


CONSTRUCTION 4.0

Modelled on the concept of Industry 4.0, the idea of Construction 4.0 is based on a conflu-
ence of trends and technologies that promise to reshape the way built environment assets are 
designed, constructed, and operated.

With the pervasive use of Building Information Modelling (BIM), lean principles, digital 
technologies, and offsite construction, the industry is at the cusp of this transformation. The 
critical challenge is the fragmented state of teaching, research, and professional practice in the 
built environment sector. This handbook aims to overcome this fragmentation by describing 
Construction 4.0 in the context of its current state, emerging trends and technologies, and the 
people and process issues that surround the coming transformation.

Construction 4.0 is a framework that is a confluence and convergence of the following 
broad themes discussed in this book:

•	 Industrial production (prefabrication, 3D printing and assembly, offsite manufacture)
•	 Cyber-physical systems (actuators, sensors, IoT, robots, cobots, drones)
•	 Digital and computing technologies (BIM, video and laser scanning, AI and cloud com-

puting, big data and data analytics, reality capture, Blockchain, simulation, augmented 
reality, data standards and interoperability, and vertical and horizontal integration)

The aim of this handbook is to describe the Construction 4.0 framework and consequently 
highlight the resultant processes and practices that allow us to plan, design, deliver, and operate 
built environment assets more effectively and efficiently by focusing on the physical-to-digital 
transformation and then digital-to-physical transformation. This book is essential reading for 
all built environment and AEC stakeholders who need to get to grips with the technological 
transformations currently shaping their industry, research, and teaching.
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Foreword

With increasing pressures on the built environment sector to provide the infrastructures and 
homes that are the key economic enablers to city growth, and as people globally are entering 
our cities at the rate of 3 million people a week, the heat is on construction to design, build, 
modify, and operate these assets to our changing needs and that of the communities whose 
evolving demands occupy the space provided.

Construction has continued to innovate, but not at the rate or expectations demanded of 
it. Therefore, we need to consider the opportunity to radically transform our methods and 
approaches to construction that enable it to be more efficient and effective in adopting the 
technologies from other sectors and services to enable it to reshape the way our built envi-
ronment assets emerge now and for the future. The time is now, because the demand is there 
for rapid supply, balanced against the costs of the intensification for the supply of skills and 
resources, coupled with the desire for improved and innovative design.

You will see from reading this book that the key to unlocking the potential and pace of a 
more rapid “right first time” mentality is putting the physical-to-digital and digital-to-physical 
transformation at the heart of the delivery process.

The book is timely, as we are at the tipping point of transformative change for construction 
with already establishing digital practices of Building Information Modelling (BIM), Modern 
Methods of Construction (MMC) as well as VR/AR, AI, 3D, and IoT as rapidly evolving 
technologies to expedite design, deliver, and operate are all coming to the fore, backed by the 
essential data to feed and inform.

There is no doubt that this is an exciting time for the built environment sector and for the 
transformation of the construction processes that deliver it. But there is a level of pace of 
change that is needed now to deliver, transform, and metamorphosize the sector and this book 
captures well the elements necessary to deliver that change.

With this in mind, this book provides the key to unlocking the potential of the built environ-
ment sector at a time where the sector needs unlocking to gear it to transform the delivery of 



xvi

Foreword

our infrastructure, homes, and cities. The key to unlocking the change needed sits within these 
pages, with digital innovation at the heart, and the power of you to drive the transformation 
that will re-establish construction as a key economic enabler for growth.

Amanda G Clack MSc BSc PPRICS FRICS FICE FAPM FRSA CCMI FIC CMC
Executive Director and Head of Strategic Advisory

