


CONSTRUCTION 4.0

Modelled on the concept of Industry 4.0, the idea of Construction 4.0 is based on a conflu-
ence of trends and technologies that promise to reshape the way built environment assets are 
designed, constructed, and operated.

With the pervasive use of Building Information Modelling (BIM), lean principles, digital 
technologies, and offsite construction, the industry is at the cusp of this transformation. The 
critical challenge is the fragmented state of teaching, research, and professional practice in the 
built environment sector. This handbook aims to overcome this fragmentation by describing 
Construction 4.0 in the context of its current state, emerging trends and technologies, and the 
people and process issues that surround the coming transformation.

Construction 4.0 is a framework that is a confluence and convergence of the following 
broad themes discussed in this book:

•	 Industrial production (prefabrication, 3D printing and assembly, offsite manufacture)
•	 Cyber-physical	systems	(actuators,	sensors,	IoT,	robots,	cobots,	drones)
•	 Digital and computing technologies (BIM, video and laser scanning, AI and cloud com-

puting, big data and data analytics, reality capture, Blockchain, simulation, augmented 
reality, data standards and interoperability, and vertical and horizontal integration)

The aim of this handbook is to describe the Construction 4.0 framework and consequently 
highlight the resultant processes and practices that allow us to plan, design, deliver, and operate 
built environment assets more effectively and efficiently by focusing on the physical-to-digital 
transformation and then digital-to-physical transformation. This book is essential reading for 
all built environment and AEC stakeholders who need to get to grips with the technological 
transformations currently shaping their industry, research, and teaching.
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FOREwORd

With increasing pressures on the built environment sector to provide the infrastructures and 
homes that are the key economic enablers to city growth, and as people globally are entering 
our cities at the rate of 3 million people a week, the heat is on construction to design, build, 
modify, and operate these assets to our changing needs and that of the communities whose 
evolving demands occupy the space provided.

Construction has continued to innovate, but not at the rate or expectations demanded of 
it. Therefore, we need to consider the opportunity to radically transform our methods and 
approaches to construction that enable it to be more efficient and effective in adopting the 
technologies from other sectors and services to enable it to reshape the way our built envi-
ronment assets emerge now and for the future. The time is now, because the demand is there 
for rapid supply, balanced against the costs of the intensification for the supply of skills and 
resources, coupled with the desire for improved and innovative design.

You will see from reading this book that the key to unlocking the potential and pace of a 
more rapid “right first time” mentality is putting the physical-to-digital and digital-to-physical 
transformation at the heart of the delivery process.

The book is timely, as we are at the tipping point of transformative change for construction 
with already establishing digital practices of Building Information Modelling (BIM), Modern 
Methods of Construction (MMC) as well as VR/AR, AI, 3D, and IoT as rapidly evolving 
technologies to expedite design, deliver, and operate are all coming to the fore, backed by the 
essential data to feed and inform.

There is no doubt that this is an exciting time for the built environment sector and for the 
transformation of the construction processes that deliver it. But there is a level of pace of 
change that is needed now to deliver, transform, and metamorphosize the sector and this book 
captures well the elements necessary to deliver that change.

With this in mind, this book provides the key to unlocking the potential of the built environ-
ment sector at a time where the sector needs unlocking to gear it to transform the delivery of 
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our infrastructure, homes, and cities. The key to unlocking the change needed sits within these 
pages, with digital innovation at the heart, and the power of you to drive the transformation 
that will re-establish construction as a key economic enabler for growth.

Amanda G Clack MSc BSc PPRICS FRICS FICE FAPM FRSA CCMI FIC CMC
Executive Director and Head of Strategic Advisory

CBRE Ltd
RICS Past President

The 2017 McKinsey Global Institute’s publication “Reinventing Construction: A Route to 
Higher Productivity” showed that the greatest impact on productivity improvement in the con-
struction industry is through the advancement and application of digital and technology solu-
tions. Over the last few years there has been a significant investment by private equity funds 
in construction industry related digital and technology start-ups and tech companies which 
has fuelled tremendous growth and innovation in this part of the industry. In “Construction 
4.0” the authors pull together all of the relevant elements of these essential solutions and prac-
tices and show how they will enable more effective and efficient planning, design, delivery, 
and operation of physical assets (i.e., capital projects) through a digital transformation. The 
industry has already made significant advancements over the past 2–3 years but much more 
is required among all members of the supply chain involved with capital projects. This publi-
cation presents a comprehensive review of these emerging solutions and systems and makes 
the connection of technology with people and processes. Companies and organizations that do 
not have a “digital strategy” will be able to understand better through “Construction 4.0” how 
each element complements one other and how each is able to improve performance across all 
phases of a capital project. While many companies in the industry have utilized BIM or VR/
AR in one form or another, other advancements such as data analytics, Internet of Things (IoT) 
and use of artificial intelligence are shown to be significant disruptors to the traditional model 
of project development, design, and delivery with significant benefits to be realized by project 
owners, designers, and contractors. Construction performance and productivity has stalled tre-
mendously since World War II compared to every other major industry and in order to be ready 
for the Fourth Industrial Revolution, industry players will need to change and “Construction 
4.0” is an excellent guidebook to such transformation.

