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Introduction 

PROCESS AND EMERGENCE IN THE ECONOMY 
In September 1987, twenty people came together at the Santa Fe Institute to 
talk about "the economy as an evolving, complex system." Ten were theoretical 
economists, invited by Kenneth J. Arrow, and ten were physicists, biologists, and 
computer scientists, invited by Philip W. Anderson. The meeting was motivated 
by the hope that new ideas bubbling in the natural sciences, loosely tied together 
under the rubric of "the sciences of complexity," might stimulate new ways of 
thinking about economic problems. For ten days, economists and natural scientists 
took turns talking about their respective worlds and methodologies. While physi-
cists grappled with general equilibrium analysis and noncooperative game theory, 
economists tried to make sense of spin glass models, Boolean networks, and genetic 
algorithms. 

The meeting left two legacies. The first was a volume of essays, The Economy 
as an Evolving Complex System, edited by Arrow, Anderson, and David Pines. The 

The Economy as an Evolving Complex System II, Eds. Arthur, Durlauf, and Lane 
SFI Studies in the Sciences of Complexity, Vol. XXVII, Addison-Wesley, 1997 	1 



2 	W. B. Arthur, S. N. Durlauf, and D. Lane 

other was the founding, in 1988, of the Economics Program at the Santa Fe Insti-
tute, the Institute's first resident research program. The Program's mission was to 
encourage the understanding of economic phenomena from a complexity perspec-
tive, which involved the development of theory as well as tools for modeling and for 
empirical analysis. To this end, since 1988, the Program has brought researchers 
to Santa Fe, sponsored research projects, held several workshops each year, and 
published several dozen working papers. And, since 1994, it has held an annual 
summer school for economics graduate students. 

This volume, The Economy as an Evolving Complex System II, represents the 
proceedings of an August 1996 workshop sponsored by the SFI Economics Program. 
The intention of this workshop was to take stock, to ask: What has the complexity 
perspective contributed to economics in the past decade? In contrast to the 1987 
workshop, almost all of the presentations addressed economic problems, and most 
participants were economists by training. In addition, while some of the work pre-
sented was conceived or carried out at the Institute, some of the participants had 
no previous relation with SFI—research related to the complexity perspective is 
under active development now in a number of different institutes and university 
departments. 

But just what is the complexity perspective in economics? That is not an easy 
question to answer. Its meaning is still very much under construction, and, in fact, 
the present volume is intended to contribute to that construction process. Indeed, 
the authors of the essays in this volume by no means share a single, coherent 
vision of the meaning and significance of complexity in economics. What we will 
find instead is a family resemblance, based upon a set of interrelated themes that 
together constitute the current meaning of the complexity perspective in economics. 

Several of these themes, already active subjects of research by economists in 
the mid-1980s, are well described in the earlier The Economy as an Evolving Com-
plex System: In particular, applications of nonlinear dynamics to economic theory 
and data analysis, surveyed in the 1987 meeting by Michele Boldrin and William 
Brock; and the theory of positive feedback and its associated phenomenology of 
path dependence and lock-in, discussed by W. Brian Arthur. Research related to 
both these themes has flourished since 1987, both in and outside the SFI Eco-
nomics Program. While chaos has been displaced from its place in 1987 at center 
stage of the interest in nonlinear dynamics, in the last decade economists have 
made substantial progress in identifying patterns of nonlinearity in financial time 
series and in proposing models that both offer explanations for these patterns and 
help to analyze and, to some extent, predict the series in which they are displayed. 
Brock surveys both these developments in his chapter in this volume, while posi-
tive feedback plays a central role in the models analyzed by Lane (on information 
contagion), Durlauf (on inequality) and Krugman (on economic geography), and 
lurk just under the surface of the phenomena described by North (development) 
and Leijonhufvud (high inflation). 

Looking back over the developments in the past decade and the papers pro-
duced by the program, we believe that a coherent perspective—sometimes called 
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the "Santa Fe approach"—has emerged within economics. We will call this the 
complexity perspective, or Santa Fe perspective, or occasionally the process-and-
emergence perspective. Before we describe this, we first sketch the two conceptions 
of the economy that underlie standard, neoclassical economics (and indeed most of 
the presentations by economic theorists at the earlier 1987 meeting). We can call 
these conceptions the "equilibrium" and "dynamical systems" approaches. In the 
equilibrium approach, the problem of interest is to derive, from the rational choices 
of individual optimizers, aggregate-level "states of the economy" (prices in general 
equilibrium analysis, a set of strategy assignments in game theory with associated 
payoffs) that satisfy some aggregate-level consistency condition (market-clearing, 
Nash equilibrium), and to examine the properties of these aggregate-level states. In 
the dynamical systems approach, the state of the economy is represented by a set 
of variables, and a system of difference equations or differential equations describes 
how these variables change over time. The problem is to examine the resulting tra-
jectories, mapped over the state space. However, the equilibrium approach does not 
describe the mechanism whereby the state of the economy changes over time—nor 
indeed how an equilibrium comes into being.N And the dynamical system approach 
generally fails to accommodate the distinction between agent- and aggregate-levels 
(except by obscuring it through the device of "representative agents"). Neither ac-
counts for the emergence of new kinds of relevant state variables, much less new 
entities, new patterns, new structures.[2] 

To describe the complexity approach, we begin by pointing out six features of 
the economy that together present difficulties for the traditional mathematics used 
in economics:[3] 

DISPERSED INTERACTION. What happens in the economy is determined by the 
interaction of many dispersed, possibly heterogeneous, agents acting in parallel. 
The action of any given agent depends upon the anticipated actions of a limited 
number of other agents and on the aggregate state these agents cocreate. 

E ll Since an a priori intertemporal equilibrium hardly counts as a mechanism. 

PI Norman Packard's contribution to the 1987 meeting addresses just this problem with respect 
to the dynamical systems approach. As he points out, "if the set of relevant variables changes 
with time, then the state space is itself changing with time, which is not commensurate with a 
conventional dynamical systems model." 

131John Holland's paper at the 1987 meeting beautifully—and presciently—frames these features. 
For an early description of the Santa Fe approach, see also the program's March 1989 newsletter, 
"Emergent Structures." 
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NO GLOBAL CONTROLLER. No global entity controls interactions. Instead, con-
trols are provided by mechanisms of competition and coordination among agents. 
Economic actions are mediated by legal institutions, assigned roles, and shifting 
associations. Nor is there a universal competitor—a single agent that can exploit 
all opportunities in the economy. 

CROSS-CUTTING HIERARCHICAL ORGANIZATION. The economy has many levels of 
organization and interaction. Units at any given level—behaviors, actions, strate-
gies, products—typically serve as "building blocks" for constructing units at the 
next higher level. The overall organization is more than hierarchical, with many 
sorts of tangled interactions (associations, channels of communication) across lev-
els. 

CONTINUAL ADAPTATION . Behaviors, actions, strategies, and products are revised 
continually as the individual agents accumulate experience—the system constantly 
adapts. 

PERPETUAL NOVELTY. Niches are continually created by new markets, new tech-
nologies, new behaviors, new institutions. The very act of filling a niche may provide 
new niches. The result is ongoing, perpetual novelty. 

OUT-OF-EQUILIBRIUM DYNAMICS. Because new niches, new potentials, new possi-
bilities, are continually created, the economy operates far from any optimum or 
global equilibrium. Improvements are always possible and indeed occur regularly. 

Systems with these properties have come to be called adaptive nonlinear net-
works (the term is John Holland's5). There are many such in nature and society: 
nervous systems, immune systems, ecologies, as well as economies. An essential 
element of adaptive nonlinear networks is that they do not act simply in terms 
of stimulus and response. Instead they anticipate. In particular, economic agents 
form expectations—they build up models of the economy and act on the basis of 
predictions generated by these models. These anticipative models need neither be 
explicit, nor coherent, nor even mutually consistent. 

Because of the difficulties outlined above, the mathematical tools economists 
customarily use, which exploit linearity, fixed points, and systems of differential 
equations, cannot provide a deep understanding of adaptive nonlinear networks. In-
stead, what is needed are new classes of combinatorial mathematics and population-
level stochastic processes, in conjunction with computer modeling. These mathe-
matical and computational techniques are in their infancy. But they emphasize the 
discovery of structure and the processes through which structure emerges across 
different levels of organization. 

This conception of the economy as an adaptive nonlinear network—as an evolv-
ing, complex system—has profound implications for the foundations of economic 
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theory and for the way in which theoretical problems are cast and solved. We in-
terpret these implications as follows: 

COGNITIVE FOUNDATIONS. Neoclassical economic theory has a unitary cognitive 
foundation: economic agents are rational optimizers. This means that (in the usual 
interpretation) agents evaluate uncertainty probabilistically, revise their evaluations 
in the light of new information via Bayesian updating, and choose the course of ac-
tion that maximizes their expected utility. As glosses on this unitary foundation, 
agents are generally assumed to have common knowledge about each other and 
rational expectations about the world they inhabit (and of course cocreate). In 
contrast, the Santa Fe viewpoint is pluralistic. Following modern cognitive theory, 
we posit no single, dominant mode of cognitive processing. Rather, we see agents as 
having to cognitively structure the problems they face—as having to "make sense" 
of their problems—as much as solve them. And they have to do this with cognitive 
resources that are limited. To "make sense," to learn, and to adapt, agents use 
variety of distributed cognitive processes. The very categories agents use to con-
vert information about the world into action emerge from experience, and these 
categories or cognitive props need not fit together coherently in order to gener-
ate effective actions. Agents therefore inhabit a world that they must cognitively 
interpret—one that is complicated by the presence and actions of other agents 
and that is ever changing. It follows that agents generally do not optimize in the 
standard sense, not because they are constrained by finite memory or processing 
capability, but because the very concept of an optimal course of action often cannot 
be defined. It further follows that the deductive rationality of 'neoclassical economic 
agents occupies at best a marginal position in guiding effective action in the world. 
And it follows that any "common knowledge" agents might have about one another 
must be attained from concrete, specified cognitive processes operating on experi-
ences obtained through concrete interactions. Common knowledge cannot simply 
be assumed into existence. 

