
[image: image]

CLICK HERE TO KILL EVERYBODY

SECURITY AND SURVIVAL IN A HYPER-CONNECTED WORLD

Bruce Schneier

[image: image]

W. W. NORTON & COMPANY

INDEPENDENT PUBLISHERS SINCE 1923

NEW YORK LONDON

For Arlene, with best wishes

CONTENTS

INTRODUCTION: EVERYTHING IS BECOMING A COMPUTER

PART I: THE TRENDS

 1. COMPUTERS ARE STILL HARD TO SECURE

 2. PATCHING IS FAILING AS A SECURITY PARADIGM

 3. KNOWING WHO’S WHO ON THE INTERNET IS GETTING HARDER

 4. EVERYONE FAVORS INSECURITY

 5. RISKS ARE BECOMING CATASTROPHIC

PART II: THE SOLUTIONS

 6. WHAT A SECURE INTERNET+ LOOKS LIKE

 7. HOW WE CAN SECURE THE INTERNET+

 8. GOVERNMENT IS WHO ENABLES SECURITY

 9. HOW GOVERNMENTS CAN PRIORITIZE DEFENSE OVER OFFENSE

 10. PLAN B: WHAT’S LIKELY TO HAPPEN

 11. WHERE POLICY CAN GO WRONG

 12. TOWARDS A TRUSTED, RESILIENT, AND PEACEFUL INTERNET+

CONCLUSION: BRING TECHNOLOGY AND POLICY TOGETHER

ACKNOWLEDGMENTS

NOTES

INDEX

ABOUT THE AUTHOR

CLICK HERE TO KILL EVERYBODY

INTRODUCTION

Everything Is Becoming a Computer

Consider these three incidents, and their implications.

Scenario one: In 2015, two security researchers took over the controls of a Jeep Cherokee. They did it from ten miles away through the vehicle’s Internet-connected entertainment system. A video shows the driver’s terrified expression as he’s driving on a highway, powerless while the hackers turn on the air-conditioning, change the radio station, turn on the wipers, and eventually kill the engine. Since this was a demonstration and not a murder attempt, the researchers did not take control of the brakes or the steering, but they could have.

This isn’t a one-off trick. Hackers have demonstrated vulnerabilities in several automobile models. They hacked in through the diagnostics port. They hacked in through the DVD player. They hacked in through the OnStar navigation system and the computers embedded in the tires.

Airplanes are vulnerable, too. There’s been nothing as vivid as the Jeep demonstration, but security researchers have been making claims that the avionics of commercial airplanes are vulnerable via the entertainment system and through air-to-ground communications systems. For years, airplane manufacturers denied that hacking an airplane was possible. Finally, in 2017, the US Department of Homeland Security demonstrated a remote hack of a Boeing 757. No details were provided.

Scenario two: In 2016, hackers—presumably Russian—remotely detonated a cyberweapon named CrashOverride at the Pivnichna high-voltage power substation near Kiev in Ukraine, shutting it down.

The CrashOverride attack was different from the cyberattack that targeted the Prykarpattyaoblenergo control center in Western Ukraine the previous year. That attack also caused a blackout, but it was a more manual attack. There, the attackers—again, presumably Russian—gained access to the system via a malware backdoor, then remotely took control of the center’s computers and turned the power off. (One of the station operators recorded a video of it happening.) CrashOverride, on the other hand, did it all automatically.

In the end, the people who received their power from the Pivnichna substation got lucky. Technicians there took the plant offline and manually restored power an hour or so later. It’s unclear whether similar US plants have the same manual overrides, let alone staff with the skill to use them.

CrashOverride was a military weapon. It was modularly designed, and could easily be reconfigured for a variety of targets: gas pipelines, water treatment plants, and so on. It had a variety of other “payloads” that weren’t even fired off in the Ukraine attack. It could have repeatedly cycled the substation power on and off, physically damaging the equipment and shutting down power for days or weeks. In the middle of a Ukrainian winter, this would be fatal for many people. And while this weapon was fired as part of a government operation, it was also a test of capability. In recent years, Russian hackers penetrated more than 20 US power stations, often accessing critical systems but without causing damage; these were also tests of capability.

Scenario three: Over a weekend in 2017, someone hacked 150,000 printers around the world. The hacker wrote a program that automatically detected common insecure printers and had them repeatedly print ASCII art and taunting messages. This kind of thing happens regularly, and it’s basically vandalism. Earlier in the same year, printers at several US universities were hacked to print anti-Semitic flyers.

We haven’t yet seen this kind of attack against 3D printers, but there’s no reason to believe they are not similarly vulnerable. Hacking one would still only result in expense and annoyance, but the threat level changes dramatically when we consider bio-printers. These are still in their infancy, but the potential is that viruses customized to attack individual patients’ cancers or other illnesses could be synthesized and assembled by automated equipment.

Imagine a future where those bio-printers are common in hospitals, pharmacies, and doctors’ offices. A hacker with remote-access capabilities and the proper printing instructions could force a bio-printer to print a killer virus. He could force the printer to print lots of it, or force many printers to print smaller batches. If the virus could spread widely enough, infect enough people, and be persistent enough, we might have a worldwide pandemic on our hands.