CBRE Ltd
RICS Past President

The 2017 McKinsey Global Institute’s publication “Reinventing Construction: A Route to 
Higher Productivity” showed that the greatest impact on productivity improvement in the con-
struction industry is through the advancement and application of digital and technology solu-
tions. Over the last few years there has been a significant investment by private equity funds 
in construction industry related digital and technology start-ups and tech companies which 
has fuelled tremendous growth and innovation in this part of the industry. In “Construction 
4.0” the authors pull together all of the relevant elements of these essential solutions and prac-
tices and show how they will enable more effective and efficient planning, design, delivery, 
and operation of physical assets (i.e., capital projects) through a digital transformation. The 
industry has already made significant advancements over the past 2–3 years but much more 
is required among all members of the supply chain involved with capital projects. This publi-
cation presents a comprehensive review of these emerging solutions and systems and makes 
the connection of technology with people and processes. Companies and organizations that do 
not have a “digital strategy” will be able to understand better through “Construction 4.0” how 
each element complements one other and how each is able to improve performance across all 
phases of a capital project. While many companies in the industry have utilized BIM or VR/
AR in one form or another, other advancements such as data analytics, Internet of Things (IoT) 
and use of artificial intelligence are shown to be significant disruptors to the traditional model 
of project development, design, and delivery with significant benefits to be realized by project 
owners, designers, and contractors. Construction performance and productivity has stalled tre-
mendously since World War II compared to every other major industry and in order to be ready 
for the Fourth Industrial Revolution, industry players will need to change and “Construction 
4.0” is an excellent guidebook to such transformation.

In addition to helping professionals working in the industry already, this handbook will 
be a useful resource for several folks in academia … undergraduate and graduate students, 
researchers and scholars with a keen interest in the ongoing transformation of the construction 
industry using the Industry 4.0 framework.

Tim McManus, Adjunct Professor, Columbia University
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1.1 A ims

•	 Provide an overview of Industry 4.0 and the Fourth Industrial Revolution.
•	 Provide a comprehensive review of the current state of the construction sector.
•	 Describe the overall Construction 4.0 framework.
•	 Articulate the purpose of Construction 4.0.
•	 Describe the handbook, its three parts, and its various chapters.

1.2  Introduction to Construction 4.0

With the advent of the Fourth Industrial Revolution (4IR) and the resulting framework of 
Industry 4.0 (I4.0) (MacDougall, 2014), the built environment sector also has the opportunity 
to leapfrog to more efficient production, business models, and value chains. Such a trans-
formation is possible through the convergence of existing and emerging technologies that 
form part of the Industry 4.0 paradigm (Oesterreich and Teuteberg, 2016). This transformative 
framework is called the Construction 4.0 framework in this handbook. Modelled after the 
concept of Industry 4.0, the idea of Construction 4.0 is based on a confluence of trends and 
technologies (both digital and physical) that promise to reshape the way built environment 
assets are designed and constructed.

In 4IR, the fundamental driver is the use of cyber-physical systems. Cyber-physical systems 
(CPS) are enabling technologies that bring the virtual and physical worlds together to create a 
truly networked world in which intelligent objects communicate and interact with each other 
(Griffor et al., 2017). A conceptual model of the CPS is provided in Figure 1.1.

The Construction 4.0 framework uses CPS as a core driver and links it with the concept 
of Digital Ecosystem where ‘A digital ecosystem is an interdependent group of enterprises, 
people and/or things that share standardized digital platforms for a mutually beneficial pur-
pose, such as commercial gain, innovation or common interest’ (Gartner, 2017). The idea of a 
Digital Ecosystem is shown in Figure 1.2.

Construction 4.0 combines CPS and Digital Ecosystem to create a new paradigm for the 
design and construction of our built environment assets as shown in Figure 1.3.

1
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Figure 1.1  Conceptual model of CPS

Figure 1.2  Conceptual model of a Digital Ecosystem

Figure 1.3  Construction 4.0 as a combination of CPS and Digital Ecosystem
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Using the CPS, the cyber-physical gap that exists in the built environment can be bridged, 
and by concomitantly using the Digital Ecosystem the work processes to collaborate effi-
ciently across the project delivery network to design and construct the asset can be enhanced. 
The Construction 4.0 framework, therefore, provides a mechanism via which we can:

a.	 Digitally model the built assets that already exist in our physical world.
b.	 Design new assets in the backdrop of what already exists or plan for the retrofit and reha-

bilitation of existing assets using these digital models.
c.	 Once these assets are digitally captured and designed, use digital and physical technolo-

gies to deliver these physical assets.

The same framework can be adopted during the operation phase of the constructed asset by 
using similar digital and physical technologies to support Facilities Management (FM) func-
tions. However, the focus of this handbook is limited to the design and construction phases.

The aim of this handbook is to describe the Construction 4.0 framework and consequently 
highlight the resultant processes and practices that allow us to plan, design, and deliver built 
environment assets more effectively and efficiently by focusing on the physical-to-digital 
transformation and then digital-to-physical transformation. This concept is illustrated graphi-
cally in Figure 1.4.