STRUCTURAL FOUNDATIONS. In general equilibrium analysis, agents do not inter-
act with one another directly, but only through impersonal markets. By contrast, in 
game theory all players interact with all other players, with outcomes specified by 
the game's payoff matrix. So interaction structures are simple and often extreme—
one-with-all or all-with-all. Moreover, the internal structure of the agents themselves 
is abstracted away. 141 In contrast, from a complexity perspective, structure matters. 
First, network-based structures become important. All economic action involves in-
teractions among agents, so economic functionality is both constrained and carried 
by networks defined by recurring patterns of interaction among agents. These net-
work structures are charp,cterized by relatively sparse ties. Second, economic action 
is structured by emergent social roles and by socially supported procedures—that is, 

141Except in principal-agent theory or transaction-costs economics, where a simple hierarchical 
structure is supposed to obtain. 
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by institutions. Third, economic entities have a recursive structure: they are them-
selves comprised of entities. The resulting "level" structure of entities and their 
associated action processes is not strictly hierarchical, in that component entities 
may be part of more than one higher-level entity, and entities at multiple levels 
of organization may interact. Thus, reciprocal causation operates between different 
levels of organization—while action processes at a given level of organization may 
sometimes by viewed as autonomous, they are nonetheless constrained by action 
patterns and entity structures at other levels. And they may even give rise to new 
patterns and entities at both higher and lower levels. From the Santa Fe perspec-
tive, the fundamental principle of organization is the idea that units at one level 
combine to produce units at the next higher level. [5] 

WHAT COUNTS AS A PROBLEM AND AS A SOLUTION. It should be clear by now that 
exclusively posing economic problems as multiagent optimization exercises makes 
little sense from the viewpoint we are outlining—a viewpoint that puts emphasis 
on process, not just outcome. In particular, it asks how new "things" arise in the 
world—cognitive things, like "internal models"; physical things, like "new technolo-
gies"; social things, like new kinds of economic "units." And it is clear that if we 
posit a world of perpetual novelty, then outcomes cannot correspond to steady-state 
equilibria, whether Walrasian, Nash, or dynamic-systems-theoretical. The only de-
scriptions that can matter in such a world are about transient phenomena—about 
process and about emergent structures. What then can we know about the econ-
omy from a process-and-emergence viewpoint, and how can we come to know it? 
Studying process and emergence in the economy has spawned a growth industry in 
the production of what are now generally called "agent-based models." And what 
counts as a solution in an agent-based model is currently under negotiation. Many 
of the papers in this volume—including those by Arthur et al., Darley and Kauff-
man, Shubik, Lindgren, Kollman et al., Kirman, and Tesfatsion—address this issue, 
explicitly or implicitly. We can characterize these as seeking emergent structures 
arising in interaction processes, in which the interacting entities anticipate the fu-
ture through cognitive procedures that themselves involve interactions taking place 
in multilevel structures. 

A description of an approach to economics, however, is not a research pro-
gram. To build a research program around a process-and-emergence perspective, 
two things have to happen. First, concrete economic problems have to be iden-
tified for which the approach may provide new insights. A number of candidates 
are offered in this volume: artifact innovation (Lane and Maxfield), the evolution 
of trading networks (Ioannides, Kirman, and Tesfatsion), money (Shubik), the ori-
gin and spatial distribution of cities (Krugman), asset pricing (Arthur et al. and 

151 We need not commit ourselves to what constitutes economic "units" and "levels." This will vary 
from problem context to problem context. 
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Brock), high inflation (Leijonhufvud) persistent differences in income between dif-
ferent neighborhoods or countries (Durlauf). Second, cognitive and structural foun-
dations for modeling these problems have to be constructed and methods developed 
for relating theories based on these foundations to observable phenomena (Manski). 
Here, while substantial progress has been made since 1987, the program is far from 
complete. 

The essays in this volume describe a series of parallel explorations of the cen-
tral themes of process and emergence in an interactive world—of how to study 
systems capable of generating perpetual novelty. These explorations do not form 
a coherent whole. They are sometimes complementary, sometimes even partially 
contradictory. But what could be more appropriate to the Santa Fe perspective, 
with its emphasis on distributed processes, emergence, and self-organization? Here 
are our interpretations of the research directions that seem to be emerging from 
this process: 

COGNITION. The central cognitive issues raised in this volume are ones of inter-
pretation. As Shubik puts it, "the interpretation of data is critical. It is not what 
the numbers are, but what they mean." How do agents render their world compre-
hensible enough so that "information" has meaning? The two papers by Arthur, 
Holland, LeBaron, Palmer, and Tayler and by Darley and Kauffman consider this. 
They explore problems in which a group of agents take actions whose effects de-
pend on what the other agents do. The agents base their actions on expectations 
they generate about how other agents will behave. Where do these expectations 
come from? Both papers reject common knowledge or common expectations as a 
starting point. Indeed, Arthur et al. argue that common beliefs cannot be deduced. 
Because agents must derive their expectations from an imagined future that is the 
aggregate result of other agents' expectations, there is a self-reference of expecta-
tions that leads to deductive indeterminacy. Rather, both papers suppose that each 
agent has access to a variety of "interpretative devices" that single out particular 
elements in the world as meaningful and suggest useful actions on the basis of the 
"information" these elements convey. Agents keep track of how useful these devices 
turn out to be, discarding ones that produce bad advice and tinkering to improve 
those that work. In this view, economic action arises from an evolving ecology of in-
terpretive devices that interact with one another through the medium of the agents 
that use them to generate their expectations. 

Arthur et al. build a theory of asset pricing upon such a view. Agents—
investors—act as market statisticians. They continually generate expectational 
models—interpretations of what moves prices in the market—and test these by 
trading. They discard and replace models if not successful. Expectations in the mar-
ket therefore become endogenous—they continually change and adapt to a market 
that they create together. The Arthur et al. market settles into a rich psychology, in 
which speculative bubbles, technical trading, and persistence of volatility emerge. 
The homogeneous rational expectations of the standard literature become a spe-
cial case—possible in theory but unlikely to emerge in practice. Brock presents 
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a variant of this approach, allowing agents to switch between a limited number 
of expectational models. His model is simpler than that of Arthur et al., but he 
achieves analytical results, which he relates to a variety of stylized facts about fi-
nancial times series, many of which have been uncovered through the application 
of nonlinear analysis over the past decade. 

In the world of Darley and Kauffman, agents are arrayed on a lattice, and they 
try to predict the behavior of their lattice neighbors. They generate their predic-
tions via an autoregressive model, and they can individually tune the number of 
parameters in the model and the length of the time series they use to estimate 
model parameters. Agents can change parameter number or history length by steps 
of length 1 each period, if by doing so they would have generated better predictions 
in the previous period. This induces a coevolutionary "interpretative dynamics," 
which does not settle down to a stable regime of precise, coordinated mutual expec-
tations. In particular, when the system approaches a "stable rational-expectations 
state," it tends to break down into a disordered state. They use their results to 
argue against conventional notions of rationality, with infinite foresight horizons 
and unlimited deductive capability. 

In his paper on high inflation, Leijonhufvud poses the same problem as Dar-
ley and Kauffman: Where should we locate agent cognition, between the extremes 
of "infinite-horizon optimization" and "myopic adaptation"? Leijonhufvud argues 
that the answer to this question is context dependent. He claims that in situations 
of institutional break-down like high inflation, agent cognition shifts toward the 
"short memory/short foresight adaptive mode." The causative relation between in-
stitutional and cognitive shifts becomes reciprocal. With the shrinking of foresight 
horizons, markets for long-term loans (where long-term can mean over 15 days) 
disappear. And as inflation accelerates, units of accounting lose meaning. Budgets 
cannot be drawn in meaningful ways, the executive arm of government becomes 
no longer fiscally accountable to parliament, and local governments become un-
accountable to national governments. Mechanisms of social and economic control 
erode. Ministers lose control over their bureaucracies, shareholders over corporate 
management. 

The idea that "interpretative devices" such as explicit forcasting models and 
technical-trading rules play a central role in agent cognition fits with a more general 
set of ideas in cognitive science, summarized in Clark.' This work rejects the notion 
that cognition is all "in the head." Rather, interpretive aids such as autoregressive 
models, computers, languages, or even navigational tools (as in Hutchins6) and 
institutions provide a "scaffolding," an external structure on which much of task of 
interpreting the world is off-loaded. Clarke  argues that the distinctive hallmark of 
in-the-head cognition is "fast pattern completion," which bears little relation to the 
neoclassical economist's deductive rationality. In this volume, North takes up this 
theme, describing some of the ways in which institutions scaffold interpretations of 
what constitutes possible and appropriate action for economic agents. 
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Lane and Maxfield consider the problem of interpretation from a different per-
spective. They are particularly interested in what they call attributions of function-
ality: interpretations about what an artifact does. They argue that new attributions 
of functionality arise in the context of particular kinds of agent relationships, where 
agents can differ in their interpretations. As a consequence, cognition has an un-
avoidable social dimension. What interpretations are possible depend on who inter-
acts with whom, about what. They also argue that new functionality attributions 
cannot be foreseen outside the particular generative relationships in which they 
arise. This unforeseeability has profound consequences for what constitutes "ratio-
nal" action in situations of rapid change in the structure of agent-artifact space. 

All the papers mentioned so far take as fundamental the importance of cogni-
tion for economic theory. But the opposite point of view can also be legitimately 
defended from a process-and-emergence perspective. According to this argument, 
overrating cognition is just another error deriving from methodological individual-
ism, the very bedrock of standard economic theory. How individual agents decide 
what to do may not matter very much. What happens as a result of their actions 
may depend much more on the interaction structure through which they act—who 
interacts with whom, according to which rules. Blume makes this point in the in-
troduction to his paper on population games, which, as he puts it, provide a class 
of models that shift attention "from the fine points of individual-level decision the-
ory to dynamics of agent interaction." Padgett makes a similar claim, though for a 
different reason. He is interested in formulating a theory of the firm as a locus of 
transformative "work," and he argues that "work" may be represented by "an or-
chestrated sequence of actions and reactions, the sequence of which produces some 
collective result (intended or not)." Hence, studying the structure of coordinated 
action-reaction sequences may provide insight into the organization of economic 
activity, without bringing "cognition" into the story at all. Padgett's paper is in-
spired by recent work in chemistry and biology (by Eigen and Schuster3  and by 
Fontana and Buss,4  among others) that are considered exemplars of the complexity 
perspective in these fields. 

STRUCTURE. Most human interactions, even those taking place in "economic" 
contexts, have a primarily social character: talking with friends, asking advice 
from knowledgeable acquaintances, working together with colleagues, living next 
to neighbors. Recurring patterns of such social interactions bind agents together 
into networks.E61 According to standard economic theory, what agents do depends 
on their values and available information. But standard theory typically ignores 
where values and information come from. It treats agents' values and information 
as exogenous and autonomous. In reality, agents learn from each other, and their 
values may be influenced by others' values and actions. These processes of learning 

[81There is a voluminous sociological literature on interaction networks. Recent entry points include 
Noria and Eccles,7  particularly the essay by Granovetter entitled "Problems of Explanation in 
Economic Sociology," and the methodological survey of Wasserman and Faust.8 
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and influencing happen through the social interaction networks in which agents are 
embedded, and they may have important economic consequences. For example, one 
of the models presented in Durlauf's paper implies that value relationships among 
neighbors can induce persistent income inequalities between neighborhoods. Lane 
examines a model in which information flowing between agents in a network de-
termines the market shares of two competing products. Kirman's paper reviews a 
number of models that derive economic consequences from interaction networks. 