In addition to helping professionals working in the industry already, this handbook will 
be a useful resource for several folks in academia … undergraduate and graduate students, 
researchers and scholars with a keen interest in the ongoing transformation of the construction 
industry using the Industry 4.0 framework.

Tim McManus, Adjunct Professor, Columbia University
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1.1 aims

•	 Provide	an	overview	of	Industry	4.0	and	the	Fourth	Industrial	Revolution.
•	 Provide	a	comprehensive	review	of	the	current	state	of	the	construction	sector.
•	 Describe	the	overall	Construction	4.0	framework.
•	 Articulate	the	purpose	of	Construction	4.0.
•	 Describe	the	handbook,	its	three	parts,	and	its	various	chapters.

1.2 Introduction to Construction 4.0

With	 the	 advent	 of	 the	Fourth	 Industrial	Revolution	 (4IR)	 and	 the	 resulting	 framework	 of	
Industry 4.0 (I4.0)	(MacDougall,	2014),	the	built	environment	sector	also	has	the	opportunity	
to	 leapfrog	 to	more	 efficient	 production,	 business	models,	 and	value	 chains.	Such	 a	 trans-
formation	 is	 possible	 through	 the	 convergence	 of	 existing	 and	 emerging	 technologies	 that	
form	part	of	the	Industry	4.0	paradigm	(Oesterreich	and	Teuteberg,	2016).	This	transformative	
framework	 is	 called	 the	Construction 4.0	 framework	 in	 this	 handbook.	Modelled	 after	 the	
concept	of	Industry	4.0,	the	idea	of	Construction	4.0	is	based	on	a	confluence	of	trends	and	
technologies	 (both	digital	and	physical)	 that	promise	 to	 reshape	 the	way	built	environment	
assets	are	designed	and	constructed.

In	4IR,	the	fundamental	driver	is	the	use	of	cyber-physical	systems.	Cyber-physical systems	
(CPS)	are	enabling	technologies	that	bring	the	virtual	and	physical	worlds	together	to	create	a	
truly	networked	world	in	which	intelligent	objects	communicate	and	interact	with	each	other	
(Griffor	et	al.,	2017).	A	conceptual	model	of	the	CPS	is	provided	in	Figure	1.1.

The	Construction	4.0	framework	uses	CPS	as	a	core	driver	and	links	it	with	the	concept	
of	Digital	Ecosystem	where	‘A	digital	ecosystem	is	an	interdependent	group	of	enterprises,	
people	and/or	things	that	share	standardized	digital	platforms	for	a	mutually	beneficial	pur-
pose,	such	as	commercial	gain,	innovation	or	common	interest’	(Gartner,	2017).	The	idea	of	a	
Digital	Ecosystem	is	shown	in	Figure	1.2.

Construction	4.0	combines	CPS	and	Digital	Ecosystem	to	create	a	new	paradigm	for	the	
design	and	construction	of	our	built	environment	assets	as	shown	in	Figure	1.3.

1
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Figure 1.1 Conceptual	model	of	CPS

Figure 1.2 Conceptual	model	of	a	Digital	Ecosystem

Figure 1.3 Construction	4.0	as	a	combination	of	CPS	and	Digital	Ecosystem
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Using	the	CPS,	the	cyber-physical	gap	that	exists	in	the	built	environment	can	be	bridged,	
and	 by	 concomitantly	 using	 the	Digital	 Ecosystem	 the	work	 processes	 to	 collaborate	 effi-
ciently	across	the	project	delivery	network	to	design	and	construct	the	asset	can	be	enhanced.	
The	Construction	4.0	framework,	therefore,	provides	a	mechanism	via	which	we	can:

a.	 Digitally	model	the	built	assets	that	already	exist	in	our	physical	world.
b.	 Design	new	assets	in	the	backdrop	of	what	already	exists	or	plan	for	the	retrofit	and	reha-

bilitation	of	existing	assets	using	these	digital	models.
c.	 Once	these	assets	are	digitally	captured	and	designed,	use	digital	and	physical	technolo-

gies	to	deliver	these	physical	assets.

The	same	framework	can	be	adopted	during	the	operation	phase	of	the	constructed	asset	by	
using	similar	digital	and	physical	technologies	to	support	Facilities	Management	(FM)	func-
tions.	However,	the	focus	of	this	handbook	is	limited	to	the	design	and	construction	phases.

The	aim	of	this	handbook	is	to	describe	the	Construction	4.0	framework	and	consequently	
highlight	the	resultant	processes	and	practices	that	allow	us	to	plan,	design,	and	deliver	built	
environment	 assets	 more	 effectively	 and	 efficiently	 by	 focusing	 on	 the	 physical-to-digital	
transformation	and	then	digital-to-physical	transformation.	This	concept	is	illustrated	graphi-
cally	in	Figure	1.4.

