+∞∑

n=−∞
α−n · αn. (2.76)

The above results hold for the classical theory. Again, in the quantum theory

one needs to resolve ordering ambiguities.

Mass formula for the string

Classically the vanishing of the energy–momentum tensor translates into the

vanishing of all the Fourier modes

Lm = 0 for m = 0,±1,±2, . . . (2.77)

The classical constraint

L0 = L̃0 = 0, (2.78)

can be used to derive an expression for the mass of a string. The relativistic

mass-shell condition is

M2 = −pµpµ, (2.79)
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where pµ is the total momentum of the string. This total momentum is

given by

pµ = T

∫ π

0
dσẊµ(σ), (2.80)

so that only the zero mode in the mode expansion of Ẋµ(σ, τ) contributes.

For the open string, the vanishing of L0 then becomes

L0 =
∞∑

n=1

α−n · αn +
1

2
α2

0 =
∞∑

n=1

α−n · αn + α′p2 = 0, (2.81)

which gives a relation between the mass of the string and the oscillator

modes. For the open string one gets the relation

M2 =
1

α′

∞∑

n=1

α−n · αn. (2.82)

For the closed string one has to take the left-moving and right-moving modes

into account, and then one obtains

M2 =
2

α′

∞∑

n=1

(α−n · αn + α̃−n · α̃n) . (2.83)

These are the mass-shell conditions for the string, which determine the mass

of a given string state. In the quantum theory these relations get slightly

modified.

The Virasoro algebra

Classical theory

In the classical theory the Virasoro generators satisfy the algebra

[Lm, Ln]P.B. = i(m− n)Lm+n. (2.84)

The appearance of the Virasoro algebra is due to the fact that the gauge

choice Eq. (2.23) has not fully gauge fixed the reparametrization symmetry.

Let ξα be an infinitesimal parameter for a reparametrization and let Λ be an

infinitesimal parameter for a Weyl rescaling. Then residual reparametriza-

tion symmetries satisfying

∂αξβ + ∂βξα = Ληαβ, (2.85)

still remain. These are the reparametrizations that are also Weyl rescalings.

If one defines the combinations ξ± = ξ0 ± ξ1 and σ± = σ0 ± σ1, then one
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finds that Eq. (2.85) is solved by

ξ+ = ξ+(σ+) and ξ− = ξ−(σ−). (2.86)

The infinitesimal generators for the transformations δσ± = ξ± are given by

V ± =
1

2
ξ±(σ±)

∂

∂σ±
, (2.87)

and a complete basis for these transformations is given by

ξ±n (σ±) = e2inσ± n ∈ �
. (2.88)

The corresponding generators V ±n give two copies of the Virasoro algebra.

In the case of open strings there is just one Virasoro algebra, and the in-

finitesimal generators are

Vn = einσ
+ ∂

∂σ+
+ einσ

− ∂

∂σ−
n ∈ �

. (2.89)

In the classical theory the equation of motion for the metric implies the

vanishing of the energy–momentum tensor, that is, T++ = T−− = 0, which

in terms of the Fourier components of Eq. (2.73) is

Lm =
1

2

+∞∑

n=−∞
αm−n · αn = 0 for m ∈ �

. (2.90)

In the case of closed strings, there are also corresponding L̃m conditions.

Quantum theory

In the quantum theory these operators are defined to be normal-ordered,

that is,

Lm =
1

2

∞∑

n=−∞
: αm−n · αn : . (2.91)

According to the normal-ordering prescription the lowering operators always

appear to the right of the raising operators. In particular, L0 becomes

L0 =
1

2
α2

0 +
∞∑

n=1

α−n · αn. (2.92)

Actually, this is the only Virasoro operator for which normal-ordering mat-

ters. Since an arbitrary constant could have appeared in this expression,

one must expect a constant to be added to L0 in all formulas, in particular

the Virasoro algebra.
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Using the commutators for the modes αµm, one can show that in the quan-

tum theory the Virasoro generators satisfy the relation

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0, (2.93)

where c = D is the space-time dimension. The term proportional to c is a

quantum effect. This means that it appears after quantization and is absent

in the classical theory. This term is called a central extension, and c is called

a central charge, since it can be regarded as multiplying the unit operator,

which when adjoined to the algebra is in the center of the extended algebra.