Ioannides, Kirman, and Tesfatsion consider the problems of how networks 
emerge from initially random patterns of dyadic interaction and what kinds of 
structure the resulting networks exhibit. Ioannides studies mathematical models 
based on controlled random fields, while Tesfatsion works in the context of a par-
ticular agent-based model, in which the "agents" are strategies that play Prisoner's 
Dilemma with one another. Ioannides and Tesfatsion are both primarily interested 
in networks involving explicitly economic interactions, in particular trade. Their 
motivating idea, long recognized among sociologists (for example, Baker'), is that 
markets actually function by means of networks of traders, and what happens in 
markets may reflect the structure of these networks, which in turn may depend on 
how the networks emerge. 

Local interactions can give rise to large-scale spatial structures. This phe-
nomenon is investigated by several of the papers in this volume. Lindgren's contri-
bution is particularly interesting in this regard. Like Tesfatsion, he works with an 
agent-based model in which the agents code strategies for playing two-person games. 
In both Lindgren's and Tesfatsion's models, agents adapt their strategies over time 
in response to their past success in playing against other agents. Unlike Tesfatsion's 
agents, who meet randomly and decide whether or not to interact, Lindgren's agents 
only interact with neighbors in a prespecified interaction network. Lindgren studies 
the emergence of spatiotemporal structure in agent space—metastable ecologies of 
strategies that maintain themselves for many agent-generations against "invasion" 
by new strategy types or "competing" ecologies at their spatial borders. In par-
ticular, he compares the structures that arise in a lattice network, in which each 
agent interacts with only a few other agents, with those that arise in a fully con-
nected network, in which each agent interacts with all other agents. He finds that 
the former "give rise to a stable coexistence between strategies that would other-
wise be outcompeted. These spatiotemporal structures may take the form of spiral 
waves, irregular waves, spatiotemporal chaos, frozen patchy patterns, and various 
geometrical configurations." Though Lindgren's model is not explicitly economic, 
the contrast he draws between an agent space in which interactions are structured 
by (relatively sparse) social networks and an agent space in which all interactions 
are possible (as is the case, at least in principle, with the impersonal markets fea-
tured in general equilibrium analysis) is suggestive. Padgett's paper offers a similar 
contrast, in a quite different context. 

Both Durlauf and Krugman explore the emergence of geographical segregation. 
In their models, agents may change location—that is, change their position in a 
social structure defined by neighbor ties. In these models (especially Durlauf's), 
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there are many types of agents, and the question is under what circumstances, and 
through what mechanisms, do aggregate-level "neighborhoods" arise, each consist-
ing predominantly (or even exclusively) of one agent type. Thus, agents' choices, 
conditioned by current network structure (the agent's neighbors and the neigh-
bors at the sites to which the agent can move), change that structure; over time, 
from the changing local network structure, an aggregate-level pattern of segregated 
neighborhoods emerges. 

Kollman, Miller, and Page explore a related theme in their work on political 
platforms and institutions in multiple jurisdictions. In their agent-based model, 
agents may relocate between jurisdictions. They show that when there are more 
than three jurisdictions, two-party competition outperforms democratic referenda. 
The opposite is the case when there is only one jurisdiction and, hence, no agent 
mobility. They also find that two-party competition results in more agent moves 
than does democratic referenda. 

Manski reminds us that while theory is all very well, understanding of real 
phenomena is just as important. He distinguishes between three kinds of causal 
explanation for the often observed empirical fact that "persons belonging to the 
same group tend to behave similarly." One is the one we have been describing 
above: the behavioral similarities may arise through network interaction effects. 
But there are two other possible explanations: contextual, in which the behavior 
may depend on exogenous characteristics of the group (like socioeconomic compo-
sition); or correlated effects, in which the behavior may be due to similar individual 
characteristics of members of the group. Manski shows, among other results, that 
a researcher who uses the popular linear-in-means model to analyze his data and 
"observes equilibrium outcomes and the composition of reference groups cannot em-
pirically distinguish" endogenous interactions from these alternative explanations. 
One moral is that nonlinear effects require nonlinear inferential techniques. 

In the essays of North, Shubik, and Leijonhufvud, the focus shifts to another 
kind of social structure, the institution. North's essay focuses on institutions and 
economic growth, Shubik's on financial institutions, and Leijonhufvud's on high-
inflation phenomenology. All three authors agree in defining institutions as "the 
rules of the game," without which economic action is unthinkable. They use the 
word "institution" in at least three senses: as the "rules" themselves (for example, 
bankruptcy laws); as the entities endowed with the social and political power to 
promulgate rules (for example, governments and courts); and as the socially legit-
imized constructions that instantiate rules and through which economic agents act 
(for example, fiat money and markets). In whichever sense institutions are con-
strued, the three authors agree that they cannot be adequately understood from a 
purely economic, purely political, or purely social point of view. Economics, politics, 
and society are inextricably mixed in the processes whereby institutions come into 
being. And they change and determine economic, political, and social action. North 
also insists that institutions have a cognitive dimension through the aggregate-level 
"belief systems" that sustain them and determine the directions in which they 
change. 
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North takes up the question of the emergence of institutions from a functional-
ist perspective: institutions are brought into being "in order to reduce uncertainty," 
that is, to make agents' worlds predictable enough to afford recognizable opportuni-
ties for effective action. In particular, modern economies depend upon institutions 
that provide low transaction costs in impersonal markets. 

Shubik takes a different approach. His analysis starts from his notion of strate-
gic market games. These are "fully defined process models" that specify actions 
"for all points in the set of feasible outcomes." He shows how, in the context of 
constructing a strategic market game for an exchange economy using fiat money, 
the full specification requirement leads to the logical necessity of certain kinds of 
rules that Shubik identifies with financial institutions. Geanakoplos' paper makes 
a similar point to Shubik's. Financial instruments represent promises, he argues. 
What happens if someone cannot or will not honor a promise? Shubik already 
introduced the logical necessity of one institution, bankruptcy law, to deal with de-
faults. Geanakoplos introduces another, collateral. He shows that, in equilibrium, 
collateral as an institution has institutional implications—missing markets. 

Finally, in his note concluding the volume, Philip Anderson provides a physi-
cist's perspective on a point that Fernand Braudel argues is a central lesson from 
the history of long-term socioeconomic change. Averages and assumptions of agent 
homogeneity can be very deceptive in complex systems. And processes of change 
are generally driven by the inhabitants of the extreme tails of some relevant distri-
bution. Hence, an interesting theoretical question from the Santa Fe perspective is: 
How do distributions with extreme tails arise, and why are they so ubiquitous and 
so important? 

WHAT COUNTS AS A PROBLEM AND AS A SOLUTION. While the papers here have 
much to say on cognition and structure, they contain much less discussion on what 
constitutes a problem and solution from this new viewpoint. Perhaps this is because 
it is premature to talk about methods for generating and assessing understanding 
when what is to be understood is still under discussion. While a few of the pa-
pers completely avoid mathematics, most of the papers do present mathematical 
models—whether based on statistical mechanics, strategic market games, random 
graphs, population games, stochastic dynamics, or agent-based computations. Yet 
sometimes the mathematical models the authors use leave important questions 
unanswered. For example, in what way do equilibrium calculations provide insight 
into emergence? This troublesome question is not addressed in any of the papers, 
even those in which models are presented from which equilibria are calculated—and 
insight into emergence is claimed to result. Blume raises two related issues in his 
discussion of population games: whether the asymptotic equilibrium selection the-
orems featured in the theory happen "soon enough" to be economically interesting; 
and whether the invariance of the "global environment" determined by the game 
and interaction model is compatible with an underlying economic reality in which 
rules of the game undergo endogenous change. It will not be easy to resolve the 
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inherent tension between traditional mathematical tools and phenomena that may 
exhibit perpetual novelty. 

As we mentioned previously, several of the papers introduce less traditional, 
agent-based models. Kollman, Miller, and Page discuss both advantages and dif-
ficulties associated with this set of techniques. They end up expressing cautious 
optimism about their future usefulness. Tesfatsion casts her own paper as an illus-
tration of what she calls "the alife approach for economics, as well as the hurdles 
that remain to be cleared." Perhaps the best recommendation we can make to the 
reader with respect to the epistemological problems associated with the process-
and-emergence perspective is simple. Read the papers, and see what you find con-
vincing. 
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Asset Pricing Under Endogenous 
Expectations in an Artificial Stock Market 

We propose a theory of asset pricing based on heterogeneous agents who continually 
adapt their expectations to the market that these expectations aggregatively create. 
And we explore the implications of this theory computationally using our Santa Fe 
artificial stock market.[11 

Asset markets, we argue, have a recursive nature in that agents' expectations 
are formed on the basis of their anticipations of other agents' expectations, which 
precludes expectations being formed by deductive means. Instead, traders contin-
ually hypothesize—continually explore—expectational models, buy or sell on the 
basis of those that perform best, and confirm or discard these according to their 
performance. Thus, individual beliefs or expectations become endogenous to the 
market, and constantly compete within an ecology of others' beliefs or expecta-
tions. The ecology of beliefs coevolves over time. 

Computer experiments with this endogenous-expectations market explain one 
of the more striking puzzles in finance: that market traders often believe in such 
concepts as technical trading, "market psychology," and bandwagon effects, while 

[11For a less formal discussion of the ideas in this paper see Arthur.3  
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academic theorists believe in market efficiency and a lack of speculative oppor-
tunities. Both views, we show, are correct, but within different regimes. Within 
a regime where investors explore alternative expectational models at a low rate, 
the market settles into the rational-expectations equilibrium of the efficient-market 
literature. Within a regime where the rate of exploration of alternative expecta-
tions is higher, the market self-organizes into a complex pattern. It acquires a rich 
psychology, technical trading emerges, temporary bubbles and crashes occur, and 
asset prices and trading volume show statistical features—in particular, GARCH 
behavior—characteristic of actual market data. 