With the pervasive use of Building Information Modeling (BIM), lean principles, digital 
technologies, and offsite construction the industry is at the cusp of this transformation. The 
critical challenge is the fragmented state of our teaching, research, and professional practice in 
the built environment domain. The authors and editors of this handbook aim to overcome this 
fragmentation by describing Construction 4.0 in the context of current state, emerging trends 
and technologies, and people and process issues that surround the proposed transformation.

Construction 4.0 is a framework that is a confluence and convergence of the following 
broad themes:

•	 Industrial production (prefabrication, 3D printing, and assembly, offsite manufacture).
•	 Cyber-physical systems (robots and cobots for repetitive and dangerous processes, and 

drones for surveying and lifting, moving and positioning, and actuators).

Figure 1.4  Physical to digital and digital to physical transformation
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•	 Digital technologies (BIM, video and laser scanning, IoT, sensors, AI and cloud com-
puting, big data and data analytics, reality capture, Blockchain, simulation, augmented 
reality, data standards and interoperability, and vertical and horizontal integration).

With this background and motivating factors, the handbook will address issues surrounding the 
key themes of people, processes and practice, and new technologies (as shown in Figure 1.5).

Modern digital and physical technologies are required to achieve the overarching vision 
of the 4IR (Jacobides, Sundararajan, and Van Alstyne, 2019) that underpins the Construction 
4.0 framework, therefore, the framework relies on two broad paradigms: (1) cyber-physical 
systems and (2) Digital Ecosystems. Innovations in both cyber-physical and digital paradigms 
are necessary to advance the vision of Construction 4.0 in our industry.

1.3  Current state of the construction sector

Given the importance of the construction sector to their national economies, several countries 
have undertaken studies to identify the challenges and opportunities that the industry presents. 
For example, the UK has conducted several prominent studies to document the problems of 
the construction sector to put in place a program for improvement of the whole-of-the-sector. 
Sir John Egan, the chair of the Construction Task Force, published his report entitled Rethink-
ing Construction in 1998 (Egan, 1998). It was instrumental in laying out a road map for the 
efficiency improvements within the construction industry in the UK. This came close on the 
heels of the report, titled ‘Constructing the Team’ authored by Sir Michael Latham and pub-
lished in 1994. The Latham report identified inefficiencies and made recommendations for 
enhanced collaboration and coordination in the industry (Latham, 1994). More recently, the 
UK released a report by Mark Farmer entitled ‘Modernise or Die’ (Farmer, 2016) that used a 
‘strong medical process analogy’. Around the time that this study was being conducted, the 
UK government also released their Construction 2025 industrial strategy with a plan to com-
mit close to £75 million in research and development.

Other countries, such as the US, Australia, Canada, Singapore, and China, have also under-
taken sector-wide studies. For example, a similar exercise was conducted in the US, where 
Construction Users Roundtable produced a detailed report to outline a path to competitive 
advantage for construction users.

Several developing nations have also undertaken such studies that identify the problems 
faced and listed the difficulties hindering growth (Al-Momani, 1995b, 1995a; Edmonds, 1979; 
Manoliadis, Tsolas, and Nakou, 2006; Moavenzadeh, 1978; Moore and Shearer, 2004; Ofori, 
1989, 1994, 2000). This is even more important because in developing countries the construction 
sector’s capacity constraints impact the economic development process (Wells, 2001). These 

Figure 1.5  Themes of Construction 4.0
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studies have also developed action points necessary for the development of the construction 
industry (Ofori, 1994, 2000) including the importance of developing key performance indicators 
(Beatham et al., 2004; Ofori, 2000). A priority-based approach was proposed to rank solutions 
offered by the researchers and policymakers (Ofori, 1990) with several researchers presenting 
an optimistic case about the improvement plans (Koenigsberger and Groak, 1978; Turin, 1973).

The repeated nature of these national studies show that there is stagnation and barring 
some incremental improvements; the industry as a whole has still not managed to show major 
improvements. The results have been mostly disappointing (Chemillier, 1988; Ofori, 1984, 
1990; UNCHS, 1990). Barring a few countries, the problems have persisted over a long period 
despite efforts made to overcome them. This has been pointed out in the Farmer report that 
states ‘construction has not even made the transition to “industry 3.0” status which is predi-
cated on large scale use of electronics and IT to automate production’ (Farmer, 2016; Gerbert 
et al., 2017). Research has pointed towards a long-term strategic approach to be followed, 
which is related to the socio-economic needs of the country, often overseen by a steering com-
mittee (Farmer, 2016; Ofori, 1994).