“Click here to kill everybody,” indeed.

Why are these scenarios possible? A 1998 car wasn’t vulnerable to people miles away taking over its controls. Neither was a 1998 power substation. The current models are vulnerable, and the future bio-printer will be vulnerable, because at their core they are computers. Everything is becoming vulnerable in this way because everything is becoming a computer. More specifically, a computer on the Internet.

Your oven is a computer that makes things hot. Your refrigerator is a computer that keeps things cold. Your camera is a computer with a lens and a shutter. An ATM is a computer with money inside. And modern light bulbs are computers that shine brightly when someone—or some other computer—flips a power switch.

Your car used to be a mechanical device with some computers in it. Now, it is a 20-to 40-computer distributed system with four wheels and an engine. When you step on the brake, it might feel as if you’re physically stopping the car, but in reality you’re just sending an electronic signal to the brakes; there’s no longer a mechanical connection between the pedal and the brake pads.

Your phone became a powerful computer in 2007, when the iPhone was introduced.

We carry those smartphones everywhere. And “smart” is the prefix we use for these newly computerized things that are on the Internet, meaning that they can collect, use, and communicate data to operate. A television is smart when it constantly collects data about your usage habits to optimize your experience.

Soon, smart devices will be embedded in our bodies. Modern pacemakers and insulin pumps are smart. Pills are becoming smart. Smart contact lenses will not only display information that is based on what you see, but monitor your glucose levels and diagnose your glaucoma. Fitness trackers are smart and increasingly capable of sensing our bodily states.

Objects are also getting smart. You can buy a smart collar for your dog and a smart toy for your cat. You can buy a smart pen, a smart toothbrush, a smart coffee cup, a smart sex toy, a smart Barbie doll, a smart tape measure, and a smart sensor for your plants. You can even buy a smart motorcycle helmet that will automatically call an ambulance and text your family if you have an accident.

We’re already seeing the beginnings of smart homes. The virtual assistant Alexa and its cousins listen for your commands and respond. There are smart thermostats, smart power outlets, and smart appliances. You can buy a smart bathroom scale and a smart toilet. You can buy smart light bulbs and a smart hub to control them. You can buy a smart door lock that will allow you to give repair technicians and delivery people a onetime code to enter your home, and a smart bed that senses your sleeping patterns and diagnoses your sleep disorders.

In workplaces, many of those same smart devices are networked together with surveillance cameras, sensors that detect customer movements, and everything else. Smart systems in buildings will provide more efficient lighting, elevator operation, climate control, and other services.

Cities are starting to embed smart sensors in roads, streetlights, and sidewalk squares, as well as smart energy grids and smart transportation networks. Soon, cities will be able to control your appliances and other home devices to optimize energy use. Networks of smart driverless cars will automatically route themselves to where they’re needed, minimizing energy use in the process. Sensors and controls in the streets will better regulate traffic, speed up both police and medical response times, and automatically report road flooding. Other sensors will improve the efficiency of public services, from dispatching police to optimizing garbage truck routes to repairing potholes. Smart billboards will recognize you as you walk by and display advertising tailored to you.

A power substation is really just a computer that distributes electricity, and—like everything else—it’s on the Internet. CrashOverride didn’t infect the Pivnichna substation directly; it was hiding in the computers of a control room miles away, which was connected to the station over the Internet.

This technological shift occurred during the last decade or so. It used to be that things had computers in them. Now they are computers with things attached to them. And as computers continue to get smaller and cheaper, they’re being embedded into more things, and more things are turning into computers. You might not notice it, and you certainly don’t shop for cars and refrigerators as computers; you buy them for their transportation and cooling functions. But they’re computers, and that matters when it comes to security.

Our conception of the Internet is also shifting. We no longer go to a specific place in our homes or offices and log on to what appears to be a separate space. We no longer enter a chat room, download our e-mail, or—in many cases—surf the Internet. Those spatial metaphors don’t make sense anymore, and in a few years, saying “I’m going on the Internet” will make about as much sense as plugging in a toaster and saying “I’m going on the power grid.”

The name given to this ubiquitous connectivity is the “Internet of Things” (IoT). It’s mostly a marketing term, but it is also very real. The tech analyst firm Gartner defines it as “the network of physical objects that contain embedded technology to communicate and sense or interact with their internal states or the external environment.” It’s about connecting all sorts of devices over the Internet, and letting them talk to us, each other, and different computer applications.

The magnitude of this change is staggering. In 2017, there were 8.4 billion things attached to the Internet—primarily computers and phones—an increase by a third over the previous year. By 2020, there are likely to be somewhere between 20 and 75 billion, depending on whose estimates you believe.

This explosive growth comes from vendors who are looking for a competitive edge, or who just want to keep up with the competition and decide that making their products “smart” will do the trick. As computers become smaller—and even cheaper—we will start seeing them in more places.

Your washing machine is already a computer that cleans clothes. When the newest, cheapest, and best embedded computers have Internet connectivity, it will be easier for your washing machine manufacturer to include that feature. And then it will become harder and harder for you to buy a new washing machine without Internet connectivity.