1. INTRODUCTION 
Academic theorists and market traders tend to view financial markets in strik-
ingly different ways. Standard (efficient-market) financial theory assumes identical 
investors who share rational expectations of an asset's future price, and who instan-
taneously and rationally discount all market information into this price.[21 It follows 
that no opportunities are left open for consistent speculative profit, that technical 
trading (using patterns in past prices to forecast future ones) cannot be profitable 
except by luck, that temporary price overreactions—bubbles and crashes—reflect 
rational changes in assets' valuations rather than sudden shifts in investor senti-
ment. It follows too that trading volume is low or zero, and that indices of trading 
volume and price volatility are not serially correlated in any way. The market, 
in this standard theoretical view, is rational, mechanistic, and efficient. Traders, 
by contrast, often see markets as offering speculative opportunities. Many believe 
that technical trading is profitable,[31 that something definable as a "market psy-
chology" exists, and that herd effects unrelated to market news can cause bubbles 
and crashes. Some traders and financial writers even see the market itself as pos-
sessing its own moods and personality, sometimes describing the market as "ner-
vous" or "sluggish" or "jittery." The market in this view is psychological, organic, 
and imperfectly efficient. From the academic viewpoint, traders with such beliefs—
embarrassingly the very agents assumed rational by the theory—are irrational and 
superstitious. From the traders' viewpoint, the standard academic theory is unre-
alistic and not borne out by their own perceptions.[41 

While few academics would be willing to assert that the market has a per-
sonality or experiences moods, the standard economic view has in recent years 

[ 2]For the classic statement see Lucas,34  or Diba and Grossman.16  

[3]For evidence see Frankel and Froot.19  
[41To quote one of the most successful traders, George Soros47: "this [efficient market theory] 
interpretation of the way financial markets operate is severely distorted.... It may seem strange 
that a patently false theory should gain such widespread acceptance." 
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begun to change. The crash of 1987 damaged economists' beliefs that sudden price 
changes reflect rational adjustments to news in the market: several studies failed to 
find significant correlation between the crash and market information issued at the 
time (e.g., Cutler et al.12). Trading volume and price volatility in real markets are 
large—not zero or small, respectively, as the standard theory would predict32,44,45—
and both show significant autocorrelation.7,21  Stock returns also contain small, but 
significant serial correlations.18'33'39'48  Certain technical-trading rules produce sta-
tistically significant, if modest, long-run profits.1°  And it has long been known that 
when investors apply full rationality to the market, they lack incentives both to 
trade and to gather information.23,24,36  By now, enough statistical evidence has 
accumulated to question efficient-market theories and to show that the traders' 
viewpoint cannot be entirely dismissed. As a result, the modern finance literature 
has been searching for alternative theories that can explain these market realities. 

One promising modern alternative, the noise-trader approach, observes that 
when there are "noise traders" in the market—investors who possess expectations 
different from those of the rational-expectations traders—technical-trading strate-
gies such as trend chasing may become rational. For example, if noise traders be-
lieve that an upswing in a stock's price will persist, rational traders can exploit this 
by buying into the uptrend, thereby exacerbating the trend. In this way positive-
feedback trading strategies—and other technical-trading strategies—can be seen 
as rational, as long as there are nonrational traders in the market to prime these 
strategies.13,14,15,46  This "behavioral" noise-trader literature moves some way to-
ward justifying the traders' view. But it is built on two less-than-realistic assump-
tions: the existence of unintelligent noise traders who do not learn over time that 
their forecasts are erroneous; and the existence of rational players who possess, by 
some unspecified means, full knowledge of both the noise traders' expectations and 
their own class's. Neither assumption is likely to hold up in real markets. Suppose 
for a moment an actual market with minimally intelligent noise traders. Over time, 
in all likelihood, some would discover their errors and begin to formulate more in-
telligent (or at least different) expectations. This would change the market, which 
means that the perfectly intelligent players would need to readjust their expecta-
tions. But there is no reason these latter would know the new expectations of the 
noise-trader deviants; they would have to derive their expectations by some means 
such as guessing or observation of the market. As the rational players changed, the 
market would change again. And so the noise traders might again further deviate, 
forcing further readjustments for the rational traders. Actual noise-trader markets, 
assumed stationary in theory, would start to unravel; and the perfectly rational 
traders would be left at each turn guessing the changed expectations by observing 
the market. 

Thus, noise-trader theories, while they explain much, are not robust. But in 
questioning such theories we are led to an interesting sequence of thought. Suppose 
we were to assume "rational," but nonidentical, agents who do not find them-
selves in a market with rational expectations, or with publicly known expectations. 
Suppose we allowed each agent continually to observe the market with an eye to 
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discovering profitable expectations. Suppose further we allowed each agent to adopt 
these when discovered and to discard the less profitable as time progressed. In this 
situation, agents' expectations would become endogenous—individually adapted to 
the current state of the market—and they would cocreate the market they were 
designed to exploit. How would such a market work? How would it act to price as-
sets? Would it converge to a rational-expectations equilibrium—or would it uphold 
the traders' viewpoint? 

In this chapter we propose a theory of asset pricing that assumes fully heteroge-
neous agents whose expectations continually adapt to the market these expectations 
aggregatively create. We argue that under heterogeneity, expectations have a re-
cursive character: agents have to form their expectations from their anticipations 
of other agents' expectations, and this self-reference precludes expectations being 
formed by deductive means. So, in the absence of being able to deduce expectations, 
agents—no matter how rational—are forced to hypothesize them. Agents, therefore, 
continually form individual, hypothetical, expectational models or "theories of the 
market," test these, and trade on the ones that predict best. From time to time 
they drop hypotheses that perform badly, and introduce new ones to test. Prices 
are driven endogenously by these induced expectations. Individuals' expectations, 
therefore, evolve and "compete" in a market formed by others' expectations. In 
other words, agents' expectations coevolve in a world they cocreate. 

The natural question is whether these heterogeneous expectations coevolve 
into homogeneous rational-expectations beliefs, upholding the efficient-market the-
ory, or whether richer individual and collective behavior emerges, upholding the 
traders' viewpoint and explaining the empirical market phenomena mentioned 
above. We answer this not analytically—our model, with its fully heterogeneous 
expectations, is too complicated to allow analytical solutions—but computation-
ally. To investigate price dynamics, investment strategies, and market statistics in 
our endogenous-expectations market, we perform carefully controlled experiments 
within a computer-based market we have constructed, the SFI Artificial Stock 
Market.[5] 

The picture of the market that results from our experiments, surprisingly, con-
firms both the efficient-market academic view and the traders' view. But each is 
valid under different circumstances—in different regimes. In both circumstances, 
we initiate our traders with heterogeneous beliefs clustered randomly in an interval 
near homogeneous rational expectations. We find that if our agents very slowly 
adapt their forecasts to new observations of the market's behavior, the market con-
verges to a rational-expectations regime. Here "mutant" expectations cannot get 
a profitable footing; and technical trading, bubbles, crashes, and autocorrelative 
behavior do not emerge. Trading volume remains low. The efficient-market theory 
prevails. 

If, on the other hand, we allow the traders to adapt to new market observations 
at a more realistic rate, heterogeneous beliefs persist, and the market self-organizes 

[51For an earlier report on the SFI artificial stock market, see Palmer et al.38 
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into a complex regime. A rich "market psychology"—a rich set of expectations—
becomes observable. Technical trading emerges as a profitable activity, and tem-
porary bubbles and crashes occur from time to time. Trading volume is high, with 
times of quiescence alternating with times of intense market activity. The price 
time series shows persistence in volatility, the characteristic GARCH signature of 
price series from actual financial markets. And it shows persistence in trading vol-
ume. And over the period of our experiments, at least, individual behavior evolves 
continually and does not settle down. In this regime, the traders' view is upheld. 

In what follows, we discuss first the rationale for our endogenous-expectations 
approach to market behavior; and introduce the idea of collections of conditional 
expectational hypotheses or "predictors" to implement this. We next set up the 
computational model that will form the basic framework. We are then in a position 
to carry out and describe the computer experiments with the model. Two final 
sections discuss the results of the experiments, compare our findings with other 
modern approaches in the literature, and summarize our conclusions. 

2. WHY INDUCTIVE REASONING? 
Before proceeding, we show that once we introduce heterogeneity of agents, deduc-
tive reasoning on the part of agents fails. We argue that in the absence of deductive 
reasoning, agents must resort to inductive reasoning, which is both natural and 
realistic in financial markets. 

A. FORMING EXPECTATIONS BY DEDUCTIVE REASONING: 
AN INDETERMINACY 

We make our point about the indeterminacy of deductive logic on the part of agents 
using a simple arbitrage pricing model, avoiding technical details that will be spelled 
out later. (This pricing model is a special case of our model in section 3, assuming 
risk coefficient A arbitrarily close to 0, and gaussian expectational distributions.) 
Consider a market with a single security that provides a stochastic payoff or divi-
dend sequence {dt  }, with a risk-free outside asset that pays a constant r units per 
period. Each agent i may form individual expectations of next period's dividend 
and price, Ei[dt+i 	and .E,[pt+1  It], with conditional variance of these combined 
expectations, vi t , given current market information It . Assuming perfect arbitrage, 
the market for the asset clears at the equilibrium price: 

Pt = Ew3,t(E)kit-Fivt] + EJ[Pt+ilit]) • 	(1) 

In other words, the security's price pt  is bid to a value that reflects the current 
(weighted) average of individuals' market expectations, discounted by the factor 



20 	W. B. Arthur, J. H. Holland, B. LeBaron, R. Palmer, and P. Tayler 

= 1/(1 + r), with weights wi,t  = (1/a? t , ) / k 	k 1/a2 t  the relative "confidence" 
placed in agent j's forecast. 

Now, assuming intelligent investors, the key question is how the individual 
dividend and price expectations 	[dt+11.rt] and Et[pt+i I It] , respectively, might be 
formed. The standard argument that such expectations can be formed rationally 
(i.e., using deductive logic) goes as follows. Assume homogeneous investors who 
(i) use the available information It  identically in forming their dividend expecta-
tions, and (ii) know that others use the same expectations. Assume further that the 
agents (iii) are perfectly rational (can make arbitrarily difficult logical inferences), 
(iv) know that price each time will be formed by arbitrage as in Eq. (1), and (v) 
that (iii) and (iv) are common knowledge. Then, expectations of future dividends 
Ei [dt+k ih]  are by definition known, shared, and identical. And homogeneity allows 
us to drop the agent subscript and set the weights to 1/N. It is then a standard ex-
ercise (see Diba and Grossman16) to show that by setting up the arbitrage, Eq. (1), 
for future times t + k, taking expectations across it, and substituting backward 
repeatedly for gpt+klIt ], agents can iteratively solve for the current price as[61 

CO 

Pt = Ok  EE[dt+kim • 	 (2) 
k=1 

If the dividend expectations are unbiased, dividend forecasts will be upheld 
on average by the market and, therefore, the price sequence will be in rational-
expectations equilibrium. Thus, the price fluctuates as the information {It} fluctu-
ates over time, and it reflects "correct" or "fundamental" value, so that speculative 
profits are not consistently available. Of course, rational-expectations models in the 
literature are typically more elaborate than this. But the point so far is that if we are 
willing to adopt the above assumptions—which depend heavily on homogeneity—
asset pricing becomes deductively determinate, in the sense that agents can, in 
principle at least, logically derive the current price. 