SL(2, � ) subalgebra

The Virasoro algebra contains an SL(2, � ) subalgebra that is generated by

L0, L1 and L−1. This is a noncompact form of the familiar SU(2) algebra.

Just as SU(2) and SO(3) have the same Lie algebra, so do SL(2, � ) and

SO(2, 1). Thus, in the case of closed strings, the complete Virasoro algebra

of both left-movers and right-movers contains the subalgebra SL(2, � ) ×
SL(2, � ) = SO(2, 2). This is a noncompact version of the Lie algebra

identity SU(2) × SU(2) = SO(4). The significance of this subalgebra will

become clear in the next chapter.

Physical states

As was mentioned above, in the quantum theory a constant may need to be

added to L0 to parametrize the arbitrariness in the ordering prescription.

Therefore, when imposing the constraint that the zero mode of the energy–

momentum tensor should vanish, the only requirement in the case of the

open string is that there exists some constant a such that

(L0 − a)|φ〉 = 0. (2.94)

Here |φ〉 is any physical on-shell state in the theory, and the constant a will

be determined later. Similarly, for the closed string

(L0 − a)|φ〉 = (L̃0 − a)|φ〉 = 0. (2.95)

Mass operator

The constant a contributes to the mass operator. Indeed, in the quantum

theory Eq. (2.94) corresponds to the mass-shell condition for the open string

α′M2 =
∞∑

n=1

α−n · αn − a = N − a, (2.96)
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where

N =
∞∑

n=1

α−n · αn =
∞∑

n=1

na†n · an, (2.97)

is called the number operator, since it has integer eigenvalues. For the ground

state, which has N = 0, this gives α′M2 = −a, while for the excited states

α′M2 = 1− a, 2− a, . . .
For the closed string

1

4
α′M2 =

∞∑

n=1

α−n · αn − a =
∞∑

n=1

α̃−n · α̃n − a = N − a = Ñ − a. (2.98)

Level matching

The normal-ordering constant a cancels out of the difference

(L0 − L̃0)|φ〉 = 0, (2.99)

which implies N = Ñ . This is the so-called level-matching condition of the

bosonic string. It is the only constraint that relates the left- and right-

moving modes.

Virasoro generators and physical states

In the quantum theory one cannot demand that the operator Lm annihilates

all the physical states, for all m 6= 0, since this is incompatible with the

Virasoro algebra. Rather, a physical state can only be annihilated by half

of the Virasoro generators, specifically

Lm|φ〉 = 0 m > 0. (2.100)

Together with the mass-shell condition

(L0 − a)|φ〉 = 0, (2.101)

this characterizes a physical state |φ〉. This is sufficient to give vanishing

matrix elements of Ln − aδn,0, between physical states, for all n. Since

L−m = L†m, (2.102)

the hermitian conjugate of Eq. (2.100) ensures that the negative-mode Vi-

rasoro operators annihilate physical states on their left

〈φ|Lm = 0 m < 0. (2.103)
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There are no normal-ordering ambiguities in the Lorentz generators5

Jµν = xµpν − xνpµ − i
∞∑

n=1

1

n

(
αµ−nα

ν
n − αν−nαµn

)
, (2.104)

and therefore they can be interpreted as quantum operators without any

quantum corrections. Using this expression, it is possible to check that

[Lm, J
µν ] = 0, (2.105)

which implies that the physical-state condition is invariant under Lorentz

transformations. Therefore, physical states must appear in complete Lorentz

multiplets. This follows from the fact that, the formalism being discussed

here is manifestly Lorentz covariant.

Absence of negative-norm states

The goal of this section is to show that a spectrum free of negative-norm

states is only possible for certain values of a and the space-time dimensionD.

In order to carry out the analysis in a covariant manner, a crucial ingredient

is the Virasoro algebra in Eq. (2.93).