Two years ago, I tried and failed to buy a new car without an Internet connection. There were cars for sale without Internet connectivity, but it was standard in all of the cars I otherwise wanted. As the price of these technologies decreases, this will happen to everything. The Internet will become part of cheaper and less versatile devices, until it’s a standard feature with everything.

Today, it might seem dumb that your washing machine has an Internet connection, and impossible that your T-shirt someday will. But in a few years, it will just be the normal state of things. Computers are still getting more powerful, smaller, and cheaper; all it will take for Internet-enabled clothing to become the norm is for the cost of a microprocessor to be lower than the benefit to the retailer of automatic inventory tracking pre-sale and of automatic use tracking post-sale. In another decade, you might not be able to buy a sensor-free T-shirt, and by then you’ll take it for granted that your washing machine talks with the clothes it’s washing and automatically determines the optimal cycle and detergent to use. Then the washing machine manufacturer will sell the information about what you’re wearing—and no longer wearing—to the clothing manufacturers.

Whenever I talk about this kind of thing, there are people who ask, “Why?” They can understand reducing energy use but can’t fathom why anyone would put their coffeepot or toothbrush on the Internet. “The ‘Smart Everything’ Trend Has Officially Turned Stupid,” read one 2016 headline, about an early attempt at an Internet-connected refrigerator.

The answer is simple: market economics. As the cost of computerizing devices goes down, the marginal benefit—in either features provided or surveillance data collected—necessary to justify the computerization also goes down. This benefit could be to the user in terms of additional features, or to the manufacturer in terms of learning about and marketing to its user base. At the same time, chip suppliers are moving away from making specialty chips and towards making general-purpose, mass-produced, cheaper chips. As these embedded computers become standardized, it will be less expensive for manufacturers to include connectivity than to remove it. It will literally be cheaper to litter the city with sensors than to clean litter off the sidewalks.

There are advantages to computerizing everything—some that we can see today, and some that we’ll realize only once these computers have reached critical mass. The Internet of Things will embed itself into our lives at every level, and I don’t think we can predict the emergent properties of this trend. We’re reaching a fundamental shift that is due to scale and scope; these differences in degree are causing a difference in kind. Everything is becoming one complex hyper-connected system in which, even if things don’t interoperate, they’re on the same network and affect each other.

There is more to this trend than the Internet of Things. Take the Internet of Things. Start with the IoT or, more generally, cyberphysical systems. Add the miniaturization of sensors, controllers, and transmitters. Then add autonomous algorithms, machine learning, and artificial intelligence. Toss in some cloud computing, with corresponding increases in capabilities for storage and processing. Don’t forget to include Internet penetration, pervasive computing, and the widespread availability of high-speed wireless connectivity. And finally, mix in some robotics. What you get is a single global Internet that affects the world in a direct physical manner. It’s an Internet that senses, thinks, and acts.

These are not distinct trends, but ones that converge with, build on, and reinforce each other. Robotics uses autonomous algorithms. Drones combine the IoT, autonomy, and mobile computing. Smart billboards combine personalization with the IoT. A system that automatically regulates water flowing over a dam combines cyberphysical systems, autonomous agents, and probably cloud computing.

And although we’d like to think otherwise, humans are just another component in many of these systems. We provide inputs to these computers and accept their outputs. We are the consumers of their automated functionality. We provide the connections and communications between systems that haven’t quite become smart enough to cut us out of the loop. We move these systems around, at least the ones that aren’t physically autonomous. We affect these systems, and we are affected by these systems. To a very real degree, we will become virtual cyborgs even if these devices remain distinct from our physiology.

We need a name for this new system of systems. It’s more than the Internet, more than the Internet of Things. It’s really the Internet + Things. More accurately, the Internet + Things + us. Or, for short, the Internet+. Honestly, I wish I didn’t have to coin a term, but I can’t find an existing term that describes the apotheosis of all of those trends. So, “Internet+” it is, at least in this book.

Of course, words like “smart” and “thinks” are relative. At this point, they’re more aspirational than anything else. Much of the IoT isn’t very smart, and much of it will be stupid for a very long time. But it will continually grow smarter. And while it’s very unlikely that we’ll see conscious computers anytime soon, computers already behave intelligently on specific tasks. The Internet+ is becoming more powerful through all the interconnections we’re building. It’s also becoming less secure. This book tells the story of why that’s true, and what we can do about it.

It’s a complicated story, and I tell it in two parts. In Part I, I describe the current state of computer security—technically, politically, and economically—as well as the trends that got us here. Computers are becoming smaller and more adept at manipulating the physical world, but they’re still basically the same computers we’ve been working with for decades. The technical security issues remain unchanged. The policy issues are the same ones we’ve been struggling with. And as computers and communications become embedded into everything, one industry after another will start looking like the computer industry. Computer security will become everything security, and the lessons of computer security will become applicable everywhere. And if there’s one thing we know about computers, whether they’re cars, power substations, or biological printers, it’s that they’re vulnerable to attack by hobbyists, activists, criminals, nation-states, and anyone else with technical capacity.