The studies described above have generally identified a standard set of challenges or prob-
lems that the industry faces. In one such study a list of ten grand challenges (shown in Figure 1.6) 
faced by the construction sector in India were identified (Sawhney, Agnihotri, and Paul, 2014).

The following are the key challenges that have been collated from these studies (Farmer, 
2016; Gerbert et al., 2017; Global Industry Council, 2018; Sawhney and Agnihotri, 2014; 
Witthoeft and Kosta, 2017):

1.	 Low levels of research and development leading to a lack of innovation and delayed 
adoption of technologies.

2.	 Workforce issues including shortage of young talent due in part to poor industry image.
3.	 Informal processes and lack of process standardization leading to structural fragmentation.
4.	 Low levels of cross-functional cooperation and limited collaboration leading to a lack of 

improvement culture.
5.	 Low productivity, predictability, and profits.
6.	 Adversarial transaction-based procurement regime.
7.	 Insufficient knowledge transfer from project to project.
8.	 Cultural and mindset issues that act as a blocker to any change.

These issues require a transformational change (Farmer, 2016) in the industry, and we envision 
that Industry 4.0 can provide a broad framework for such a change.

1.4  Overview of Industry 4.0

During the Hannover Messe in 2011, the German Federal Government released its vision 
for the future of the manufacturing sector under the broad umbrella term INDUSTRIE 4.0 
(Roblek, Meško, and Krapež, 2016). It became part of the ‘High-Tech Strategy 2020’ project 
that continues to grow and evolve (MacDougall, 2014). This initiative later became a glob-
ally recognized paradigm that was broadly referenced as I4.0, also seen as a precursor to the 
Fourth Industrial Revolution (Drath and Horch, 2014). Other terms such as smart factory, 
smart manufacturing, smart production, etc., have also been used to define this broad paradigm 
(Oesterreich and Teuteberg, 2016).

Similar initiatives have also been launched by other countries. For example, the United 
States developed the ‘Advanced Manufacturing Partnership’ in 2014 (Rafael, Jackson, and 
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Liveris, 2014) and updated it in 2016, the UK launched an initiative entitled ‘Future of Man-
ufacturing’ (Foresight, 2013) and China is implementing the ‘Made in China 2025’ program 
(Liao et al., 2017).

While the First Industrial Revolution was catalyzed by steam-powered mechanical pro-
duction, the second was driven by electrical-powered mass production; the third was based on 
electronics and automation, the Fourth Industrial Revolution has begun with the promulgation 
of CPS and related technologies (MacDougall, 2014; Pereira and Romero, 2017). It is envi-
sioned that I4.0 will have far-reaching implications on the manufacturing sector that are, in 
turn, likely to have broad social and economic benefits for nations and societies that embrace 
this framework (Oesterreich and Teuteberg, 2016). Furthermore, I4.0 uses technologies such 
as service orientation, smart production, interoperability, cloud computing, big data analytics, 
and cybersecurity (Vogel-Heuser and Hess, 2016). I4.0 facilitates interconnection and com-
puterization in traditional industries, which makes an automatic and flexible adaptation of the 
production chain and provides new types of services and business models of interaction in the 
value chain (Liao et al., 2017; Lu, 2017).

1.4.1  Definition of Industry 4.0

I4.0 is a broad term that has been presented as a ‘confluence of trends and technologies prom-
ises to reshape the way things are made’ (Baur and Wee, 2015). There are several definitions 
of I4.0 but no globally accepted one because the vision, mission, and components of I4.0 are 
still emerging and are being connected to more significant and broader themes such as sustain-
ability and circular economy (Lopes de Sousa Jabbour et al., 2018; Müller, Kiel, and Voigt, 
2018; Rajput and Singh, 2019).

The German government describes I4.0 as ‘a new technological age for manufacturing that 
uses cyber-physical systems and Internet of Things, Data and Services to connect production 
technologies with smart production processes’ (Kagermann, Wahlster, and Helbig, 2013; Mac-
Dougall, 2014) to make manufacturing smart. I4.0 has also been defined at a higher level as ‘a 
new level of value chain organization and management across the lifecycle of products’ (Her-
mann, Pentek, and Otto, 2016; Kagermann, Wahlster, and Helbig, 2013). It is also defined as 
the integration of machinery and devices with networked sensors and software that can be used 
to predict, control, and plan for better business and societal outcomes (Shafiq et al., 2015). In 
a way, I4.0 improves manufacturing organizations, business models that they use, and their 
production processes through the use of physical and digital technologies.