In the quantum theory the values of a and D are not arbitrary. For

some values negative-norm states appear and for other values the physical

Hilbert space is positive definite. At the boundary where positive-norm

states turn into negative-norm states, an increased number of zero-norm

states appear. Therefore, in order to determine the allowed values for a and

D, an effective strategy is to search for zero-norm states that satisfy the

physical-state conditions.

Spurious states

A state |ψ〉 is called spurious if it satisfies the mass-shell condition and is

orthogonal to all physical states

(L0 − a)|ψ〉 = 0 and 〈φ|ψ〉 = 0, (2.106)

where |φ〉 represents any physical state in the theory. An example of a

spurious state is

|ψ〉 =

∞∑

n=1

L−n|χn〉 with (L0 − a+ n)|χn〉 = 0. (2.107)

5 Jij generates rotations and Ji0 generates boosts.
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In fact, any such state can be recast in the form

|ψ〉 = L−1|χ1〉+ L−2|χ2〉 (2.108)

as a consequence of the Virasoro algebra (e.g. L−3 = [L−1, L−2]). Moreover,

any spurious state can be put in this form. Spurious states |ψ〉 defined this

way are orthogonal to every physical state, since

〈φ|ψ〉 =

∞∑

n=1

〈φ|L−n|χn〉 =

∞∑

n=1

〈χn|Ln|φ〉? = 0. (2.109)

If a state |ψ〉 is spurious and physical, then it is orthogonal to all physical

states including itself

〈ψ|ψ〉 =

∞∑

n=1

〈χn|Ln|ψ〉 = 0. (2.110)

As a result, such a state has zero norm.

Determination of a

When the constant a is suitably chosen, a class of zero-norm spurious states

has the form

|ψ〉 = L−1|χ1〉 (2.111)

with

(L0 − a+ 1)|χ1〉 = 0 and Lm|χ1〉 = 0 m > 0. (2.112)

Demanding that |ψ〉 is physical implies

Lm|ψ〉 = (L0 − a)|ψ〉 = 0 for m = 1, 2, . . . (2.113)

The Virasoro algebra implies the identity

L1L−1 = 2L0 + L−1L1, (2.114)

which leads to

L1|ψ〉 = L1L−1|χ1〉 = (2L0 + L−1L1)|χ1〉 = 2(a− 1)|χ1〉 = 0, (2.115)

and hence a = 1. Thus a = 1 is part of the specification of the boundary

between positive-norm and negative-norm physical states.
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Determination of the space-time dimension

The number of zero-norm spurious states increases dramatically if, in addi-

tion to a = 1, the space-time dimension is chosen appropriately. To see this,

let us construct zero-norm spurious states of the form

|ψ〉 =
(
L−2 + γL2

−1

)
|χ̃〉. (2.116)

This has zero norm for a certain γ, which is determined below. Here |ψ〉 is

spurious if |χ̃〉 is a state that satisfies

(L0 + 1)|χ̃〉 = Lm|χ̃〉 = 0 for m = 1, 2, . . . (2.117)

Now impose the condition that |ψ〉 is a physical state, that is, L1|ψ〉 = 0 and

L2|ψ〉 = 0, since the rest of the constraints Lm|ψ〉 = 0 for m ≥ 3 are then

also satisfied as a consequence of the Virasoro algebra. Let us first evaluate

the condition L1|ψ〉 = 0 using the relation

[
L1, L−2 + γL2

−1

]
= 3L−1 + 2γL0L−1 + 2γL−1L0

= (3− 2γ)L−1 + 4γL0L−1. (2.118)

This leads to

L1|ψ〉 = L1

(
L−2 + γL2

−1

)
|χ̃〉 = [(3− 2γ)L−1 + 4γL0L−1] |χ̃〉. (2.119)

The first term vanishes for γ = 3/2 while the second one vanishes in general,

because

L0L−1|χ̃〉 = L−1(L0 + 1)|χ̃〉 = 0. (2.120)

Therefore, the result of evaluating the L1|ψ〉 = 0 constraint is γ = 3/2. Let

us next consider the L2|ψ〉 = 0 condition. Using

[
L2, L−2 +

3

2
L2
−1

]
= 13L0 + 9L−1L1 +

D

2
(2.121)

gives

L2|ψ〉 = L2

(
L−2 +

3

2
L2
−1

)
|χ̃〉 =

(
−13 +

D

2

)
|χ̃〉. (2.122)

Thus the space-time dimension D = 26 gives additional zero-norm spurious

states.
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Critical bosonic theory

The zero-norm spurious states are unphysical. The fact that they are spu-

rious ensures that they decouple from all physical processes. In fact, all

negative-norm states decouple, and all physical states have positive norm.