In Chapter 1, I briefly cover all the technical reasons why the Internet is so insecure. In Chapter 2, I discuss the primary way we maintain security in our systems—patching vulnerabilities when they’re discovered—and why that will fail on the Internet+. Chapter 3 talks about how we prove who we are on the Internet, and how we can hide who we are. In Chapter 4, I explain the political and economic forces that favor insecurity: surveillance capitalism, cybercrime, cyberwar—and the more invasive corporate and government practices that feed off insecurity.

Finally, in Chapter 5, I describe why the risks are increasing, and how they will become catastrophic. “Click here to kill everybody” is hyperbole, but we’re already living in a world where computer attacks can crash cars and disable power plants—both actions that can easily result in catastrophic deaths if done at scale. Add to that hacks against airplanes, medical devices, and pretty much all of our global critical infrastructure, and we’ve got some pretty scary scenarios to consider.

If you’re a regular reader of my books, articles, and blog, a lot of Part I will be review. If you’re new to all of this, the chapters are important groundwork for what’s to come.

The thing about Internet+ security is that we’re all used to it. Up to now, we’ve generally left computer and Internet security to the market. This approach has largely worked satisfactorily, because it mostly hasn’t mattered. Security was largely about privacy, and entirely about bits. If your computer got hacked, you lost some important data or had your identity stolen. That sucked, and might have been expensive, but it wasn’t catastrophic. Now that everything is a computer, the threats are about life and property. Hackers can crash your car, your pacemaker, or the city’s power grid. That’s catastrophic.

In Part II of this book, I discuss the policy changes necessary to secure the Internet+. Chapters 6, 7, and 8 deal with the what, the how, and then the who of improving Internet+ security. None of this is novel or complicated, but the devil is in the details. By the time you get through Chapter 8, I hope to have convinced you that the “who” is government. Although there is considerable risk in giving government this role, there isn’t any viable alternative. The current sloppy state of Internet+ security is the result of poorly aligned business incentives, a government that prioritizes offensive uses of the Internet over defense, collective action problems, and market failures that require intervention to fix. One of the things I propose in Chapter 8 is a new government agency to coordinate with and advise other agencies on Internet+ security policy and technology. You might disagree with me. That’s fine, but it’s a debate we need to have.

Chapter 9 is more general. In order to be trusted, government needs to prioritize defense over offense. I describe how to do that.

Practically speaking, it’s unlikely that many of the policy changes I propose in Chapters 6 through 9 will actually happen in the near term. So in Chapter 10, I try to be more realistic and discuss what is likely to happen and what we can do in response, both in the US and in other countries. Chapter 11 talks about some current policy proposals that will actually damage Internet+ security. Chapter 12 is again general and discusses how we can create an Internet+ where trust, resilience, and peace are the norms—and what it might look like.

Fundamentally, I am making an argument for good government doing good. It can be a hard argument to make, especially in the strongly libertarian, small-government, anti-regulation computer industry, but it’s an important one. We’ve all heard about the ways government makes mistakes, does its job badly, or simply gets in the way of technological progress. Less discussed are all the ways that government steers markets, protects individuals, and acts as a counterweight to corporate power. One of the major reasons the Internet+ is so insecure today is the absence of government oversight. As the risks become more catastrophic, we need government to get involved more than ever.

I end this book with a call to action—both to policy makers and to technologists. These policy discussions are inherently technical. We need policy makers who understand technology, and we need to get technologists involved in policy. We need to create and nurture the field of public-interest technologists. This need applies to more fields than Internet+ security. But I call for it in my particular area of technology, because it’s the area I know.

Several additional themes weave throughout the book.

	The security arms race. It’s often helpful to look at security as a technological arms race between attacker and defender. The attacker develops a new technology, and the defender develops some counter-technology in response. Or the defender develops some new defensive technology, forcing the attacker to adapt in some other way. How this arms race unfolds on the Internet+ is critical to understanding security.

	Trust. Although we often don’t think about it, trust is critical to society’s functioning at all levels. On the Internet, trust is everywhere. We trust the computers, software, and Internet services we use. We trust the parts of the network we can’t see, and the manufacturing process of the devices we use. How we maintain this trust, and how it is undermined, are also critical to understanding security on the Internet+.

	Complexity. Everything about this problem is complex: the technology, the policy, the interaction of technology and policy. Also the politics, the economics, and the sociology. They’re complex in many dimensions, and their complexity is increasing over time. Internet+ security is what is known as a “wicked problem”—which doesn’t mean that it’s evil, but rather that it’s difficult or impossible to solve because it’s so hard to even define the problem and requirements, let alone create a useful solution.

This book covers a lot of ground, which means that the book passes over much of it quickly and cursorily. The extensive endnotes are intended to be both references and invitations for further reading, and they were all verified at the end of April 2018. Those are on the book’s website as well, where they are clickable links: https://www.schneier.com/ch2ke.html. If there are any updates to the book, that’s where you’ll find them. Schneier.com is also where you’ll find my monthly e-mail newsletter and my daily-updated blog on these topics, as well as all my other writings.