With	the	pervasive	use	of	Building	Information	Modeling	(BIM),	lean	principles,	digital	
technologies,	and	offsite	construction	the	industry	is	at	the	cusp	of	this	transformation.	The	
critical	challenge	is	the	fragmented	state	of	our	teaching,	research,	and	professional	practice	in	
the	built	environment	domain.	The	authors	and	editors	of	this	handbook	aim	to	overcome	this	
fragmentation	by	describing	Construction	4.0	in	the	context	of	current	state,	emerging	trends	
and	technologies,	and	people	and	process	issues	that	surround	the	proposed	transformation.

Construction	4.0	 is	 a	 framework	 that	 is	 a	 confluence	 and	 convergence	of	 the	 following	
broad	themes:

•	 Industrial	production	(prefabrication,	3D	printing,	and	assembly,	offsite	manufacture).
•	 Cyber-physical	systems	(robots	and	cobots	for	repetitive	and	dangerous	processes,	and	

drones	for	surveying	and	lifting,	moving	and	positioning,	and	actuators).

Figure 1.4 Physical	to	digital	and	digital	to	physical	transformation
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•	 Digital	 technologies	 (BIM,	video	and	 laser	 scanning,	 IoT,	 sensors,	AI	and	cloud	com-
puting,	big	data	and	data	analytics,	 reality	capture,	Blockchain,	simulation,	augmented	
reality,	data	standards	and	interoperability,	and	vertical	and	horizontal	integration).

With	this	background	and	motivating	factors,	the	handbook	will	address	issues	surrounding	the	
key	themes	of	people,	processes	and	practice,	and	new	technologies	(as	shown	in	Figure	1.5).

Modern	digital	and	physical	 technologies	are	required	to	achieve	the	overarching	vision	
of	the	4IR	(Jacobides,	Sundararajan,	and	Van	Alstyne,	2019)	that	underpins	the	Construction	
4.0	framework,	therefore,	the	framework	relies	on	two	broad	paradigms:	(1)	cyber-physical	
systems	and	(2)	Digital	Ecosystems.	Innovations	in	both	cyber-physical	and	digital	paradigms	
are	necessary	to	advance	the	vision	of	Construction	4.0	in	our	industry.

1.3 Current state of the construction sector

Given	the	importance	of	the	construction	sector	to	their	national	economies,	several	countries	
have	undertaken	studies	to	identify	the	challenges	and	opportunities	that	the	industry	presents.	
For	example,	the	UK	has	conducted	several	prominent	studies	to	document	the	problems	of	
the	construction	sector	to	put	in	place	a	program	for	improvement	of	the	whole-of-the-sector.	
Sir	John	Egan,	the	chair	of	the	Construction	Task	Force,	published	his	report	entitled	Rethink-
ing Construction	in	1998	(Egan,	1998).	It	was	instrumental	in	laying	out	a	road	map	for	the	
efficiency	improvements	within	the	construction	industry	in	the	UK.	This	came	close	on	the	
heels	of	the	report,	titled	‘Constructing	the	Team’	authored	by	Sir	Michael	Latham	and	pub-
lished	 in	1994.	The	Latham	report	 identified	 inefficiencies	and	made	 recommendations	 for	
enhanced	collaboration	and	coordination	in	the	industry	(Latham,	1994).	More	recently,	the	
UK	released	a	report	by	Mark	Farmer	entitled	‘Modernise	or	Die’	(Farmer,	2016)	that	used	a	
‘strong	medical	process	analogy’.	Around	the	time	that	this	study	was	being	conducted,	the	
UK	government	also	released	their	Construction	2025	industrial	strategy	with	a	plan	to	com-
mit	close	to	£75	million	in	research	and	development.

Other	countries,	such	as	the	US,	Australia,	Canada,	Singapore,	and	China,	have	also	under-
taken	sector-wide	studies.	For	example,	a	similar	exercise	was	conducted	in	the	US,	where	
Construction	Users	Roundtable	produced	a	detailed	 report	 to	outline	a	path	 to	competitive	
advantage	for	construction	users.

Several	 developing	 nations	 have	 also	 undertaken	 such	 studies	 that	 identify	 the	 problems	
faced	and	listed	the	difficulties	hindering	growth	(Al-Momani,	1995b,	1995a;	Edmonds,	1979;	
Manoliadis,	Tsolas,	and	Nakou,	2006;	Moavenzadeh,	1978;	Moore	and	Shearer,	2004;	Ofori,	
1989,	1994,	2000).	This	is	even	more	important	because	in	developing	countries	the	construction	
sector’s	capacity	constraints	 impact	 the	economic	development	process	 (Wells,	2001).	These	

Figure 1.5 Themes	of	Construction	4.0
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studies	have	also	developed	action	points	necessary	 for	 the	development	of	 the	construction	
industry	(Ofori,	1994,	2000)	including	the	importance	of	developing	key	performance	indicators	
(Beatham	et	al.,	2004;	Ofori,	2000).	A	priority-based	approach	was	proposed	to	rank	solutions	
offered	by	the	researchers	and	policymakers	(Ofori,	1990)	with	several	researchers	presenting	
an	optimistic	case	about	the	improvement	plans	(Koenigsberger	and	Groak,	1978;	Turin,	1973).