Thus, the complete physical spectrum is free of negative-norm states when

the two conditions a = 1 and D = 26 are satisfied, as is proved in the

next section. The a = 1, D = 26 bosonic string theory is called critical,

and one says that the critical dimension is 26. The spectrum is also free of

negative-norm states for a ≤ 1 and D ≤ 25. In these cases the theory is

called noncritical. Noncritical string theory is discussed briefly in the next

chapter.

EXERCISES

EXERCISE 2.10

Find the mode expansion for angular-momentum generators Jµν of an open

bosonic string.

SOLUTION

Using the current in Eq. (2.68),

Jµν =

∫ π

0
Jµν0 dσ = T

∫ π

0
(XµẊν −XνẊµ)dσ.

Now

Xµ(τ, σ) = xµ + l2sp
µτ + ils

∑

m6=0

1

m
αµme

−imτ cos(mσ),

Ẋµ(τ, σ) = l2sp
µ + ls

∑

m6=0

αµme
−imτ cos(mσ),

and T = 1/(πl2s ). A short calculation gives

Jµν = xµpν − xνpµ − i
∞∑

m=1

1

m

(
αµ−mα

ν
m − αν−mαµm

)
.

2
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2.5 Light-cone gauge quantization

As discussed earlier, the bosonic string has residual diffeomorphism symme-

tries, even after choosing the gauge hαβ = ηαβ, which consist of all the con-

formal transformations. Therefore, there is still the possibility of making an

additional gauge choice. By making a particular noncovariant gauge choice,

it is possible to describe a Fock space that is manifestly free of negative-norm

states and to solve explicitly all the Virasoro conditions instead of imposing

them as constraints.

Let us introduce light-cone coordinates for space-time6

X± =
1√
2

(X0 ±XD−1). (2.123)

Then the D space-time coordinates Xµ consist of the null coordinates X±

and the D−2 transverse coordinates X i. In this notation, the inner product

of two arbitrary vectors takes the form

v · w = vµw
µ = −v+w− − v−w+ +

∑

i

viwi. (2.124)

Indices are raised and lowered by the rules

v− = −v+, v+ = −v−, and vi = vi. (2.125)

Since two coordinates are treated differently from the others, Lorentz invari-

ance is no longer manifest when light-cone coordinates are used.

What simplification can be achieved by using the residual gauge symme-

try? In terms of σ± the residual symmetry corresponds to the reparametriza-

tions in Eq. (2.86) of each of the null world-sheet coordinates

σ± → ξ±(σ±). (2.126)

These transformations correspond to

τ̃ =
1

2

[
ξ+(σ+) + ξ−(σ−)

]
, (2.127)

σ̃ =
1

2

[
ξ+(σ+)− ξ−(σ−)

]
. (2.128)

This means that τ̃ can be an arbitrary solution to the free massless wave

equation (
∂2

∂σ2
− ∂2

∂τ2

)
τ̃ = 0. (2.129)

6 It is convenient to include the
√

2 factor in the definition of space-time light-cone coordinates
while omitting it in the definition of world-sheet light-cone coordinates.
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Once τ̃ is determined, σ̃ is specified up to a constant.

In the gauge hαβ = ηαβ , the space-time coordinates Xµ(σ, τ) also satisfy

the two-dimensional wave equation. The light-cone gauge uses the residual

freedom described above to make the choice

X+(σ̃, τ̃) = x+ + l2sp
+τ̃ . (2.130)

This corresponds to setting

α+
n = 0 for n 6= 0. (2.131)

In the following the tildes are omitted from the parameters τ̃ and σ̃.