I see these issues from a meta level. I’m a technologist at core, not a policy maker or even a policy analyst. I can describe the technological solutions to our security problems. I can even explain the sorts of new policies necessary to identify, generate, and implement those technological solutions. But I don’t write about the politics of making those policy changes. I can’t tell you how to garner support for or enact those policy changes, or even discuss feasibility. This is a gaping hole in the book, and I accept it.

I also write from a US perspective. Most of the examples are from the US, and most of the recommendations apply to the US. For one thing, it’s what I know best. But I also believe that the US serves as a singular example of how things went wrong, and—because of its size and market position—the US is in a singular position to change things for the better. Although this is not a book about international issues and the geopolitics of Internet security, aspects of that are sprinkled around these chapters.

These issues are constantly evolving, and a book like this is necessarily a snapshot in time. I remember when I finished Data and Goliath in March 2014; I thought about its publication date six months in the future and hoped nothing would happen to change the book’s narrative in the meantime. I’m feeling the same way right now, but more confident that a major event that would require a rewrite will not occur. Certainly, fresh stories and examples will arise, but the landscape I describe here is likely to be current for many years.

The future of Internet+ security—or cybersecurity, if you’re of a military bent—is a huge topic, and most of the chapters in this book could easily be books in themselves. My hope is that by offering breadth rather than depth, I can familiarize readers with the lay of the land, provide a sense of the issues, and draft a road map towards improvement. My goals are to attract a larger audience to this important discussion, and to help educate people for a more informed discussion. We will be making significant decisions over the next few years, even if the decision we make is to do nothing.

These risks are not going away. They’re not isolated to countries with less developed infrastructures or more totalitarian governments. They’re not waning as we figure out the mess that is our dysfunctional political system in the US. And they’re not going to magically solve themselves through market forces. To the extent that we solve them, it’s going to be because we have deliberately decided to—and have accepted the political, economic, and social costs of our solutions.

The world is made of computers, and we need to secure them. To do that, we need to think differently. At a 2017 Internet security conference, former FCC chairman Tom Wheeler riffed off former secretary of state Madeleine Albright, quipping that “we’re facing 21st-century issues, discussing them in 20th-century terms, and proposing 19th-century solutions.” He’s right, and we need to do better. Our future depends on it.

—Minneapolis, Minnesota, and Cambridge, Massachusetts, April 2018

PART I

THE TREND

A couple of years ago, I replaced my home thermostat. I travel a lot, and I wanted to be able to save energy on days I wasn’t home. My new thermostat is an Internet-connected computer that I can control from my smartphone. I can set programs for when I am home and when I am away and monitor the temperature inside the house—all remotely. It’s perfect.

Unfortunately, I also opened myself up to some potential problems. In 2017, a hacker bragged on the Internet that he was able to remotely hijack the Heatmiser smart thermostat—not the brand I have. Separately, a group of researchers demonstrated ransomware against two popular American thermostat brands—again, not mine—demanding payment in bitcoin to relinquish control. And if they could plant ransomware, they could also have recruited that thermostat into a bot network and used it to attack other sites on the Internet. This was a research project; no operational thermostats were harmed in the process, and no water pipes burst as a result. But next time might be my brand, and might not be so harmless.

The Internet+ means two things when it comes to security.

One: the security properties of our computers and smartphones will become the security properties of everything. So when you think about the insecurity of software, or the problems of log-in and authentication, or security vulnerabilities and software updates—all subjects we’ll discuss in Part I of this book—they’ll now apply not only to computers and phones, but to thermostats, cars, refrigerators, implanted hearing aids, coffeepots, streetlights, road signs, and everything else. Computer security will become everything security.

And two: all the lessons from computer security become applicable to everything. Those of us who have been in the field of computer security have learned a lot in the past few decades: about the arms race between attackers and defenders, the nature of computer failures, and the need for resilience—again, all subjects that we’ll talk about later. These lessons used to be just about computers. Now they are lessons about everything.

There’s one critical difference: the stakes are much higher.

The risks of an Internet that affects the world in a direct physical manner are increasingly catastrophic. Today’s threats include the possibility of hackers remotely crashing airplanes, disabling cars, and tinkering with medical devices to murder people. We’re worried about being GPS-hacked to misdirect global shipping and about counts from electronic voting booths being manipulated to throw elections. With smart homes, attacks can mean property damage. With banks, they can mean economic chaos. With power plants, they can mean blackouts. With waste treatment plants, they can mean toxic spills. With cars, planes, and medical devices, they can mean death. With terrorists and nation-states, the security of entire economies and nations could be at stake.

Security is an arms race between attacker and defender. Consider the battle between Internet advertisers and ad blockers. If you use an ad blocker—and about 600 million people in the world do—you’ll notice that some sites now employ ad-blocker blockers to prevent you from viewing content until you disable your ad blocker. Spam is an arms race between the spammers developing new techniques and the anti-spam companies figuring out how to counter them. Click fraud is much the same: fraudsters employ various tricks to convince companies like Google that real people have clicked on web links and that Google owes the fraudsters money, while Google tries to detect them. Credit card fraud is a continuous arms race between attackers developing new techniques and the credit card companies countering with new ways to prevent and detect them. Modern ATMs are the result of a decades-old arms race between attackers and defenders, one that continues today with ever-smaller and more discreet “skimmers” to steal card information and PINs, and even remote attacks against ATMs over the Internet.