The	 repeated	 nature	 of	 these	 national	 studies	 show	 that	 there	 is	 stagnation	 and	 barring	
some	incremental	improvements;	the	industry	as	a	whole	has	still	not	managed	to	show	major	
improvements.	The	results	have	been	mostly	disappointing	 (Chemillier,	1988;	Ofori,	1984,	
1990;	UNCHS,	1990).	Barring	a	few	countries,	the	problems	have	persisted	over	a	long	period	
despite	efforts	made	to	overcome	them.	This	has	been	pointed	out	in	the	Farmer	report	that	
states	‘construction	has	not	even	made	the	transition	to	“industry	3.0”	status	which	is	predi-
cated	on	large	scale	use	of	electronics	and	IT	to	automate	production’	(Farmer,	2016;	Gerbert	
et	 al.,	2017).	Research	has	pointed	 towards	a	 long-term	strategic	approach	 to	be	 followed,	
which	is	related	to	the	socio-economic	needs	of	the	country,	often	overseen	by	a	steering	com-
mittee	(Farmer,	2016;	Ofori,	1994).

The	studies	described	above	have	generally	identified	a	standard	set	of	challenges	or	prob-
lems	that	the	industry	faces.	In	one	such	study	a	list	of	ten	grand	challenges	(shown	in	Figure	1.6)	
faced	by	the	construction	sector	in	India	were	identified	(Sawhney,	Agnihotri,	and	Paul,	2014).

The	following	are	the	key	challenges	that	have	been	collated	from	these	studies	(Farmer,	
2016;	Gerbert	 et	 al.,	 2017;	Global	 Industry	Council,	 2018;	 Sawhney	 and	Agnihotri,	 2014;	
Witthoeft	and	Kosta,	2017):

1.	 Low	 levels	 of	 research	 and	 development	 leading	 to	 a	 lack	 of	 innovation	 and	 delayed	
adoption	of	technologies.

2.	 Workforce	issues	including	shortage	of	young	talent	due	in	part	to	poor	industry	image.
3.	 Informal	processes	and	lack	of	process	standardization	leading	to	structural	fragmentation.
4.	 Low	levels	of	cross-functional	cooperation	and	limited	collaboration	leading	to	a	lack	of	

improvement	culture.
5.	 Low	productivity,	predictability,	and	profits.
6.	 Adversarial	transaction-based	procurement	regime.
7.	 Insufficient	knowledge	transfer	from	project	to	project.
8.	 Cultural	and	mindset	issues	that	act	as	a	blocker	to	any	change.

These	issues	require	a	transformational	change	(Farmer,	2016)	in	the	industry,	and	we	envision	
that	Industry	4.0	can	provide	a	broad	framework	for	such	a	change.

1.4 Overview of Industry 4.0

During	 the	Hannover	Messe	 in	 2011,	 the	German	 Federal	Government	 released	 its	 vision	
for	 the	 future	of	 the	manufacturing	sector	under	 the	broad	umbrella	 term	INDUSTRIE	4.0	
(Roblek,	Meško,	and	Krapež,	2016).	It	became	part	of	the	‘High-Tech	Strategy	2020’	project	
that	continues	to	grow	and	evolve	(MacDougall,	2014).	This	initiative	later	became	a	glob-
ally	recognized	paradigm	that	was	broadly	referenced	as	I4.0,	also	seen	as	a	precursor	to	the	
Fourth	 Industrial	Revolution	 (Drath	 and	Horch,	 2014).	Other	 terms	 such	 as	 smart	 factory,	
smart	manufacturing,	smart	production,	etc.,	have	also	been	used	to	define	this	broad	paradigm	
(Oesterreich	and	Teuteberg,	2016).

Similar	 initiatives	have	also	been	 launched	by	other	countries.	For	example,	 the	United	
States	developed	 the	 ‘Advanced	Manufacturing	Partnership’	 in	2014	 (Rafael,	 Jackson,	 and	
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Liveris,	2014)	and	updated	it	in	2016,	the	UK	launched	an	initiative	entitled	‘Future	of	Man-
ufacturing’	(Foresight,	2013)	and	China	is	implementing	the	‘Made	in	China	2025’	program	
(Liao	et	al.,	2017).