When this noncovariant gauge choice is made, there is a risk that a

quantum-mechanical anomaly could lead to a breakdown of Lorentz in-

variance. So this needs to be checked. In fact, conformal invariance is

essential for making this gauge choice, so it should not be surprising that a

Lorentz anomaly in the light-cone gauge approach corresponds to a confor-

mal anomaly in a covariant gauge that preserves manifest Lorentz invariance.

The light-cone gauge has eliminated the oscillator modes of X+. It is

possible to determine the oscillator modes of X−, as well, by solving the

Virasoro constraints (Ẋ±X ′)2 = 0. In the light-cone gauge these constraints

become

Ẋ− ±X−′ = 1

2p+l2s
(Ẋi ±Xi′)2. (2.132)

This pair of equations can be used to solve for X− in terms of X i. In terms

of the mode expansion for X−, which for an open string is

X− = x− + l2sp
−τ + ils

∑

n6=0

1

n
α−n e

−inτ cosnσ, (2.133)

the solution is

α−n =
1

p+ls

(
1

2

D−2∑

i=1

+∞∑

m=−∞
: αin−mα

i
m : −aδn,0

)
. (2.134)

Therefore, in the light-cone gauge it is possible to eliminate both X+ and

X− (except for their zero modes) and express the theory in terms of the

transverse oscillators. Thus a critical string only has transverse excitations,

just as a massless particle only has transverse polarization states. The con-

venient feature of the light-cone gauge in Eq. (2.130) is that it turns the

Virasoro constraints into linear equations for the modes of X−.
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Mass-shell condition

In the light-cone gauge the open-string mass-shell condition is

M2 = −pµpµ = 2p+p− −
D−2∑

i=1

p2
i = 2(N − a)/l2s , (2.135)

where

N =
D−2∑

i=1

∞∑

n=1

αi−nα
i
n. (2.136)

Let us now construct the physical spectrum of the bosonic string in the

light-cone gauge.

In the light-cone gauge all the excitations are generated by acting with the

transverse modes αin. The first excited state, given by αi−1|0; p〉, belongs to

a (D−2)-component vector representation of the rotation group SO(D−2)

in the transverse space. As a general rule, Lorentz invariance implies that

physical states form representations of SO(D − 1) for massive states and

SO(D − 2) for massless states. Therefore, the bosonic string theory in the

light-cone gauge can only be Lorentz invariant if the vector state αi−1|0; p〉
is massless. This immediately implies that a = 1.

Having fixed the value of a, the next goal is to determine the space-

time dimension D. A heuristic approach is to compute the normal-ordering

constant appearing in the definition of L0 directly. This constant can be

determined from

1

2

D−2∑

i=1

+∞∑

n=−∞
αi−nα

i
n =

1

2

D−2∑

i=1

+∞∑

n=−∞
: αi−nα

i
n : +

1

2
(D − 2)

∞∑

n=1

n. (2.137)

The second sum on the right-hand side is divergent and needs to be reg-

ularized. This can be achieved using ζ-function regularization. First, one

considers the general sum

ζ(s) =
∞∑

n=1

n−s, (2.138)

which is defined for any complex number s. For Re(s) > 1, this sum con-

verges to the Riemann zeta function ζ(s). This zeta function has a unique

analytic continuation to s = −1, where it takes the value ζ(−1) = −1/12.

Therefore, after inserting the value of ζ(−1) in Eq. (2.137), the result for

the additional term is

1

2
(D − 2)

∞∑

n=1

n = −D − 2

24
. (2.139)



2.5 Light-cone gauge quantization 51

Using the earlier result that the normal-ordering constant a should be equal

to 1, one gets the condition

D − 2

24
= 1, (2.140)

which implies D = 26. Though it is not very rigorous, this is the quickest

way to determined the values of a and D. The earlier analysis of the no-

negative-norm states theorem also singled out D = 26. Another approach

is to verify that the Lorentz generators satisfy the Lorentz algebra, which is

not manifest in the light-cone gauge. The nontrivial requirement is

[J i−, J j−] = 0. (2.141)

Once the α−n oscillators are eliminated, J i− becomes cubic in transverse

oscillators. The algebra is rather complicated, but the bottom line is that

the commutator only vanishes for a = 1 and D = 26. Other derivations of

the critical dimension are presented in the next chapter.