So, to understand Internet+ security, we need to start by understanding the current state of Internet security. We need to understand the technological, business, political, and criminal trends that have brought us to this state and continue to exert themselves, as well as the technological trends that define and constrain what’s possible, and illustrate what’s coming.

1

Computers Are Still Hard to Secure

Security is always a trade-off. Often it’s security versus convenience, but sometimes it’s security versus features or security versus performance. That we prefer all of those things over security is most of the reason why computers are insecure, but it’s also true that securing computers is actually hard.

In 1989, Internet security expert Gene Spafford famously said: “The only truly secure system is one that is powered off, cast in a block of concrete and sealed in a lead-lined room with armed guards—and even then I have my doubts.” Almost 30 years later, that’s still true.

It’s true for stand-alone computers, and it’s true for the Internet-connected embedded computers that are everywhere. More recently, former National Cybersecurity Center director Rod Beckstrom summarized it this way: (1) anything connected to the Internet can be hacked; (2) everything is being connected to the Internet; (3) as a result, everything is becoming vulnerable.

Yes, computers are so hard to secure that every security researcher has his own pithy saying about it. Here’s mine from 2000: “Security is a process, not a product.”

There are many reasons why this is so.

MOST SOFTWARE IS POORLY WRITTEN AND INSECURE

I play Pokémon Go on my phone, and the game crashes all the time. Its instability is extreme, but not exceptional. We’ve all experienced this. Our computers and smartphones crash regularly. Websites don’t load. Features don’t work. We’ve all learned how to compensate. We compulsively save our data and back up our files, or use systems that do it for us automatically. We reboot our computers when things start behaving weirdly. We occasionally lose important data. And we don’t expect our computers to work as well as the typical consumer products in our lives, even though we get continually frustrated when they don’t.

Software is poorly written because, with only a few exceptions, the market doesn’t reward good-quality software. “Good, fast, cheap—pick any two”; inexpensive and quick to market is more important than quality. For most of us most of the time, poorly written software has been good enough.

This philosophy has permeated the industry at all levels. Companies don’t reward software quality in the same way they reward delivering products ahead of schedule and under budget. Universities focus more on code that barely works than on code that’s reliable. And most of us consumers are unwilling to pay what doing better would cost.

Modern software is riddled with a myriad of bugs. Some of them are inherent in the complexity of the software—more on that later—but most are programming mistakes. These bugs were not fixed during the development process; they remain in the software after it has been finished and shipped. That any of this software functions at all is a testament to how well we can engineer around buggy software.

Of course, not all software development processes are created equal. Microsoft spent the decade after 2002 improving its software development process to minimize the number of security vulnerabilities in shipped software. Its products are by no means perfect—that’s beyond the capabilities of the technologies right now—but they’re a lot better than average. Apple is known for its quality software. So is Google. Some very small and critical pieces of software are high quality. Aircraft avionics software is written to a much more rigorous quality standard than just about everything else. And NASA had a famous quality control process for its space shuttle software.

The reasons why these are exceptions vary from industry to industry, company to company. Operating system companies spend a lot of money; small pieces of code are easy to get right; airplane software is highly regulated. NASA still has crazily conservative quality assurance standards. And even for relatively high-quality software systems like Windows, macOS, iOS, and Android, you’re still installing patches all the time.

Some bugs are also security vulnerabilities, and some of those security vulnerabilities can be exploited by attackers. An example is something called a buffer overflow bug. It’s a programming mistake that allows an attacker, in some cases, to force the program to run arbitrary commands and take control of the computer. There are lots of areas of potential mistakes like this, some easier to make than others.

Here, numbers are hard to pin down. We don’t know what percentage of bugs are also vulnerabilities and what percentage of vulnerabilities are exploitable, and there is legitimate academic debate about whether these exploitable bugs are sparse or plentiful. I come down firmly on the side of plentiful: large software systems have thousands of exploitable vulnerabilities, and breaking into these systems is a matter—sometimes simple, sometimes not—of finding one of them.

But while vulnerabilities are plentiful, they’re not uniformly distributed. There are easier-to-find ones, and harder-to-find ones. Tools that automatically find and fix entire classes of vulnerabilities, and coding practices that eliminate many easy-to-find ones, greatly improve software security. And when one person finds a vulnerability, it is more likely that another person soon will, or recently has, found the same vulnerability. Heartbleed is a vulnerability in web security. It remained undiscovered for two years, and then two independent researchers found it within days of each other. The Spectre and Meltdown vulnerabilities in computer chips existed for at least ten years before multiple researchers discovered them in 2017. I have seen no good explanation for this parallel discovery other than it just happens; but it will matter when we talk about governments stockpiling vulnerabilities for espionage and cyberweapons in Chapter 9.

The explosion of IoT devices means more software, more lines of code, and even more bugs and vulnerabilities. Keeping IoT devices cheap means less-skilled programmers, sloppier software development processes, and more code reuse—and hence a greater impact from a single vulnerability if it is widely replicated.