While	 the	First	 Industrial	Revolution	was	 catalyzed	by	 steam-powered	mechanical	pro-
duction,	the	second	was	driven	by	electrical-powered	mass	production;	the	third	was	based	on	
electronics	and	automation,	the	Fourth	Industrial	Revolution	has	begun	with	the	promulgation	
of	CPS	and	related	technologies	(MacDougall,	2014;	Pereira	and	Romero,	2017).	It	is	envi-
sioned	that	I4.0	will	have	far-reaching	implications	on	the	manufacturing	sector	that	are,	in	
turn,	likely	to	have	broad	social	and	economic	benefits	for	nations	and	societies	that	embrace	
this	framework	(Oesterreich	and	Teuteberg,	2016).	Furthermore,	I4.0	uses	technologies	such	
as	service	orientation,	smart	production,	interoperability,	cloud	computing,	big	data	analytics,	
and	cybersecurity	(Vogel-Heuser	and	Hess,	2016).	I4.0	facilitates	interconnection	and	com-
puterization	in	traditional	industries,	which	makes	an	automatic	and	flexible	adaptation	of	the	
production	chain	and	provides	new	types	of	services	and	business	models	of	interaction	in	the	
value	chain	(Liao	et	al.,	2017;	Lu,	2017).

1.4.1 Definition of Industry 4.0

I4.0	is	a	broad	term	that	has	been	presented	as	a	‘confluence	of	trends	and	technologies	prom-
ises	to	reshape	the	way	things	are	made’	(Baur	and	Wee,	2015).	There	are	several	definitions	
of	I4.0	but	no	globally	accepted	one	because	the	vision,	mission,	and	components	of	I4.0	are	
still	emerging	and	are	being	connected	to	more	significant	and	broader	themes	such	as	sustain-
ability	and	circular	economy	(Lopes	de	Sousa	Jabbour	et	al.,	2018;	Müller,	Kiel,	and	Voigt,	
2018;	Rajput	and	Singh,	2019).

The	German	government	describes	I4.0	as	‘a	new	technological	age	for	manufacturing	that	
uses	cyber-physical	systems	and	Internet	of	Things,	Data	and	Services	to	connect	production	
technologies	with	smart	production	processes’	(Kagermann,	Wahlster,	and	Helbig,	2013;	Mac-
Dougall,	2014)	to	make	manufacturing	smart.	I4.0	has	also	been	defined	at	a	higher	level	as	‘a	
new	level	of	value	chain	organization	and	management	across	the	lifecycle	of	products’	(Her-
mann,	Pentek,	and	Otto,	2016;	Kagermann,	Wahlster,	and	Helbig,	2013).	It	is	also	defined	as	
the	integration	of	machinery	and	devices	with	networked	sensors	and	software	that	can	be	used	
to	predict,	control,	and	plan	for	better	business	and	societal	outcomes	(Shafiq	et	al.,	2015).	In	
a	way,	I4.0	improves	manufacturing	organizations,	business	models	that	they	use,	and	their	
production	processes	through	the	use	of	physical	and	digital	technologies.

I4.0	is	seen	as	a	cross-cutting	paradigm	that	can	have	broad	social	and	economic	benefits.	
It	 is	seen	as	a	way	to	revolutionize	manufacturing	and	other	major	sectors,	such	as	energy,	
health,	smart	cities,	and	mobility	(MacDougall,	2014).	The	motivation	behind	this	handbook	
is	that	I4.0	can	also	act	as	catalyst	for	the	future	of	construction	that	is	more	industrialized	and	
automated.	We	use	this	motivation	to	coin	the	term	Construction	4.0.

1.4.2 Key components of I4.0

I4.0	is	a	very	broad	and	encompassing	term.	Therefore,	it	is	essential	to	understand	the	key	
components	of	I4.0.	Researchers	agree	that	the	push	towards	I4.0	came	from	the	evolution	of	
embedded	systems	to	more	advanced	cyber-physical	systems	(CPS)	(Vogel-Heuser	and	Hess,	
2016).	This	has	also	formed	the	basis	of	 the	vision	developed	by	 the	German	government.	
CPS	is	a	set	of	technologies	that	connect	the	virtual	and	physical	worlds	together	to	create	a	
genuinely	networked	production	environment	in	which	intelligent	objects	communicate	and	
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interact	with	each	other	(Kagermann,	Wahlster,	and	Helbig,	2013a).	The	journey	towards	I4.0	
began	with	the	embedded	systems	and	their	technological	evolution	towards	CPS	and	further	
to	provide	an	Internet	of	Things	(IoT),	Data	and	Services.	Figure	1.7	shows	this	evolution	of	
the	embedded	systems	to	CPS.

A	CPS	is	defined	as	‘a	mechanism	that	is	controlled	or	monitored	by	computer-based	algo-
rithms,	 tightly	integrated	with	the	Internet	and	its	users’	(Monostori	et	al.,	2016).	CPS	cre-
ates	a	virtual	copy	of	the	physical	production	system	that	is	also	called	the	digital	twin.	This	
is	the	first	step	towards	I4.0,	where	a	physical-digital-physical	loop	is	created	(Rutgers	and	
Sniderman,	2018).	The	production	environment	in	the	factory	that	is	created	through	this	is	
also	known	as	the	Cyber-Physical	Production	System	(CPPS)	(Vogel-Heuser	and	Hess,	2016).	
CPPS	results	in	a	digitalized,	smart,	optimized,	service-oriented,	and	interoperable	production	
environment	upon	which	other	components	of	I4.0	are	built.