Analysis of the spectrum

Having determined the preferred values a = 1 and D = 26, one can now

determine the spectrum of the bosonic string.

The open string

At the first few mass levels the physical states of the open string are as

follows:

• For N = 0 there is a tachyon |0; k〉, whose mass is given by α′M2 = −1.

• For N = 1 there is a vector boson αi−1|0; k〉. As was explained in the

previous section, Lorentz invariance requires that it is massless. This

state gives a vector representation of SO(24).

• N = 2 gives the first states with positive (mass)2. They are

αi−2|0; k〉 and αi−1α
j
−1|0; k〉, (2.142)

with α′M2 = 1. These have 24 and 24 · 25/2 states, respectively. The

total number of states is 324, which is the dimensionality of the symmetric

traceless second-rank tensor representation of SO(25), since 25·26/2−1 =

324. So, in this sense, the spectrum consists of a single massive spin-two

state at this mass level.

All of these states have a positive norm, since they are built entirely from

the transverse modes, which describe a positive-definite Hilbert space. In

the light-cone gauge the fact that the negative-norm states have decoupled



52 The bosonic string

is made manifest. All of the massive representations can be rearranged in

complete SO(25) multiplets, as was just demonstrated for the first massive

level. Lorentz invariance of the spectrum is guaranteed, because the Lorentz

algebra is realized on the Hilbert space of transverse oscillators.

The number of states

The total number of physical states of a given mass is easily computed. For

example, in the case of open strings, it follows from Eqs (2.135) and (2.136)

with a = 1 that the number of physical states dn whose mass is given by

α′M2 = n− 1 is the coefficient of wn in the power-series expansion of

trwN =

∞∏

n=1

24∏

i=1

trwα
i
−nα

i
n =

∞∏

n=1

(1− wn)−24. (2.143)

This number can be written in the form

dn =
1

2πi

∮
trwN

wn+1
dw. (2.144)

The number of physical states dn can be estimated for large n by a saddle-

point evaluation. Since the saddle point occurs close to w = 1, one can use

the approximation

trwN =
∞∏

n=1

(1− wn)−24 ∼ exp

(
4π2

1− w

)
. (2.145)

This is an approximation to the modular transformation formula

η(−1/τ) = (−iτ)1/2η(τ) (2.146)

for the Dedekind eta function

η(τ) = eiπτ/12
∞∏

n=1

(
1− e2πinτ

)
, (2.147)

as one sees by setting w = e2πiτ . Then one finds that, for large n,

dn ∼ const. n−27/4 exp(4π
√
n). (2.148)

The exponential factor can be rewritten in the form exp(M/M0) with

M0 = (4π
√
α′)−1. (2.149)

The quantity M0 is called the Hagedorn temperature. Depending on de-

tails that go beyond present considerations, it is either a maximum possible

temperature or else the temperature of a phase transition.
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The closed string

For the case of the closed string, there are two sets of modes (left-movers and

right-movers), and the level-matching condition must be taken into account.

The spectrum is easily deduced from that of the open string, since closed-

string states are tensor products of left-movers and right-movers, each of

which has the same structure as open-string states. The mass of states in

the closed-string spectrum is given by

α′M2 = 4(N − 1) = 4(Ñ − 1). (2.150)

The physical states of the closed string at the first two mass levels are as

follows:

• The ground state |0; k〉 is again a tachyon, this time with

α′M2 = −4. (2.151)

• For the N = 1 level there is a set of 242 = 576 states of the form

|Ωij〉 = αi−1α̃
j
−1|0; k〉, (2.152)

corresponding to the tensor product of two massless vectors, one left-

moving and one right-moving. The part of |Ωij〉 that is symmetric and

traceless in i and j transforms under SO(24) as a massless spin-two par-

ticle, the graviton. The trace term δij |Ωij〉 is a massless scalar, which is

called the dilaton. The antisymmetric part |Ωij〉 − |Ωj i〉 transforms un-

der SO(24) as an antisymmetric second-rank tensor. Each of these three

massless states has a counterpart in superstring theories, where they play

fundamental roles that are discussed in later chapters.