The software we depend on—that’s running on our computers and phones, in our cars and medical devices, on the Internet, in systems controlling our critical infrastructure—is insecure in multiple ways. This isn’t simply a matter of finding the few vulnerabilities and fixing them; there are too many for that. It’s a software fact of life that we’re going to have to live with for the foreseeable future.

THE INTERNET WAS NEVER DESIGNED WITH SECURITY IN MIND

In April 2010, for about 18 minutes, 15% of all Internet traffic suddenly passed through servers in China on the way to its destination. We don’t know if this was the Chinese government testing an interception capability or it was an honest mistake, but we know how the attackers did it: they abused the Border Gateway Protocol.

The Border Gateway Protocol, or BGP, is how the Internet physically routes traffic through the various cables and other connections between service providers, countries, and continents. Because there’s no authentication in the system and everyone implicitly trusts all information about speed and congestion, BGP can be manipulated. We know from documents disclosed by government-contractor-turned-leaker Edward Snowden that the NSA uses this inherent insecurity to make certain data streams easier to eavesdrop on. In 2013, one company reported 38 different instances where Internet traffic was diverted to routers at Belarusian or Icelandic service providers. In 2014, the Turkish government used this technique to censor parts of the Internet. In 2017, traffic to and from several major US ISPs was briefly routed to an obscure Russian Internet provider. And don’t think this kind of attack is limited to nation-states; a 2008 talk at the DefCon hackers conference showed how anyone can do it.

When the Internet was developed, what security there was focused on physical attacks against the network. Its fault-tolerant architecture can handle servers and connections failing or being destroyed. What it can’t handle is systemic attacks against the underlying protocols.

The base Internet protocols were developed without security in mind, and many of them remain insecure to this day. There’s no security in the “From” line of an e-mail: anyone can pretend to be anyone. There’s no security in the Domain Name Service that translates Internet addresses from human-readable names to computer-readable numeric addresses, or the Network Time Protocol that keeps everything in synch. There’s no security in the original HTML protocols that underlie the World Wide Web, and the more secure “https” protocol still has lots of vulnerabilities. All of these protocols can be subverted by attackers.

These protocols were invented in the 1970s and early 1980s, when the Internet was limited to research institutions and not used for anything critical. David Clark, an MIT professor and one of the architects of the early Internet, recalls: “It’s not that we didn’t think about security. We knew that there were untrustworthy people out there, and we thought we could exclude them.” Yes, they really thought they could limit Internet usage to people they knew.

As late as 1996, the predominant thinking was that security would be the responsibility of the endpoints—that’s the computers in front of people—and not the network. Here’s the Internet Engineering Task Force (IETF), the body that sets industry standards for the Internet, in 1996:

It is highly desirable that Internet carriers protect the privacy and authenticity of all traffic, but this is not a requirement of the architecture. Confidentiality and authentication are the responsibility of end users and must be implemented in the protocols used by the end users. Endpoints should not depend on the confidentiality or integrity of the carriers. Carriers may choose to provide some level of protection, but this is secondary to the primary responsibility of the end users to protect themselves.

This is not obviously stupid. In Chapter 6, I’ll talk about the end-to-end networking model, which means that the network shouldn’t be responsible for security, as the IETF outlined. But people were too rigid about that for too long, and even aspects of security that only make sense to include inside the network were not being adopted.

Fixing this has been hard, and sometimes impossible. Since as far back as the 1990s, the IETF has offered proposals to add security to BGP to prevent attacks, but these proposals have always suffered from a collective action problem. Adopting the more secure system provides benefits only when enough networks do it; early adopters receive minimal benefit for their hard work. This situation results in a perverse incentive. It makes little sense for a service provider to be the first to adopt this technology, because it pays the cost and receives no benefit. It makes much more sense to wait and let others go first. The result, of course, is what we’re seeing: 20 years after we first started talking about the problem, there’s still no solution.

There are other examples like this. DNSSEC is an upgrade that would solve the security problems with the Domain Name Service protocol. As with BGP, there’s no security in the existing protocol and all sorts of ways the system can be attacked. And as with BGP, it’s been 20 years since the tech community developed a solution that still hasn’t been implemented because it requires most sites to adopt it before anyone sees benefits.

THE EXTENSIBILITY OF COMPUTERS MEANS EVERYTHING CAN BE USED AGAINST US

Recall an old-style telephone, the kind your parents or grandparents would have had in their homes. That object was designed and manufactured as a telephone, and that’s all it did and all it could do. Compare that to the telephone in your pocket right now. It’s not really a telephone; it’s a computer running a telephone app. And, as you know, it can do much, much more. It can be a telephone, a camera, a messaging system, a book reader, a navigation aid, and a million other things. “There’s an app for that” makes no sense for an old-style telephone, but is obvious for a computer that makes phone calls.

Similarly, in the centuries after Johannes Gutenberg invented the printing press around 1440, the technology improved considerably, but it was still basically the same mechanical—and then electromechanical—device. Throughout those centuries, a printing press was only ever a printing press. No matter how hard its operator tried, it couldn’t be made to perform calculus or play music or weigh fish. Your old thermostat was an electromechanical device that sensed the temperature, and turned a circuit on and off in response. That circuit was connected to your furnace, which gave the thermostat the ability to turn your heat on and off. That’s all it could do. And your old camera could only take pictures.