Once	the	digital	twin	of	a	manufacturing	environment	is	created,	other	business	and	tech-
nical	aspects	of	the	production	process	are	linked	into	the	I4.0	framework	through	the	Internet	
of	Things,	Data	and	Services.	Figure	1.8	shows	the	key	components	of	I4.0.	The	very	core	of	
I4.0	is	formed	by	the	IoT	layer	that	connects	physical	objects	and	things,	collects	data	from	
these	connected	objects,	and	allows	connected	objects	to	communicate	with	each	other.	Based	
on	this	core	layer	are	the	CPS	and	CPPS	layers	of	the	I4.0.	CPS	helps	create	the	digital	twin	of	
the	physical	world,	in	this	case,	the	manufacturing	unit.	This	allows	a	loop	in	which	the	phys-
ical	components	that	are	connected	to	each	other	relay	data	that	can	be	used	for	a	variety	of	
purposes	including	decision	making.	Changes	to	the	physical	world	can	be	made	via	actuators	
thereby	completing	the	loop.

Figure 1.7 Evolution	of	embedded	systems
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The	CPPS	 sits	on	 top	of	 the	CPS	 layer	 and	provides	data	 about	 the	physical	world	 any-
where	and	anytime,	and	helps	connect,	control,	communicate,	and	compute.	CPPS	provides	an	
intensive	connection	with	the	surrounding	physical	world	and	its	ongoing	processes	(Monostori		
et	al.,	2016).	Finally,	the	topmost	layer	is	the	Internet	of	Data	and	Internet	of	Services	(IoS).	The	
IoS	creates	a	service-oriented	ecosystem	and	brings	the	end-user	of	customer	centricity	to	the	
system	(Hofmann	and	Rüsch,	2017).	IoS	allows	the	digital	tools	that	support	end-user	functions	
to	be	available	as	a	service	on	the	Internet	(Alcácer	and	Cruz-Machado,	2019).	Both	internal	and	
cross-organizational	services	are	offered	and	utilized	by	participants	of	the	value	chain	(Reis	and	
Gonçalves,	2018).	The	IoS	helps	create	networks	incorporating	the	entire	manufacturing	process	
that	convert	factories	into	a	smart	environment	(Kagermann,	Wahlster,	and	Helbig,	2013a).

1.4.3 Enabling technologies and key features

In	addition	to	defining	the	I4.0	framework	by	describing	its	key	components,	the	framework	
can	also	be	defined	by	identifying	its	enabling	technologies	and	key	features.	Liao	et	al.	used	
over	224	research	papers	published	over	five	years	(2012–2016)	to	determine	these	technol-
ogies	and	key	features	of	I4.0	(Liao	et	al.,	2017).	Figure	1.9	shows	the	enabling	technologies	
and	 key	 features	 of	 I4.0	 as	 determined	 by	 the	 literature	 review.	The	 vision	 of	 I4.0	 can	 be	
accomplished	through	a	collective	deployment	of	several	related	technologies	(Alcácer	and	
Cruz-Machado,	2019).	These	technologies	work	in	conjunction	with	the	IoT,	CPS,	CPPS,	and	
IoS	as	identified	in	the	previous	section	(Griffor	et	al.,	2017).	Based	on	the	frequency	of	usage	
and	mention	in	the	literature	these	technologies	are	rank-ordered	in	Figure	1.9.

Similarly	the	key	features	of	I4.0	from	literature	are	also	listed	in	rank	order	in	the	figure.	
From	 the	 literature	 it	 can	be	seen	 that	both	 in	 research	and	practice	significant	attention	 is	
given	to	automation,	integration,	and	collaboration.	Less	tractable	features	such	as	innovation,	
quality,	and	sustainability	are	still	not	prevalent.

Figure 1.8 Industry	4.0	and	its	key	components
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1.4.4 Interoperability and integration in I4.0

Integration	and	interoperability	are	two	key	drivers	in	the	I4.0	framework	(Kagermann,	Wahl-
ster,	and	Helbig,	2013a;	Vogel-Heuser	and	Hess,	2016).	 Interoperability	helps	 two	or	more	
systems	work	with	each	other	to	exchange	data,	information,	and	knowledge.	Interoperability	
is	achieved	through	a	shared	understanding	of	concepts,	standards,	languages,	and	relation-
ships	(Xu,	Da,	Xu,	and	Li,	2018).

I4.0	leads	to	the	integration	of	processes,	systems,	applications,	and	organizations	(Oester-
reich	and	Teuteberg,	2016).	It	is	anticipated	that	I4.0	will	allow	the	following	three	levels	of	
integration	(Kagermann,	Wahlster,	and	Helbig,	2013a):

•	 Horizontal	integration	through	value	networks.
•	 End-to-end	digital	integration	of	engineering	across	the	entire	value	chain.
•	 Vertical	integration	and	networked	manufacturing	systems.