I4.0 is seen as a cross-cutting paradigm that can have broad social and economic benefits. 
It is seen as a way to revolutionize manufacturing and other major sectors, such as energy, 
health, smart cities, and mobility (MacDougall, 2014). The motivation behind this handbook 
is that I4.0 can also act as catalyst for the future of construction that is more industrialized and 
automated. We use this motivation to coin the term Construction 4.0.

1.4.2  Key components of I4.0

I4.0 is a very broad and encompassing term. Therefore, it is essential to understand the key 
components of I4.0. Researchers agree that the push towards I4.0 came from the evolution of 
embedded systems to more advanced cyber-physical systems (CPS) (Vogel-Heuser and Hess, 
2016). This has also formed the basis of the vision developed by the German government. 
CPS is a set of technologies that connect the virtual and physical worlds together to create a 
genuinely networked production environment in which intelligent objects communicate and 
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interact with each other (Kagermann, Wahlster, and Helbig, 2013a). The journey towards I4.0 
began with the embedded systems and their technological evolution towards CPS and further 
to provide an Internet of Things (IoT), Data and Services. Figure 1.7 shows this evolution of 
the embedded systems to CPS.

A CPS is defined as ‘a mechanism that is controlled or monitored by computer-based algo-
rithms, tightly integrated with the Internet and its users’ (Monostori et al., 2016). CPS cre-
ates a virtual copy of the physical production system that is also called the digital twin. This 
is the first step towards I4.0, where a physical-digital-physical loop is created (Rutgers and 
Sniderman, 2018). The production environment in the factory that is created through this is 
also known as the Cyber-Physical Production System (CPPS) (Vogel-Heuser and Hess, 2016). 
CPPS results in a digitalized, smart, optimized, service-oriented, and interoperable production 
environment upon which other components of I4.0 are built.

Once the digital twin of a manufacturing environment is created, other business and tech-
nical aspects of the production process are linked into the I4.0 framework through the Internet 
of Things, Data and Services. Figure 1.8 shows the key components of I4.0. The very core of 
I4.0 is formed by the IoT layer that connects physical objects and things, collects data from 
these connected objects, and allows connected objects to communicate with each other. Based 
on this core layer are the CPS and CPPS layers of the I4.0. CPS helps create the digital twin of 
the physical world, in this case, the manufacturing unit. This allows a loop in which the phys-
ical components that are connected to each other relay data that can be used for a variety of 
purposes including decision making. Changes to the physical world can be made via actuators 
thereby completing the loop.

Figure 1.7  Evolution of embedded systems
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The CPPS sits on top of the CPS layer and provides data about the physical world any-
where and anytime, and helps connect, control, communicate, and compute. CPPS provides an 
intensive connection with the surrounding physical world and its ongoing processes (Monostori 	
et al., 2016). Finally, the topmost layer is the Internet of Data and Internet of Services (IoS). The 
IoS creates a service-oriented ecosystem and brings the end-user of customer centricity to the 
system (Hofmann and Rüsch, 2017). IoS allows the digital tools that support end-user functions 
to be available as a service on the Internet (Alcácer and Cruz-Machado, 2019). Both internal and 
cross-organizational services are offered and utilized by participants of the value chain (Reis and 
Gonçalves, 2018). The IoS helps create networks incorporating the entire manufacturing process 
that convert factories into a smart environment (Kagermann, Wahlster, and Helbig, 2013a).

1.4.3  Enabling technologies and key features

In addition to defining the I4.0 framework by describing its key components, the framework 
can also be defined by identifying its enabling technologies and key features. Liao et al. used 
over 224 research papers published over five years (2012–2016) to determine these technol-
ogies and key features of I4.0 (Liao et al., 2017). Figure 1.9 shows the enabling technologies 
and key features of I4.0 as determined by the literature review. The vision of I4.0 can be 
accomplished through a collective deployment of several related technologies (Alcácer and 
Cruz-Machado, 2019). These technologies work in conjunction with the IoT, CPS, CPPS, and 
IoS as identified in the previous section (Griffor et al., 2017). Based on the frequency of usage 
and mention in the literature these technologies are rank-ordered in Figure 1.9.