Assume now, more realistically, that traders are intelligent but heterogeneous—
each may differ from the others. Now, the available shared information It  consists 
of past prices, past dividends, trading volumes, economic indicators, rumors, news, 
and the like. These are merely qualitative information plus data sequences, and 
there may be many different, perfectly defensible statistical ways, based on different 
assumptions and different error criteria, to use them to predict future dividends.1,3° 
Thus, there is no objectively laid down, expectational model that differing agents 
can coordinate upon, and so there is no objective means for one agent to know 
other agents' expectations of future dividends. This is sufficient to bring indetermi-
nacy to the asset price in Eq. (1). But worse, the heterogeneous price expectations 

[6]The second, constant-exponential-growth solution is normally ruled out by an appropriate 
transversality condition. 
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E,[pt+ilh] are also indeterminate. For suppose agent i attempts rationally to de-
duce this expectation, he may take expectations across the market clearing Eq. (1) 
for time t + 1: 

[ Ei[pt+ilit] = 0E4, E fwj,t+i (Ei [dt+21it] + Ei [Pt+2lit])l lIt • 	(3) 
i 

This requires that agent i, in forming his expectation of price, take into account 
his expectations of others' expectations of dividends and price (and relative market 
weights) two periods hence. To eliminate, in like manner, the price expectation 
Ej[pt+2 	requires a further iteration. But this leads agents into taking into account 
their expectations of others' expectations of others' expectations of future dividends 
and prices at period t + 3—literally, as in Keynes'27  phrase, taking into account 
"what average opinion expects the average opinion to be." 

Now, under homogeneity these expectations of others' expectations collapsed 
into single, shared, objectively determined expectations. Under heterogeneity, how-
ever, not only is there no objective means by which others' dividend expectations 
can be known, but attempts to eliminate the other unknowns, the price expecta-
tions, merely lead to the repeated iteration of subjective expectations of subjective 
expectations (or, equivalently, subjective priors on others' subjective priors)—an 
infinite regress in subjectivity. Further, this regress may lead to instability: If in-
vestor i believes that others believe future prices will increase, he may revise his 
expectations to expect upward-moving prices. If he believes that others believe a 
reversion to lower values is likely, he may revise his expectations to expect a re-
version. We can, therefore, easily imagine swings and swift transitions in investors' 
beliefs, based on little more than ephemera—hints and perceived hints of others' 
beliefs about others' beliefs. 

Under heterogeneity then, deductive logic leads to expectations that are not 
determinable. Notice the argument here depends in no way on agents having limits 
to their reasoning powers. It merely says that given differences in agent expecta-
tions, there is no logical means by which to arrive at expectations. And so, perfect 
rationality in the market can not be well defined. Infinitely intelligent agents cannot 
form expectations in a determinate way. 

B. FORMING EXPECTATIONS BY INDUCTIVE REASONING 

If heterogeneous agents cannot deduce their expectations, how then do they form 
expectations? They may observe market data, they may contemplate the nature 
of the market and of their fellow investors. They may derive expectational models 
by sophisticated, subjective reasoning. But in the end all such models will be—
can only be—hypotheses. There is no objective way to verify them, except by 
observing their performance in practice. Thus, agents, in facing the problem of 
choosing appropriate predictive models, face the same problem that statisticians 
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face when choosing appropriate predictive models given a specific data set, but no 
objective means by which to choose a functional form. (Of course, the situation here 
is made more difficult by the fact that the expectational models investors choose 
affect the price sequence, so that our statisticians' very choices of model affect their 
data and so their choices of model.) 

In what follows then, we assume that each agent acts as a market "statis-
tician." [71 Each continually creates multiple "market hypotheses"—subjective, ex-
pectational models—of what moves the market price and dividend. And each simul-
taneously tests several such models. Some of these will perform well in predicting 
market movements. These will gain the agent's confidence and be retained and 
acted upon in buying and selling decisions. Others will perform badly. They will 
be dropped. Still others will be generated from time to time and tested for accu-
racy in the market. As it becomes clear which expectational models predict well, 
and as poorly predicting ones are replaced by better ones, the agent learns and 
adapts. This type of behavior—coming up with appropriate hypothetical models 
to act upon, strengthening confidence in those that are validated, and discarding 
those that are not—is called inductive reasoning.[8 ] It makes excellent sense where 
problems are ill defined. It is, in microscale, the scientific method. Agents who act 
by using inductive reasoning we will call inductively rational.[9] 

Each inductively rational agent generates multiple expectational models that 
"compete" for use within his or her mind, and survive or are changed on the basis 
of their predictive ability. The agents' hypotheses and expectations adapt to the 
current pattern of prices and dividends; and the pattern of prices changes to reflect 
the current hypotheses and expectations of the agents. We see immediately that the 
market possesses a psychology. We define this as the collection of market hypotheses, 
or expectational models or mental beliefs, that are being acted upon at a given time. 

If there were some attractor inherent in the price-and-expectation-formation 
process, this market psychology might converge to a stable unchanging set of het-
erogeneous (or homogeneous) beliefs. Such a set would be statistically validated, 
and would, therefore, constitute a rational-expectations equilibrium. We investigate 
whether the market converges to such an equilibrium below. 

]7lThe phrase is Tom Sargent's.42  Sargent argues similarly, within a macroeconomic context, that 
to form expectations agents need to act as market statisticians. 
[8]For earlier versions of induction applied to asset pricing and to decision problems, see Arthur1,2  
(the El Farol problem), and Sargent.42  For accounts of inductive reasoning in the psychological 
and adaptation literature, see Holland et al.,25  Rumelhart,41  and Schank and Abelson.43  

1 91In the sense that they use available market data to learn—and switch among—appropriate 
expectational models. Perfect inductive rationality, of course, is indeterminate. Learning agents 
can be arbitrarily intelligent, but without knowing others' learning methods cannot tell a priori 
that their learning methods are maximally efficient. They can only discover the efficacy of their 
methods by testing them against data. 
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3. A MARKET WITH INDUCED EXPECTATIONS 
A. THE MODEL 

We now set up a simple model of an asset market along the lines of Bray9  or Gross-
man and Stiglitz.24  The model will be neoclassical in structure, but will depart 
from standard models by assuming heterogeneous agents who form their expecta-
tions inductively by the process outlined above. 

Consider a market in which N heterogeneous agents decide on their desired 
asset composition between a risky stock paying a stochastic dividend, and a risk-
free bond. These agents formulate their expectations separately, but are identical 
in other respects. They possess a constant absolute risk aversion (CARA) utility 
function, U(c) = - exp(-)c). They communicate neither their expectations nor 
their buying or selling intentions to each other. Time is discrete and is indexed 
by t; the horizon is indefinite. The risk-free bond is in infinite supply and pays a 
constant interest rate r. The stock is issued in N units, and pays a dividend, dt , 
which follows a given exogenous stochastic process { dt} not known to the agents. 

The dividend process, thus far, is arbitrary. In the experiments we carry out 
below, we specialize it to an AR(1) process 

dt =3 + P(dt-i -3) Et 	 (4) 

where et  is gaussian, i.i.d., and has zero mean, and variance 4. 
Each agent attempts, at each period, to optimize his allocation between the 

risk-free asset and the stock. Assume for the moment that agent i's predictions 
at time t of the next period's price and dividend are normally distributed with 
(conditional) mean and variance, Ei,t[pt+1  + dt+1], and 0.4i,p+d. (We say presently 
how such expectations are arrived at.) It is well known that under CARA utility 
and gaussian distributions for forecasts, agent i's demand, xi,t , for holding shares 
of the risky asset is given by: 

xi,t = Ei,t(Pt+i 
+ dt+i - p(1 + r)) 
Acr4p+d 
	 (5) 

where pt  is the price of the risky asset at t, and A is the degree of relative risk 
aversion. 

Total demand must equal the number of shares issued: 

xi,t = N 
	

(6) 
t=i 

which closes the model and determines the clearing price p—the current market 
price—in Eq. (5) above. 
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It is useful to be clear on timing in the market. At the start of time period t, 
the current dividend dt  is posted, and observed by all agents. Agents then use this 
information and general information on the state of the market (which includes the 
historical dividend sequence {... dt_21  dt-1, dt} and price sequence {...pt-2,Pt-1}) 
to form their expectations of the next period's price and dividend Ei,t (pt+1  + dt+1). 
They then calculate their desired holdings and pass their demand parameters to 
the specialist who declares a price pt  that clears the market. At the start of the 
next period the new dividend dt+1  is revealed, and the accuracies of the predictors 
active at time t are updated. The sequence repeats. 

B. MODELING THE FORMATION OF EXPECTATIONS 

At this point we have a simple, neoclassical, two-asset market. We now break from 
tradition by allowing our agents to form their expectations individually and in-
ductively. One obvious way to do this would be to posit a set of individual-agent 
expectational models which share the same functional form, and whose parameters 
are updated differently by each agent (by least squares, say) over time, starting 
from different priors. We reject this in favor of a different approach that better 
reflects the process of induction outlined in section 2 above. We assume each agent, 
at any time, possesses a multiplicity of linear forecasting models—hypotheses about 
the direction of the market, or "theories of the market"—and uses those that are 
both best suited to the current state of the market and have recently proved most 
reliable. Agents then learn, not by updating parameters, but by discovering which 
of their hypotheses "prove out" best, and by developing new ones from time to time, 
via the genetic algorithm. This structure will offer several desirable properties: It 
will avoid biases introduced by a fixed, shared functional form. It will allow the 
individuality of expectations to emerge over time (rather than be built in only to a 
priori beliefs). And it will better mirror actual cognitive reasoning, in which differ-
ent agents might well "cognize" different patterns and arrive at different forecasts 
from the same market data. 

In the expectational part of the model, at each period, the time series of current 
and past prices and dividends are summarized by an array or information set of J 
market descriptors. And agents' subjective expectational models are represented by 
sets of predictors. Each predictor is a condition/forecast rule (similar to a Holland 
classifier which is a condition/action rule) that contains both a market condition 
that may at times be fulfilled by the current state of the market and a forecasting 
formula for next period's price and dividend. Each agent possesses M such individ-
ual predictors—holds M hypotheses of the market in mind simultaneously—and 
uses the most accurate of those that are active (matched by the current state of 
the market). In this way, each agent has the ability to "recognize" different sets of 
states of the market, and bring to bear appropriate forecasts, given these market 
patterns. 
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It may clarify matters to show briefly how we implement this expectational 
system on the computer. (Further details are in Appendix A.) Suppose we sum-
marize the state of the market by J = 13 bits. The fifth bit might correspond 
to "the price has risen the last 3 periods," and the tenth bit to "the price is 
larger than 16 times dividend divided by r," with 1 signaling the occurrence of 
the described state, and 0 its absence or nonoccurrence. Now, the condition part 
of all predictors corresponds to these market descriptors, and thus, also consists 
of a 13-bit array, each position of which is filled with a 0, or 1, or # ("don't 
care"). A condition array matches or "recognizes" the current market state if all 
its 0's and l's match the corresponding bits for the market state with the #'s 
matching either a 1 or a 0. Thus, the condition (####1########) "recog-
nizes" market states in which the price has risen in the last 3 periods. The con-
dition (#########0###) recognizes states where the current price is not 
larger than 16 times dividend divided by r. The forecasting part of each predic-
tor is an array of parameters that triggers a corresponding forecasting expression. 
In our experiments, all forecasts use a linear combination of price and dividend, 
E(pt+i + dt+1) = a(pt  + dt ) + b. Each predictor then stores specific values of a and 
b. Therefore, the full predictor (####1####0###)(0.96,0) can be interpreted 
as "if the price has risen in the last 3 periods, and if the price is not larger than 
16 times dividend divided by r, then forecast next period's price plus dividend as 
96% of this period's." This predictor would recognize—would be activated by—the 
market state (0110100100011) but would not respond to the state (0110111011001). 