1.4.5 Impact of Industry 4.0

There	are	several	areas	that	can	be	impacted	and	improved	by	the	application	of	I4.0	at	the	
sector	level	(Kagermann,	Wahlster,	and	Helbig,	2013;	Oesterreich	and	Teuteberg,	2016;	Rose	
et	al.,	2016):

1.	 Productivity	 improvement:	 I4.0	 provides	 several	 improvements	 such	 as	 automation,	
real-time	inventory	management,	and	continuous	optimization	that	lead	to	productivity	
enhancement.

2.	 Increased	 quality:	 ongoing	monitoring	 and	 control	 of	 production	 allows	 for	 improved	
quality	of	products	and	services.

3.	 Increased	flexibility:	with	a	customer-centric	approach,	I4.0	allows	manufacturing	flexi-
bility	through	automation	and	robotics.

4.	 Increased	 speed:	 with	 enhanced	 product	 life	 cycle	 management	 and	 physical-digital-	
physical	integration,	the	speed	of	production	is	enhanced.

Figure 1.9 Enabling	technologies	and	key	features	of	I4.0
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5.	 Safer	and	better	working	conditions:	with	increased	automation,	real-time	monitoring	of	
incidents,	 better-designed	workstations,	 and	 enhanced	work	 structuring,	workers	 have	
safer	and	better	working	conditions.

6.	 Improved	collaboration:	as	the	availability	of	data	is	enhanced,	and	digital	layer	and	phys-
ical	layer	are	integrated	the	intra-	and	inter-organization	collaboration	is	improved.

7.	 Sustainability:	optimized	use	of	resources,	reduction	in	defects,	and	other	environmental	
improvements	make	operations	more	sustainable.

8.	 Innovation:	I4.0	leads	to	new	ways	of	creating	value	and	new	forms	of	employment,	for	
example	through	downstream	services.

1.5 Construction 4.0 framework

Figure	1.10	shows	 the	various	 layers	and	components	of	 the	Construction	4.0	 framework.	
BIM	and	a	cloud-based	Common	Data	Environment	(CDE)	are	central	to	the	Construction	
4.0	framework	(Cooper,	2018;	Oesterreich	and	Teuteberg,	2016).	While	BIM	provides	 the	
modeling	and	simulation	features	that	are	a	core	component	of	the	I4.0	framework,	CDE	acts	
as	a	repository	for	storing	all	the	data	that	relates	to	the	construction	project	over	its	life	cycle.

The	use	of	BIM	and	CDE	creates	a	single	platform	that	helps	promote:

1.	 Integration	of	all	phases	of	the	project	life	cycle	(vertical	integration),	all	members	of	the	
project	team	(horizontal	integration),	and	inter-project	learning	and	knowledge	manage-
ment	(longitudinal	integration).

2.	 Linkage	between	the	physical	and	cyber	(digital)	layer	over	the	entire	project	life	cycle.	
This	allows	the	implementers	of	Construction	4.0	to	utilize	both	physical	and	digital	tech-
nologies	in	an	integrated	manner.

Within	the	Construction	4.0	framework,	the	following	three	transformational	trends	take	place:

1.	 Industrial	production	and	construction:	by	using	prefabrication,	3D	printing,	and	assembly,	
offsite	manufacture,	and	automation,	the	issues	and	challenges	caused	by	on-site	construc-
tion	techniques	are	significantly	reduced.	This	type	of	industrialized	process	allows	produc-
tion	to	be	digitally	linked	to	BIM	and	CDE	so	that	instructions	can	be	directly	delivered	for	
physical	production	and	any	production-related	information	from	the	physical	layer	can	be	
fed	back	to	the	digital	layer.

2.	 Cyber-physical	systems:	the	construction	site	under	Construction	4.0	uses	robotics	and	
automation	for	production,	transport,	and	assembly,	actuators	for	converting	digital	sig-
nals	into	physical	actions,	and	sensors	and	IoT	to	sense	important	information	about	phys-
ical	objects	(including	people)	from	the	physical	layer.

3.	 Digital	 technologies:	 the	digital	 transformation	 relies	on	 the	Digital	Ecosystem	 that	 is	
developed	in	the	digital	layer	of	the	Construction	4.0	framework.	BIM	and	CDE	provide	
the	framework	upon	which	integrated	digital	tools	are	built.	With	the	help	of	video	and	
laser	scanning	technology,	artificial	intelligence	(AI)	and	cloud	computing,	big	data	and	
data	analytics,	reality	capture,	Blockchain,	simulation,	and	augmented	reality	the	deliv-
ery	and	business	process	is	supported	in	the	Construction	4.0	framework.	While	Digital	
Ecosystems	provide	the	innovation	needed	for	this	support,	data	standards	and	interoper-
ability	also	play	an	essential	role	in	this	overall	transformation.