Similarly the key features of I4.0 from literature are also listed in rank order in the figure. 
From the literature it can be seen that both in research and practice significant attention is 
given to automation, integration, and collaboration. Less tractable features such as innovation, 
quality, and sustainability are still not prevalent.

Figure 1.8  Industry 4.0 and its key components
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1.4.4  Interoperability and integration in I4.0

Integration and interoperability are two key drivers in the I4.0 framework (Kagermann, Wahl-
ster, and Helbig, 2013a; Vogel-Heuser and Hess, 2016). Interoperability helps two or more 
systems work with each other to exchange data, information, and knowledge. Interoperability 
is achieved through a shared understanding of concepts, standards, languages, and relation-
ships (Xu, Da, Xu, and Li, 2018).

I4.0 leads to the integration of processes, systems, applications, and organizations (Oester-
reich and Teuteberg, 2016). It is anticipated that I4.0 will allow the following three levels of 
integration (Kagermann, Wahlster, and Helbig, 2013a):

•	 Horizontal integration through value networks.
•	 End-to-end digital integration of engineering across the entire value chain.
•	 Vertical integration and networked manufacturing systems.

1.4.5  Impact of Industry 4.0

There are several areas that can be impacted and improved by the application of I4.0 at the 
sector level (Kagermann, Wahlster, and Helbig, 2013; Oesterreich and Teuteberg, 2016; Rose 
et al., 2016):

1.	 Productivity improvement: I4.0 provides several improvements such as automation, 
real-time inventory management, and continuous optimization that lead to productivity 
enhancement.

2.	 Increased quality: ongoing monitoring and control of production allows for improved 
quality of products and services.

3.	 Increased flexibility: with a customer-centric approach, I4.0 allows manufacturing flexi-
bility through automation and robotics.

4.	 Increased speed: with enhanced product life cycle management and physical-digital-
physical integration, the speed of production is enhanced.

Figure 1.9  Enabling technologies and key features of I4.0
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5.	 Safer and better working conditions: with increased automation, real-time monitoring of 
incidents, better-designed workstations, and enhanced work structuring, workers have 
safer and better working conditions.

6.	 Improved collaboration: as the availability of data is enhanced, and digital layer and phys-
ical layer are integrated the intra- and inter-organization collaboration is improved.

7.	 Sustainability: optimized use of resources, reduction in defects, and other environmental 
improvements make operations more sustainable.

8.	 Innovation: I4.0 leads to new ways of creating value and new forms of employment, for 
example through downstream services.

1.5  Construction 4.0 framework

Figure 1.10 shows the various layers and components of the Construction 4.0 framework. 
BIM and a cloud-based Common Data Environment (CDE) are central to the Construction 
4.0 framework (Cooper, 2018; Oesterreich and Teuteberg, 2016). While BIM provides the 
modeling and simulation features that are a core component of the I4.0 framework, CDE acts 
as a repository for storing all the data that relates to the construction project over its life cycle.

The use of BIM and CDE creates a single platform that helps promote:

1.	 Integration of all phases of the project life cycle (vertical integration), all members of the 
project team (horizontal integration), and inter-project learning and knowledge manage-
ment (longitudinal integration).

2.	 Linkage between the physical and cyber (digital) layer over the entire project life cycle. 
This allows the implementers of Construction 4.0 to utilize both physical and digital tech-
nologies in an integrated manner.

Within the Construction 4.0 framework, the following three transformational trends take place:

1.	 Industrial production and construction: by using prefabrication, 3D printing, and assembly, 
offsite manufacture, and automation, the issues and challenges caused by on-site construc-
tion techniques are significantly reduced. This type of industrialized process allows produc-
tion to be digitally linked to BIM and CDE so that instructions can be directly delivered for 
physical production and any production-related information from the physical layer can be 
fed back to the digital layer.

2.	 Cyber-physical systems: the construction site under Construction 4.0 uses robotics and 
automation for production, transport, and assembly, actuators for converting digital sig-
nals into physical actions, and sensors and IoT to sense important information about phys-
ical objects (including people) from the physical layer.