Predictors that can recognize many states of the market have few l's and 0's. 
Those more particularized have more l's and 0's. In practice, we include for each 
agent a default predictor consisting of all #'s. The genetic algorithm creates new 
predictors by "mutating" the values in the predictor array, or by "recombination" — 
combining part of one predictor array with the complementary part of another. 

The expectational system then works at each time with each agent observing 
the current state of the market, and noticing which of his predictors match this 
state. He forecasts next period's price and dividend by combining statistically the 
linear forecast of the H most accurate of these active predictors, and given this 
expectation and its variance, uses Eq. (5) to calculate desired stock holdings and to 
generate an appropriate bid or offer. Once the market clears, the next period's price 
and dividend are revealed and the accuracies of the active predictors are updated. 

As noted above, learning in this expectational system takes place in two ways. It 
happens rapidly as agents learn which of their predictors are accurate and worth act-
ing upon, and which should be ignored. And it happens on a slower time scale as the 
genetic algorithm from time to time discards nonperforming predictors and creates 
new ones. Of course these new, untested predictors do not create disruptions—they 
will be acted upon only if they prove accurate. This avoids brittleness and provides 
what machine-learning theorists call "gracefulness" in the learning process. 
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We can now discern several advantages of this multibit, multipredictor architec-
ture. One is that this expectational architecture allows the market to have poten-
tially different dynamics—a different character—under different states or circum-
stances. Because predictors are pattern-recognizing expectational models, and so 
can "recognize" these different states, agents can "remember" what happened be-
fore in given states and activate appropriate forecasts. This enables agents to make 
swift gestalt-like transitions in forecasting behavior should the market change. 

Second, the design avoids bias from the choice of a particular functional form 
for expectations. Although the forecasting part of our predictors is linear, the multi-
plicity of predictors conditioned upon the many combinations of market conditions 
yield collectively at any time and for any agent a nonlinear forecasting expression 
in the form of a piecewise linear, noncontinuous forecasting function whose domain 
is the market state space, and whose accuracy is tuned to different regions of this 
space. (Forecasting is, of course;  limited by the choice of the binary descriptors that 
represent market conditions.) 

Third, learning is concentrated where it is needed. For example, J = 12 de-
scriptors produces predictors that can distinguish more than four thousand different 
states of the market. Yet, only a handful of these states might occur often. Predictor 
conditions that recognize states that do not occur often will be used less often, their 
accuracy will be updated less often and, other things being equal, their precision 
will be lower. They are, therefore, less likely to survive in the competition among 
predictors. Predictors will, therefore, cluster in the more visited parts of the market 
state space, which is exactly what we want. 

Finally, the descriptor bits can be organized into classes or information sets 
which summarize fundamentals, such as price-dividend ratios or technical-trading 
indicators, such as price trend movements. The design allows us to track exactly 
which information—which descriptor bits—the agents are using or ignoring, some-
thing of crucial importance if we want to test for the "emergence" of technical 
trading. This organization of the information also allows the possibility setting 
up different agent "types" who have access to different information sets. (In this 
chapter, all agents see all market information equally.) 

A neural net could also supply several of these desirable qualities. However, it 
would be less transparent than our predictor system, which we can easily monitor 
to observe which information agents are individually and collectively using at each 
time. 
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4. COMPUTER EXPERIMENTS: THE EMERGENCE OF TWO 
MARKET REGIMES 
A. EXPERIMENTAL DESIGN 

We now explore computationally the behavior of our endogenous-expectations mar-
ket in a series of experiments. We retain the same model parameters throughout 
these experiments, so that we can make comparisons of the market outcomes using 
the model under identical conditions with only controlled changes. Each experiment 
is run for 250,000 periods to allow asymptotic behavior to emerge if it is present; and 
it is run 25 times under different random seeds to collect cross-sectional statistics. 

We specialize the model described in the previous section by choosing parameter 
values, and, where necessary, functional forms. We use N = 25 agents, who each 
have M = 100 predictors, which are conditioned on J = 12 market descriptors. The 
dividend follows the AR(1) process in Eq. (4), with autoregressive parameter p set 
to 0.95, yielding a process close to a random walk, yet persistent. 

The 12 binary descriptors that summarize the state of the market are the 
following: 

1-6 Current price x interest rate/dividend > 0.25, 0.5, 0.75, 0.875, 1.0, 1.125 
7-10 Current price > 5-period moving average of past prices (MA), 

10-period MA, 100-period MA, 500-period MA 
11 Always on (1) 
12 Always off (0) 

The first six binary descriptors—the first six bits—reflect the current price in re-
lation to current dividend, and thus, indicate whether the stock is above or below 
fundamental value at the current price. We will call these "fundamental" bits. Bits 
7-10 are "technical-trading" bits that indicate whether a trend in the price is un-
der way. They will be ignored if useless, and acted upon if technical-analysis trend 
following emerges. The final two bits, constrained to be 0 or 1 at all times, serve 
as experimental controls. They convey no useful market information, but can tell 
us the degree to which agents act upon useless information at any time. We say a 
bit is "set" if it is 0 or 1, and predictors are selected randomly for recombination, 
other things equal, with slightly lower probabilities the higher their specificity—
that is, the more set bits they contain (see Appendix A). This introduces a weak 
drift toward the all-# configuration, and ensures that the information represented 
by a particular bit is used only if agents find it genuinely useful in prediction. This 
market information design allows us to speak of "emergence." For example, it can 
be said that technical trading has emerged if bits 7-10 become set significantly 
more often, statistically, than the control bits. 

We assume that forecasts are formed by each predictor j storing values for 
the parameters ai, b3 , in the linear combination of price and dividend, Ei[pt.H. + 
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dt+ilIt] = a3 (pt  + dt ) + b3. Each predictor also stores a current estimate of its 
forecast variance. (See Appendix A.) 

Before we conduct experiments, we run two diagnostic tests on our computer-
based version of the model. In the first, we test to see whether the model can 
replicate the rational-expectations equilibrium (r.e.e.) of standard theory. We do 
this by calculating analytically the homogeneous rational-expectations equilibrium 
(h.r.e.e.) values for the forecasting parameters a and b (see Appendix A), then 
running the computation with all predictors "clamped" to these calculated h.r.e.e. 
parameters. We find indeed that such predictions are upheld—that the model indeed 
reproduces the h.r.e.e.—which assures us that the computerized model, with its ex-
pectations, demand functions, aggregation, market clearing, and timing sequence, is 
working correctly. In the second test, we show the agents a given dividend sequence 
and a calculated h.r.e.e. price series that corresponds to it, and test whether they 
individually learn the correct forecasting parameters. They do, though with some 
variation due to the agents' continual exploration of expectational space, which 
assures us that our agents are learning properly. 

B. THE EXPERIMENTS 

We now run two sets of fundamental experiments with the computerized model, 
corresponding respectively to slow and medium rates of exploration by agents of al-
ternative expectations. The two sets give rise to two different regimes—two different 
sets of characteristic behaviors of the market. In the slow-learning-rate experiments, 
the genetic algorithm is invoked every 1,000 periods on average, predictors are 
crossed over with probablity 0.3, and the predictors' accuracy-updating parameter 

is set to 1/150. In the medium-exploration-rate experiments, the genetic algo-
rithm is invoked every 250 periods on average, crossover occurs with probability 
0.1, and the predictors' accuracy-updating parameter B is set to 1/75.[101 Other-
wise, we keep the model parameters the same in both sets of experiments, and in 
both we start the agents with expectational parameters selected randomly from 
a uniform distribution of values centered on the calculated homogeneous rational-
expectations ones. (See Appendix A.) In the slow-exploration-rate experiments, 
no non-r.e.e. expectations can get a footing: the market enters an evolutionarily 
stable, rational-expectations regime. In the medium-exploration-rate experiments, 
we find that the market enters a complex regime in which psychological behavior 
emerges, there are significant deviations from the r.e.e. benchmark, and statistical 
"signatures" of real financial markets are observed. 

We now describe these two sets of experiments and the two regimes or phases 
of the market they induce. 

1101 At the time of writing, we have discovered that the two regimes emerge, and the results are 
materially the same, if we vary only the rate of invocation of the genetic algorithm. 
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THE RATIONAL-EXPECTATIONS REGIME. As stated, in this set of experiments, 
agents continually explore in prediction space, but under low rates. The mar-
ket price, in these experiments, converges rapidly to the homogeneous rational-
expectations value adjusted for risk, even though the agents start with nonrational 
expectations. In other words, homogeneous rational expectations are an attractor 
for a market with endogenous, inductive expectations.[111 This is not surprising. 
If some agents forecast differently than the h.r.e.e. value, then the fact that most 
other agents are using something close to the h.r.e.e. value, will return a market-
clearing price that corrects these deviant expectations: There is a natural, if weak, 
attraction to h.r.e.e. The equilibrium within this regime differs in two ways from 
the standard, theoretical, rational-expectations equilibrium. First, the equilibrium 
is neither assumed nor arrived at by deductive means. Our agents instead arrive 
inductively at a homogeneity that overlaps that of the homogeneous, theoretical 
rational expectations. Second, the equilibrium is a stochastic one. Agents continu-
ally explore alternatives, albeit at low rates. This testing of alternative explorations, 
small as it is, induces some "thermal noise" into the system. As we would expect, in 
this regime, agents' holdings remain highly homogeneous, trading volume remains 
low (reflecting only variations in forecasts due to mutation and recombination) and 
bubbles, crashes, and technical trading do not emerge. We can say that in this 
regime the efficient-market theory and its implications are upheld. 

THE COMPLEX OR RICH PSYCHOLOGICAL REGIME. We now allow a more realistic 
level of exploration in belief space. In these experiments, as we see in Figure 1, 
the price series still appears to be nearly identical to the price in the rational-
expectations regime. (It is lower because of risk attributable to the higher variance 
caused by increased exploration.) 

On closer inspection of the results, however, we find that complex patterns have 
formed in the collection of beliefs, and that the market displays characteristics that 
differ materially from those in the rational-expectations regime. For example, when 
we magnify the difference between the two price series, we see systematic evidence 
of temporary price bubbles and crashes (Figure 2). We call this new set of market 
behaviors the rich-psychological, or complex, regime. 

This appearance of bubbles and crashes suggests that technical trading, in the 
form of buying or selling into trends, has emerged in the market. We can check this 
rigorously by examining the information the agents condition their forecasts upon. 

1111Within a simpler model, Blume and Easley5  prove analytically the evolutionary stability of 
r.e.e. 