HOMEWORK PROBLEMS

PROBLEM 2.1

Consider the following classical trajectory of an open string

X0 = Bτ,

X1 = B cos(τ) cos(σ),

X2 = B sin(τ) cos(σ),

Xi = 0, i > 2,

and assume the conformal gauge condition.
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(i) Show that this configuration describes a solution to the equations of

motion for the field Xµ corresponding to an open string with Neu-

mann boundary conditions. Show that the ends of this string are

moving with the speed of light.

(ii) Compute the energy E = P 0 and angular momentum J of the string.

Use your result to show that

E2

|J | = 2πT =
1

α′
.

(iii) Show that the constraint equation Tαβ = 0 can be written as

(∂τX)2 + (∂σX)2 = 0, ∂τX
µ∂σXµ = 0,

and that this constraint is satisfied by the above solution.

PROBLEM 2.2

Consider the following classical trajectory of an open string

X0 = 3Aτ,

X1 = A cos(3τ) cos(3σ),

X2 = A sin(aτ) cos(bσ),

and assume the conformal gauge.

(i) Determine the values of a and b so that the above equations describe

an open string that solves the constraint Tαβ = 0. Express the solu-

tion in the form

Xµ = Xµ
L(σ−) +Xµ

R(σ+).

Determine the boundary conditions satisfied by this field configura-

tion.

(ii) Plot the solution in the (X1,X2)-plane as a function of τ in steps of

π/12.

(iii) Compute the center-of-mass momentum and angular momentum and

show that they are conserved. What do you obtain for the relation

between the energy and angular momentum of this string? Comment

on your result.

PROBLEM 2.3

Compute the mode expansion of an open string with Neumann boundary

conditions for the coordinates X0, . . . ,X24, while the remaining coordinate

X25 satisfies the following boundary conditions:
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(i) Dirichlet boundary conditions at both ends

X25(0, τ) = X25
0 and X25(π, τ) = X25

π .

What is the interpretation of such a solution? Compute the conjugate

momentum P 25. Is this momentum conserved?

(ii) Dirichlet boundary conditions on one end and Neumann boundary

conditions at the other end

X25(0, τ) = X25
0 and ∂σX

25(π, τ) = 0.

What is the interpretation of this solution?

PROBLEM 2.4

Consider the bosonic string in light-cone gauge.

(i) Find the mass squared of the following on-shell open-string states:

|φ1〉 = αi−1|0; k〉, |φ2〉 = αi−1α
j
−1|0; k〉,

|φ3〉 = αi−3|0; k〉, |φ4〉 = αi−1α
j
−1α

k
−2|0; k〉.

(ii) Find the mass squared of the following on-shell closed-string states:

|φ1〉 = αi−1α̃
j
−1|0; k〉, |φ2〉 = αi−1α

j
−1α̃

k
−2|0; k〉.

(iii) What can you say about the following closed-string state?

|φ3〉 = αi−1α̃
j
−2|0; k〉

PROBLEM 2.5

Use the mode expansion of an open string with Neumann boundary condi-

tions in Eq. (2.62) and the commutation relations for the modes in Eq. (2.54)

to check explicitly the equal-time commutators

[Xµ(σ, τ),Xν(σ′, τ)] = [P µ(σ, τ), P ν(σ′, τ)] = 0,

while

[Xµ(σ, τ), P ν(σ′, τ)] = iηµνδ(σ − σ′).

Hint: The representation δ(σ − σ′) = 1
π

∑
n∈ � cos(nσ) cos(nσ′) might be

useful.
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PROBLEM 2.6

Exercise 2.10 showed that the Lorentz generators of the open-string world

sheet are given by

Jµν = xµpν − xνpµ − i
∞∑

n=1

1

n

(
αµ−nα

ν
n − αν−nαµn

)
.

Use the canonical commutation relations to verify the Poincaré algebra

[pµ, pν ] = 0,

[pµ, Jνσ] = −iηµνpσ + iηµσpν ,

[Jµν , Jσλ] = −iηνσJµλ + iηµσJνλ + iηνλJµσ − iηµλJνσ.