Figure	1.11	shows	the	components	of	the	Construction	4.0	framework,	the	role	they	play	in	the	
framework	and	the	layer	in	which	they	are	present.
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Figure 1.11 Components	of	Construction	4.0	framework

1.6 Benefits of Construction 4.0

Several	recent	studies	have	attempted	to	define	the	I4.0	framework	in	general	and	provide	a	
road	map	for	research	and	implementation	based	on	a	detailed	 literature	scan	(Alcácer	and	
Cruz-Machado,	2019;	Liao	et	al.,	2017;	Pereira	and	Romero,	2017).	Similar	attempts	are	being	
made	in	regards	to	Construction	4.0	(Cooper,	2018;	Dallasega,	Rauch,	and	Linder,	2018;	Oes-
terreich	and	Teuteberg,	2016).	These	studies	focus	on	identifying	the	sectoral	benefits	of	the	
Industry	4.0	concept	in	general	and	Construction	4.0	in	particular.	Based	on	these	studies,	the	
benefits	of	the	Construction	4.0	framework	are	listed	below:

1.	 Enabling	an	innovative	environment:	 the	Construction	4.0	framework	may	provide	the	
right	mix	of	enablers	to	allow	the	innovation	mindset	to	take	root	in	the	industry.	Through	
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an	integration	of	the	physical	and	digital	layer,	it	is	likely	that	this	innovation	will	lead	
to	integrated	solutions	that	will	strike	at	the	heart	of	horizontal,	vertical,	and	longitudinal	
fragmentation	that	currently	dominates	the	industry.

2.	 Improving	sustainability:	the	integrated	framework	of	Construction	4.0	allows	the	indus-
try	 to	 fully	 embrace	a	 life	 cycle	 approach	and	ensure	prudent	use	of	 resources	with	 a	
significant	reduction	in	energy	usage	and	emissions.

3.	 Improving	 the	 image	of	 the	 industry:	 the	 construction	 industry	 suffers	 from	an	 image	
problem	caused	by	several	factors.	It	is	well	known	for	its	harsh	working	environment	and	
its	 low	level	of	automation	and	digitization	(Farmer,	2016;	Oesterreich	and	Teuteberg,	
2016).	The	digital	and	physical	technologies	of	Construction	4.0	can	improve	the	image	
of	 the	 industry	by	 transforming	 the	work,	 the	worker,	and	 the	workplace,	and	make	 it	
more	attractive	for	recruitment	and	retention	of	talent.

4.	 Cost	savings:	use	of	industrialized	construction	supported	by	digital	technologies,	BIM,	
and	CDE,	can	help	reduce	inefficiencies	and	waste.	Robotics	and	automation	can	result	
in	a	reduction	in	direct	costs.	Real-time	access	to	the	physical	layer	with	abundance	of	
data	will	improve	decision	making	and	provide	financial	incentives	for	project	teams	to	
collaborate	and	innovate.

5.	 Time	savings:	modern	methods	of	construction	like	prefabrication,	additive	manufactur-
ing,	and	on-site	assembly	will	improve	the	speed	of	construction.	With	real-time	access	to	
field	data,	any	potential	delays	can	be	avoided,	resulting	in	time	savings.

6.	 Enhancing	 safety:	 Construction	 4.0	 will	 enhance	 site	 safety.	Augmented	 Reality/Vir-
tual	Reality	(AR/VR)	based	training,	wearable	technologies,	IoT	based	connectivity	of	
objects,	things,	and	people,	image	and	video	processing	can	enhance	safety.

7.	 Better	 time	 and	 cost	 predictability:	 with	 real-time	 monitoring,	 automated	 site	 data	
	collection,	image	processing,	AI,	and	analytics	tools	the	time	and	cost	predictability	of	
ongoing	projects	can	be	 improved.	Availability	of	 large	volumes	of	historical	data	and	
information	can	help	set	benchmarks	for	early	time	and	cost	prediction	of	new	projects,	
thereby	allowing	longitudinal	integration.

8.	 Improving	quality:	the	horizontal	and	vertical	integration	resulting	from	the	adoption	of	
Construction	4.0	framework	allows	the	monitoring	and	control	of	the	design	and	produc-
tion	processes,	thereby	improving	the	quality	of	construction.

9.	 Improving	 collaboration	 and	 communication:	 use	 of	 cloud-based	 project	management	
tools,	Blockchain,	central	repository	of	information	and	real-time	data	access	enhances	
trust	among	the	project	team	members	and	enhances	communication,	coordination,	and	
collaboration.

10.	 Customer	and	end-user	centric	world	view:	with	the	reduction	in	tedious	and	repetitive	
tasks,	the	project	team	focuses	on	creating	value	and	focusing	on	what	matters	most	to	
the	customer.

1.7 Challenges to implementation of Construction 4.0

The	Farmer	report	documented	the	reluctance	of	the	construction	sector	to	embrace	technol-
ogy	and	summarized	that	the	industry	missed	the	Industry	3.0	transformation	(Farmer,	2016).	
Dallasega,	Rauch,	 and	Linder	 and	Oesterreich	and	Teuteberg	based	on	an	extensive	 litera-
ture	review	developed	the	following	list	of	implementation	challenges	the	sector	faces	while	
implementing	Construction	4.0	framework	(Dallasega,	Rauch,	and	Linder,	2018;	Oesterreich	
and	Teuteberg,	2016):