Price 
100 

95 

90 

85 

80 

75 

70 

65 

60 

R.e.e. Price 

iVen/vv-vve rf  

Price Difference ....ve4.4164..4IVAtiovivsAfrwv  

30 	W. B. Arthur, J. H. Holland, B. LeBaron, R. Palmer, and P. Tayler 

253000 
	

253050 
	

253100 
	

253150 
	

253200 
Time 

FIGURE 1 Rational-expectations price vs. price in the rich psychological regime. The 
two price series are generated on the same random dividend series. The upper is the 
homogeneous r.e.e. price, the lower is the price in the complex regime. The higher 
variance in the latter case causes the lower price through risk aversion. 
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FIGURE 2 Deviations of the price series in the complex regime from fundamental 
value. The bottom graph shows the difference between the two price series in Figure 1 
(with the complex series rescaled to match the r.e.e. one and the difference between 
the two doubled for ease of observation). The upper series is the h.r.e.e. price. 

100 

80 

60 

40 

20 

0 

-20 



1 
50000 

1 
100000 	150000 

Time 

1 
200000 	250000 

Bits Used 
600 	 

Complex Case 

R.E.E Case 

d."."°"1".......".'"... .i .:. 

500 - 

400 - 

300 - 

200 - 

100 - 

0 	 
0 

Asset Pricing Under Endogenous Expectations in an Artificial Stock Market 	31 

Figure 3 shows the number of technical-trading bits that are used (are l's or 0's) 
in the population of predictors as it evolves over time. In both sets of experiments, 
technical-trading bits are initially seeded randomly in the predictor population. In 
the rational-expectations regime, however, technical-trading bits provide no useful 
information and fall off as useless predictors are discarded. But in the complex 
regime, they bootstrap in the population, reaching a steady-state value by 150,000 
periods. Technical trading, once it emerges, remains.[121 

Price statistics in the complex regime differ from those in the rational-
expectations regime, mainly in that kurtosis is evident in the complex case 
(Table 1) and that volume of shares traded (per 10,000 periods) is about 300% 
larger in the complex case, reflecting the degree to which the agents remain het-
erogeneous in their expectations as the market evolves. We note that fat tails and 
high volume are also characteristic of price data from actual financial markets. 

FIGURE 3 Number of technical-trading bits that become set as the market evolves, 
(median over 25 experiments in the two regimes). 

[121 When we run these experiments informally to 1,000,000 periods, we see no signs that technical-
trading bits disappear. 
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TABLE 1 Returns and volume statistics (medians) in the two regimes collected for 25 
experiments after 250,000 periods. 

Mean 	Std. Dev. 	Skewness 	Kurtosis' 	Vol. traded 

R.e.e. Regime 0.000 2.1002 0.0131 0.0497 2,460.9 
Complex Regime 0.000 2.1007 0.0204 0.3429 7,783.8 

1 Kurtosis numbers are excess kurtosis (i.e., kurtosis -3). 

How does technical trading emerge in psychologically rich or complex regime? 
In this regime the "temperature" of exploration is high enough to offset, to some 
degree, expectations' natural attraction to the r.e.e. And so, subsets of non-r.e.e. 
beliefs need not disappear rapidly. Instead they can become mutually reinforcing. 
Suppose, for example, predictors appear early on that, by chance, condition an up-
ward price forecast upon the markets showing a current rising trend. Then, agents 
who hold such predictors are more likely to buy into the market on an uptrend, 
raising the price over what it might otherwise be, causing a slight upward bias that 
might be sufficient to lend validation to such rules and retain them in the market. A 
similar story holds for predictors that forecast reversion to fundamental value. Such 
predictors need to appear in sufficient density to validate each other and remain 
in the population of predictors. The situation here is analogous to that in theories 
of the origin of life, where there needs to be a certain density of mutually reinforc-
ing RNA units in the "soup" of monomers and polymers for such replicating units 
to gain a footing.17'26  Thus, technical analysis can emerge if trend-following (or 
mean-reversion) beliefs are, by chance, generated in the population, and if random 
perturbations in the dividend sequence activate them and subsequently validate 
them. From then on, they may take their place in the population of patterns recog-
nized by the agents and become mutually sustainable. This emergence of structure 
from the mutual interaction of system subcomponents justifies our use of the label 
"complex" for this regime. 

What is critical to the appearance of subpopulations of mutually reinforcing 
forecasts, in fact, is the presence of market information to condition upon. Market 
states act as "sunspot-like" signals that allow predictors to coordinate upon a di-
rection they associate with that signal. (Of course, these are not classic sunspots 
that convey no real information.) Such coordination or mutuality can remain in 
the market once it establishes itself by chance. We can say the ability of market 
states to act as signals primes the mutuality that causes complex behavior. There 
is no need to assume a separate class of noise traders for this purpose. We can 
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test this signaling conjecture in further experiments where we "turn off" the condi-
tion part of all predictors (by filling them with nonreplaceable #'s). Now forecasts 
cannot differentiate among states of the market, and market states cannot act as 
signals. We find, consistent with our conjecture that signaling drives the observed 
patterns, that the complex regime does not emerge. As a further test of the sig-
nificance of technical-trading signals, we regress the current price on the previous 
periods plus the technical indicator (price > 500-period moving average). In the 
rational-expectations regime, the technical indicator is of course not significant. In 
the complex regime, the trend indicator is significant (with t-value of 5.1 for the 
mean of the sample of 25 experiments), showing that the indicator does indeed 
carry useful market information. The corresponding test on actual financial data 
shows a similar result.'° 

One of the striking characteristics of actual financial markets is that both their 
price volatility and trading volume show persistence or autocorrelation. And volatil-
ity and volume show significant cross-correlation. In other words, both volume and 
volatility remain high or low for periods of random length, and they are interrelated. 
Our inductive market also shows persistence in volatility or GARCH behavior in the 
complex regime (see Figure 4), with the Chi-square statistic in the Engle GARCH 
Test significant at the 95% level.[131 It also shows persistence in trading volume 
(see Figure 5), as well as significant cross-correlation between trading volume and 
volatility (see Figure 6). The figures include corresponding correlations for the 
often-used market standard, IBM stock. (Note that because our time period and 
actual market days do not necessarily match, we should expect no exact overlap. 
But qualitatively, persistence in our market and IBM's is similar.) These correla-
tions are not explained by the standard model, where theoretically they are zero. 

Why financial markets—and our inductive market—show these empirical "sig-
natures" remains an open question. We conjecture a simple evolutionary expla-
nation. Both in real markets and in our artificial market, agents are constantly 
exploring and testing new expectations. Once in a while, randomly, more successful 
expectations will be discovered. Such expectations will change the market, and trig-
ger further changes in expectations, so that small and large "avalanches" of change 
will cascade through the system. (Of course, on this very short time-lag scale, these 
avalanches occur not through the genetic algorithm, but by agents changing their 
active predictors.) Changes then manifest in the form of increased volatility and 
increased volume. One way to test this conjecture is to see whether autocorrelations 
increase as the predictor accuracy-updating parameter 9 in Eq. (7) in Appendix A 
is increased. The larger 9 is, the faster individual agents "switch" among their 

(131Autocorrelated volatility is often fitted with a Generalized Autoregressive Conditional 
Heteroscedastic time series. Hence, the GARCH label. See Bollerslev et al.7  and Goodhart and 
O'Hara.21 
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FIGURE 4 Autocorrelation of volatility in rational-expectations and complex regimes, 
and in IBM daily returns. 
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FIGURE 5 Autocorrelation of trading volume in the rational-expectations and complex 
regimes, and in IBM daily returns. 
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FIGURE 6 Cross-correlation of trading volume with volatility, in the rational-
expectations and complex regimes, and in IBM daily returns. 

predictors. Thus, the more such switches should cascade. Experiments confirm that 
autocorrelations indeed increase with O. Such cascades of switching in time are 
absorbed by the market, and die away. Hence, our evolutionary market exhibits 
periods of turbulence followed by periods of quiescence, as do actual markets.[141 

5. DISCUSSION 
To what extent is the existence of the complex regime an artifact of design assump-
tions in our model? We find experimentally by varying both the model's parameters 
and the expectational-learning mechanism, that the complex regime and the qual-
itative phenomena associated with it are robust. These are not an artifact of some 
deficiency in the model.E151 

[141For a discussion of volatility clustering in a different model, see Youssefmir and Huberman5°; 

and also Grannan and Swindle.22  

[1510ne design choice might make a difference. We have evaluated the usefulness of expectational 
beliefs by their accuracy rather than by the profit they produce. In practice, these alternatives 
may produce different outcomes. For example, buying into a price rise on the basis of expectations 
may yield a different result if validated by profit instead of by accuracy of forecast when "slippage" 
is present, that is, when traders on the other side of the market are hard to find. We believe, but 

have not proved, that the two criteria lead to the same qualitative results. 
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It might be objected that if some agents could discover a superior means of fore-
casting to exploit the market, this might arbitrage complex patterns away, causing 
the market again to converge to rational expectations. We believe not. If a clever 
metaexpectational model was "out there" that might exploit others' expectations, 
such a model would, by aggregation of others' expectations, be a complicated non-
linear function of current market information. To the degree that the piecewise 
linear form we have assumed covers the space of nonlinear expectational models 
conditioned on current market information, agents would indeed, via the genetic 
algorithm, pick up on an approximate form of this superior metamodel. The com-
plex regime owes its existence then not to limitations of forecasting, but rather to 
the fact that in our endogenous-expectations model market information can be used 
as signals, so that a much wider space of possibilities is open—in particular, the 
market can self-organize into mutually supporting subpopulations of predictors. (In 
fact, in a simpler, analytical model, with a small number of classes of trader whose 
beliefs adapt endogenously, Brock and Hommesli  find similar, rich, asset-price dy-
namics.) There is no reason these emergent subpopulations should be in stochastic 
equilibrium. Indeed, agents may mutually adapt their expectations forever, so that 
the market explores its way through this large space, and is nonstationary. In some 
early exploratory experiments, we "froze" successful agents' expectations, then rein-
jected these agents with their previously successful expectations much later. The 
reintroduced agents proved less successful than average, indicating that the market 
had evolved and was nonstationary. 

It might be also objected that by our use of condition bits in the predictors, we 
have built technical trading into our model. And so it is no surprise that it appears 
in the complex regime. But actually, only the possibility of technical trading is 
built in, not its use. The use of market descriptors is selected against in the model. 
Thus, market signals must be of value to be used, and technical trading emerges 
only because such market signals induce mutually supporting expectations that 
condition themselves on these market signals. 

If the market has a well-defined psychology in our model, does it also experi-
ence "moods"? Obviously not. But, notice we assume that agents entertain more 
than one market hypothesis. Thus, we can imagine circumstances of a prolonged 
"bull-market" uptrend to a level well above fundamental value in which the market 
state activates predictors that indicate the uptrend will continue, and simultane-
ously other predictors that predict a rapid downward correction. Such combinations, 
which occur easily in both our market and actual markets, could well be described 
as "nervous." 