PROBLEM 2.7

Exercise 2.10 derived the angular-momentum generators Jµν for an open

bosonic string. Derive them for a closed bosonic string.

PROBLEM 2.8

The open-string angular momentum generators in Exercise 2.10 are appro-

priate for covariant quantization. What are the formulas in the case of

light-cone gauge quantization.

PROBLEM 2.9

Show that the Lorentz generators commute with all Virasoro generators,

[Lm, J
µν ] = 0.

Explain why this implies that the physical-state condition is invariant un-

der Lorentz transformations, and states of the string spectrum appear in

complete Lorentz multiplets.

PROBLEM 2.10

Consider an on-shell open-string state of the form

|φ〉 =
(
Aα−1 · α−1 +Bα0 · α−2 + C(α0 · α−1)2

)
|0; k〉,

where A, B and C are constants. Determine the conditions on the coeffi-

cients A, B and C so that |φ〉 satisfies the physical-state conditions for a = 1

and arbitrary D. Compute the norm of |φ〉. What conclusions can you draw

from the result?
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PROBLEM 2.11

The open-string states at the N = 2 level were shown in Section 2.5 to form

a certain representation of SO(25). What does this result imply for the

spectrum of the closed bosonic string at the NL = NR = 2 level?

PROBLEM 2.12

Construct the spectrum of open and closed strings in light-cone gauge for

level N = 3. How many states are there in each case? Without actually

doing it (unless you want to), describe a strategy for assembling these states

into irreducible SO(25) multiplets.

PROBLEM 2.13

We expect the central extension of the Virasoro algebra to be of the form

[Lm, Ln] = (m− n)Lm+n + A(m)δm+n,0,

because normal-ordering ambiguities only arise for m+ n = 0.

(i) Show that if A(1) 6= 0 it is possible to change the definition of L0, by

adding a constant, so that A(1) = 0.

(ii) For A(1) = 0 show that the generators L0 and L±1 form a closed

subalgebra.

PROBLEM 2.14

Derive an equation for the coefficients A(m) defined in the previous problem

that follows from the Jacobi identity

[[Lm, Ln], Lp] + [[Lp, Lm], Ln] + [[Ln, Lp], Lm] = 0.

Assuming A(1) = 0, prove that A(m) = (m3 − m)A(2)/6 is the unique

solution, and hence that the central charge is c = 2A(2).

PROBLEM 2.15

Verify that the Virasoro generators in Eq. (2.91) satisfy the Virasoro algebra.

It is difficult to verify the central-charge term directly from the commutator.

Therefore, a good strategy is to verify that A(1) and A(2) have the correct

values. These can be determined by computing the ground-state matrix

element of Eq. (2.93) for the cases m = −n = 1 and m = −n = 2.
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Conformal field theory and string
interactions

The previous chapter described the free bosonic string in Minkowski space-

time. It was argued that consistency requires the dimension of space-time

to be D = 26 (25 space and one time). Even then, there is a tachyon

problem. When interactions are included, this theory might not have a stable

vacuum. The justification for studying the bosonic string theory, despite

its deficiencies, is that it is a good warm-up exercise before tackling more

interesting theories that do have stable vacua. This chapter continues the

study of the bosonic string theory, covering a lot of ground rather concisely.

One important issue concerns the possibilities for introducing more gen-

eral backgrounds than flat 26-dimensional Minkowski space-time. Another

concerns the development of techniques for describing interactions and com-

puting scattering amplitudes in perturbation theory. We also discuss a

quantum field theory of strings. In this approach field operators create

and destroy entire strings. All of these topics exploit the conformal symme-

try of the world-sheet theory, using the techniques of conformal field theory

(CFT). Therefore, this chapter begins with an overview of that subject.

3.1 Conformal field theory

Until now it has been assumed that the string world sheet has a Lorentzian

signature metric, since this choice is appropriate for a physically evolving

string. However, it is extremely convenient to make a Wick rotation τ →
−iτ , so as to obtain a world sheet with Euclidean signature, and thereby

make the world-sheet metric hαβ positive definite. Having done this, one

can introduce complex coordinates (in local patches)

z = e2(τ−iσ) and z̄ = e2(τ+iσ) (3.1)
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