3.	 Digital technologies: the digital transformation relies on the Digital Ecosystem that is 
developed in the digital layer of the Construction 4.0 framework. BIM and CDE provide 
the framework upon which integrated digital tools are built. With the help of video and 
laser scanning technology, artificial intelligence (AI) and cloud computing, big data and 
data analytics, reality capture, Blockchain, simulation, and augmented reality the deliv-
ery and business process is supported in the Construction 4.0 framework. While Digital 
Ecosystems provide the innovation needed for this support, data standards and interoper-
ability also play an essential role in this overall transformation.

Figure 1.11 shows the components of the Construction 4.0 framework, the role they play in the 
framework and the layer in which they are present.
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Figure 1.11  Components of Construction 4.0 framework

1.6  Benefits of Construction 4.0

Several recent studies have attempted to define the I4.0 framework in general and provide a 
road map for research and implementation based on a detailed literature scan (Alcácer and 
Cruz-Machado, 2019; Liao et al., 2017; Pereira and Romero, 2017). Similar attempts are being 
made in regards to Construction 4.0 (Cooper, 2018; Dallasega, Rauch, and Linder, 2018; Oes-
terreich and Teuteberg, 2016). These studies focus on identifying the sectoral benefits of the 
Industry 4.0 concept in general and Construction 4.0 in particular. Based on these studies, the 
benefits of the Construction 4.0 framework are listed below:

1.	 Enabling an innovative environment: the Construction 4.0 framework may provide the 
right mix of enablers to allow the innovation mindset to take root in the industry. Through 
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an integration of the physical and digital layer, it is likely that this innovation will lead 
to integrated solutions that will strike at the heart of horizontal, vertical, and longitudinal 
fragmentation that currently dominates the industry.

2.	 Improving sustainability: the integrated framework of Construction 4.0 allows the indus-
try to fully embrace a life cycle approach and ensure prudent use of resources with a 
significant reduction in energy usage and emissions.

3.	 Improving the image of the industry: the construction industry suffers from an image 
problem caused by several factors. It is well known for its harsh working environment and 
its low level of automation and digitization (Farmer, 2016; Oesterreich and Teuteberg, 
2016). The digital and physical technologies of Construction 4.0 can improve the image 
of the industry by transforming the work, the worker, and the workplace, and make it 
more attractive for recruitment and retention of talent.

4.	 Cost savings: use of industrialized construction supported by digital technologies, BIM, 
and CDE, can help reduce inefficiencies and waste. Robotics and automation can result 
in a reduction in direct costs. Real-time access to the physical layer with abundance of 
data will improve decision making and provide financial incentives for project teams to 
collaborate and innovate.

5.	 Time savings: modern methods of construction like prefabrication, additive manufactur-
ing, and on-site assembly will improve the speed of construction. With real-time access to 
field data, any potential delays can be avoided, resulting in time savings.

6.	 Enhancing safety: Construction 4.0 will enhance site safety. Augmented Reality/Vir-
tual Reality (AR/VR) based training, wearable technologies, IoT based connectivity of 
objects, things, and people, image and video processing can enhance safety.

7.	 Better time and cost predictability: with real-time monitoring, automated site data 
collection, image processing, AI, and analytics tools the time and cost predictability of 
ongoing projects can be improved. Availability of large volumes of historical data and 
information can help set benchmarks for early time and cost prediction of new projects, 
thereby allowing longitudinal integration.

8.	 Improving quality: the horizontal and vertical integration resulting from the adoption of 
Construction 4.0 framework allows the monitoring and control of the design and produc-
tion processes, thereby improving the quality of construction.

9.	 Improving collaboration and communication: use of cloud-based project management 
tools, Blockchain, central repository of information and real-time data access enhances 
trust among the project team members and enhances communication, coordination, and 
collaboration.

10.	 Customer and end-user centric world view: with the reduction in tedious and repetitive 
tasks, the project team focuses on creating value and focusing on what matters most to 
the customer.

1.7  Challenges to implementation of Construction 4.0

The Farmer report documented the reluctance of the construction sector to embrace technol-
ogy and summarized that the industry missed the Industry 3.0 transformation (Farmer, 2016). 
Dallasega, Rauch, and Linder and Oesterreich and Teuteberg based on an extensive litera-
ture review developed the following list of implementation challenges the sector faces while 
implementing Construction 4.0 framework (Dallasega, Rauch, and Linder, 2018; Oesterreich 
and Teuteberg, 2016):