What about trade, and the motivation to trade in our market? In the rational-
expectations literature, the deductively rational agents have no motivation to trade, 
even where they differ in beliefs. Assuming other agents have access to different 
information sets, each agent in a prebidding arrangement arrives at identical beliefs. 
Our inductively rational agents (who do not communicate directly), by contrast, do 
not necessarily converge in beliefs. They thus retain a motivation to trade, betting 
ultimately on their powers as market statisticians. It might appear that, because 



Asset Pricing Under Endogenous Expectations in an Artificial Stock Market 	37 

our agents have equal abilities as statisticians, they are irrational to trade at all. But 
although their abilities are the same, their luck in finding good predictors diverges 
over time. And at each period, the accuracy of their predictors is fully accounted 
for in their allocations between the risk-free and risky asset. Given that agents can 
only act as market statisticians, their trading behavior is rational. 

Our endogenous-expectation theory fits with two other modern approaches. 
Our model generalizes the learning models of Bray and others8,42  which also as-
sume endogenous updating of expectations. But while the Bray models assume 
homogeneous updating from a shared nonrational forecast, our approach assumes 
heterogeneous agents who can discover expectations that might exploit any patterns 
present. Our evolutionary approach also has strong affinities with the evolutionary 
models of Blume and Easley." These assume populations of expectational (or more 
correctly, investment) rules that compete for survival in the market in a given pop-
ulation of rules, and that sometimes adapt. But the concern in this literature is the 
selective survival of different, competing, rule types, not the emergence of mutually 
supportive subpopulations that give rise to complex phenomena, nor the role of 
market signals in this emergence. 

Our inductively rational market, of course, leaves out many details of realism. 
In actual financial markets, investors do not perfectly optimize portfolios, nor is full 
market clearing achieved each period. Indeed, except for the formation of expec-
tations, our market is simple and neoclassical. Our object, however, is not market 
realism. Rather it is to show that given the inevitable inductive nature of expec-
tations when heterogeneity is present, rich psychological behavior emerges—even 
under neoclassical conditions. We need not, as in other studies,20'28  assume sharing 
of information nor sharing of expectations nor herd effects to elicit these phenom-
ena. Nor do we need to invoke "behaviorism" or other forms of irrationality.49  
Herding tendencies and quasi-rational behavior may be present in actual markets, 
but they are not necessary to our findings. 

6. CONCLUSION 
In asset markets, agents' forecasts create the world that agents are trying to forecast. 
Thus, asset markets have a reflexive nature in that prices are generated by traders' 
expectations, but these expectations are formed on the basis of anticipations of oth-
ers' expectations.1161 This reflexivity, or self-referential character of expectations, 
precludes expectations being formed by deductive means, so that perfect rational-
ity ceases to be well defined. Thus, agents can only treat their expectations as 
hypotheses: they act inductively, generating individual expectational models that 

1161This point was also made by Soros47  whose term reflexivity we adopt. 
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they constantly introduce, test, act upon, discard. The market becomes driven by 
expectations that adapt endogenously to the ecology these expectations cocreate. 

Experiments with a computerized version of this endogenous-expectations mar-
ket explain one of the more striking puzzles in finance: Standard theory tends to 
see markets as efficient, with no rationale for herd effects, and no possibility of 
systematic speculative profit, whereas traders tend to view the market as exhibit-
ing a "psychology," bandwagon effects, and opportunities for speculative profit. 
Recently the traders' view has been justified by invoking behavioral assumptions, 
such as the existence of noise traders. We show, without behavioral assumptions, 
that both views can be correct. A market of inductively rational traders can ex-
ist in two different regimes: Under a low enough rate of exploration of alternative 
forecasts, the market settles into a simple regime which corresponds to the rational-
expectations equilibrium of the efficient-market literature. Under a more realistic 
rate of exploration of alternative forecasts, the market self-organizes into a complex 
regime in which rich psychological behavior emerges. Technical trading appears, as 
do temporary bubbles and crashes. And prices show statistical features—in par-
ticular, GARCH behavior—characteristic of actual market data. These phenomena 
arise when individual expectations that involve trend following or mean reversion 
become mutually reinforcing in the population of expectations, and when market 
indicators become used as signaling devices that coordinate these sets of mutually 
reinforcing beliefs. 

Our endogenous-expectations market shows that heterogeneity of beliefs, devi-
ations from fundamental trading, and persistence in time series can be maintained 
indefinitely in actual markets with inductively rational traders. We conjecture that 
actual financial markets lie within the complex regime. 
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APPENDICES 
APPENDIX A: DETAILS OF THE MARKET'S ARCHITECTURE 

MODEL PARAMETERS. Throughout the experiments we set the interest rate r to 
0.1, and agents' risk-aversion parameter A to 0.5. The parameters of the dividend 
process in Eq. (4) are p = 0.95, d = 10, r = 0.1, o = 0.0743. (This error variance 
value is selected to yield a combined price-plus-dividend variance of 4.0 in the 
h.r.e.e.) 

PREDICTOR ACCURACY. The accuracy, or precision, of agent i's jth predictor is 
updated each time the predictor is active, and is recorded as the inverse of the 
moving average of squared forecast error: 

eLi  = (1  — 0)4-Lid 0[(Pt+i + dt+i) — 	+ dt+i)}2 	(7) 

with 9 = 1/75 in the complex regime, and 1/150 in the rational-expectations regime. 
This accuracy is used in three places. First, if multiple predictors are active, 

only the most accurate is used. Second, it is part of the fitness measure for selecting 
predictors for recombination in the genetic algorithm. This fitness measure is defined 
as 

—Cs 	(8) 

where M is a constant; s is specificity, the number of bits that are set (not #) in 
the predictor's condition array; and C = 0.005 is a cost levied for specificity. The 
value of M is irrelevant, given tournament rankings. 

Third, agents use the error variance of their current predictor for the forecast 
variance in the demand Eq. (5). (We keep this latter variance fixed between genetic 
algorithm implementations, updating it to its current value in Eq. (7) at each 
invocation.) 

INITIAL EXPECTATIONS. We initialize agents' expectations in both regimes by draw-
ing the forecasting parameters from a uniform distribution of values centered upon 
the h.r.e.e. ones. We select a to be uniform (0.7, 1.2) and b to be uniform (-10, 19.002). 
The variance of all new predictors is initialized in all cases to the h.r.e.e. value of 
4.0. 



40 	W. B. Arthur, J. H. Holland, B. LeBaron, R. Palmer, and P. Tayler 

THE GENETIC ALGORITHM. New predictors are generated by updating each agent's 
predictor set at random intervals, on average every 250 periods or 1,000 periods, de-
pending on the regime, asynchronously across agents. The worst performing (least 
accurate) 20% of the agent's 100 predictors are dropped, and are replaced by new 
ones, using uniform crossover and mutation. The agents are initialized by seeding 
them with random predictors: condition bits are set to 0 or 1 with probability 0.1, 
otherwise to #. This avoids bias in choosing predictors at the outset, and allows 
intelligent behavior to bootstrap itself up as the artificial agents generate predic-
tive models that perform better. For the bitstrings, these procedures are standard 
genetic algorithm procedures for mutation and crossover (uniform crossover is used 
which chooses a bit at random from each of the two parents). The forecasting param-
eter vectors are mutated by adding random variables to each individual component. 
And they are crossed over component-wise, or by taking linear combinations of the 
two vectors, or by selecting one or the other complete vector. Each of these pro-
cedures is performed with equal probability. Crossover on a predictor is performed 
with probability 0.3 or 0.1 in the rational-expectations and complex regimes, re-
spectively. Individual bits are mutated with probability 0.03. New predictors are 
brought into the predictor set with variance set to the average of their parents. If 
a bit has been changed, the new predictor's variance is set to the average of that 
of all predictors. If this new variance is lower than the variance of the current de-
fault predictor less an absolute deviation, its variance is set to the median of the 
predictors' variance. This procedure gives new predictors a reasonable chance of 

becoming used. 

MARKET CLEARING. The price is adjusted each period by directly solving Eqs. (5) 
and (6) for p, which entails passing agents' forecasting parameters to the clearing 
equation. In actual markets, of course, the price is adjusted by a specialist who may 
not have access to agents' demand functions. But we note that actual specialists, 
either from experience or from their "books," have a keen feel for the demand 
function in their markets, and use little inventory to balance day-to-day demand. 
Alternatively, our market-clearing mechanism simulates an auction in which the 
specialist declares different prices and agents continually resubmit bids until a price 

is reached that clears the market. 

CALCULATION OF THE HOMOGENEOUS RATIONAL-EXPECTATIONS EQUILIBRIUM. 
We calculate the homogeneous r.e.e. for the case where the market price is a linear 

function of the dividend pt  = fdt + g which corresponds to the structure of our 

forecasts. We can then calculate f and g from the market conditions at equilibrium. 
A homogenous equilibrium demands that all agents hold 1 share, so that, from 

Eq. (5) 
Et(pt+i +dt+i)— (1  + Opt  = Aap2+d 	 (9) 
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From the dividend process Eq. (4) and the linear form for the price, we can calculate 
,,.2 = (1 + f)o and Et(pt+i + dt+i) as 

Et  (pt+i + dt+i) = (1 + f) [(1  — 	+ pdt] + g • 

Noting that the right side of Eq. (9) is constant, we can then solve for f and g as 

f = 	P  1 + r — p' 

9= 
(1 + f)[(1 — p)3 — Ao]  

r 

Therefore, the expression: 

Et(Pt+i + dt+1) = (1  + r)pt + 1 + r — p 

is the h.r.e.e. forecast we seek. 

APPENDIX B: THE SANTA FE ARTIFICIAL STOCK MARKET 

The Santa Fe Artificial Stock Market has existed since 1989 in various designs 
(see Palmer et al.38  for a description of an earlier version). Since then a number 
of other artificial markets have appeared: e.g., Beltratti and Margarita,4  Marengo 
and Tordjman,35  and Rieck.4°  The Santa Fe Market is a computer-based model 
that can be altered, experimented with, and studied in a rigorously controlled way. 
Most of the artificial market's features are malleable and can be changed to carry 
out different experiments. Thus, the artificial market is a framework or template 
that can be specialized to focus on particular questions of interest in finance: for 
example, the effects of different agents having access to different information sets 
or predictive behaviors; or of a transaction tax on trading volume; or of different 
market-making mechanisms. 

The framework allows other classes of utility functions, such as constant relative 
risk aversion. It allows a specialist or market maker, with temporary imbalances in 
fulfilled bids and offers, made up by changes in an inventory held by the specialist. 
It allows a number of alternative random processes for {dd. And it allows for the 
evolutionary selection of agents via wealth. 

The market runs on a NeXTStep computational platform, but is currently being 
ported to the Swarm platform. For availability of code, and for further information, 
readers should contact Blake LeBaron or Richard Palmer. 

A(2 + r)al (10) 
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