These are now all computers, and as such, they can be programmed to do almost anything. Recently, hackers demonstrated this by programming a Canon Pixma printer, a Honeywell Prestige thermostat, and a Kodak digital camera to play the computer game Doom.

When I tell that anecdote from the stage at tech conferences, everyone laughs at these new IoT devices playing a 25-year-old computer game—but no one is surprised. They’re computers; of course they can be programmed to play Doom.

It’s different when I tell the anecdote to a nontechnical audience. Our mental model of machines is that they can only do one thing—and if they’re broken, they don’t do it. But general-purpose computers are more like people; they can do almost anything.

Computers are extensible. As everything becomes a computer, this extensibility property will apply to everything. This has three ramifications when it comes to security.

One: extensible systems are hard to secure, because designers can’t anticipate every configuration, condition, application, use, and so on. This is really an argument about complexity, so we’ll take it up again in a bit.

Two: extensible systems can’t be externally limited. It’s easy to build a mechanical music player that only plays music from magnetic tapes stored in a particular physical housing, or a coffee maker that only uses disposable pods shaped a certain way, but those physical constraints don’t translate to the digital world. What this means is that copy protection—it’s known as digital rights management, or DRM—is basically impossible. As we’ve learned from the experiences of the music and movie industries over the past two decades, we can’t stop people from making and playing unauthorized copies of digital files.

More generally, a software system cannot be constrained, because the software used for constraining can be repurposed, rewritten, or revised. Just as it’s impossible to create a music player that refuses to play pirated music files, it’s impossible to create a 3D printer that refuses to print gun parts. Sure, it’s easy to prevent the average person from doing any of these things, but it’s impossible to stop an expert. And once that expert writes software to bypass whatever controls are in place, everyone else can do it, too. And this doesn’t take much time. Even the best DRM systems don’t last 24 hours. We’ll talk about this again in Chapter 11.

Three: extensibility means that every computer can be upgraded with additional features in software. These can accidentally add insecurities, both because the new features will contain new vulnerabilities, and because the new features probably weren’t anticipated in the original design. But, more importantly, new features can be added by attackers as well. When someone hacks your computer and installs malware, they’re adding new features. They’re features you didn’t ask for and didn’t want, and they’re features acting against your interest, but they are features. And they can, at least in theory, be added to every single computer out there.

“Backdoors” are also additional features in a system. I’ll be using this term a lot in the book, so it’s worth pausing to define it. It’s an old term from cryptography, and generally refers to any purposely designed access mechanism that bypasses a computer system’s normal security measures. Backdoors are often secret—and added without your knowledge and consent—but they don’t have to be. When the FBI demands that Apple provide a way to bypass the encryption in an iPhone, what the agency is demanding is a backdoor. When researchers spot a hard-coded extra password in Fortinet firewalls, they’ve found a backdoor. When the Chinese company Huawei inserts a secret access mechanism into its Internet routers, it has installed a backdoor. We’ll talk more about these in Chapter 11.

All computers can be infected with malware. All computers can be commandeered with ransomware. All computers can be dragooned into a botnet—a network of malware-infected devices that is controlled remotely. All computers can be remotely wiped clean. The intended function of the embedded computer, or the IoT device into which the computer is built, makes no difference. Attackers can exploit IoT devices in all the ways they currently exploit desktop and laptop computers.

THE COMPLEXITY OF COMPUTERIZED SYSTEMS MEANS ATTACK IS EASIER THAN DEFENSE

Today, on the Internet, attackers have an advantage over defenders.

This is not inevitable. Historically, the advantage has seesawed between attack and defense over periods of decades and centuries. The history of warfare illustrates that nicely, as different technologies like machine guns and tanks shifted the advantage one way or another. But today, in computers and on the Internet, attack is easier than defense—and it’s likely to remain that way for the foreseeable future.

There are many reasons for this, but the most important is the complexity of these systems. Complexity is the worst enemy of security. The more complex a system is, the less secure it is. And our billions of computers, each with their tens of millions of lines of code, connected into the Internet, with its trillions of webpages and unknown zettabytes of data—comprise the most complex machine humankind has ever built.

More complexity means more people involved, more parts, more interactions, more layers of abstraction, more mistakes in the design and development process, more difficulty in testing, more nooks and crannies in the code where insecurities can hide.

Computer security experts like to speak about the attack surface of a system: all the possible points that an attacker might target and that must be secured. A complex system means a large attack surface, and that means a huge advantage for a would-be attacker. The attacker just has to find one vulnerability—one unsecured avenue for attack—and gets to choose the time and method of attack. He can also attack constantly until successful. At the same time, the defender has to secure the entire attack surface from every possible attack all the time. And while the defender has to win every time, the attacker only has to get lucky once. It’s simply not a fair battle—and the cost to attack a system is only a fraction of the cost to defend it.

Complexity goes a long way to explaining why computer security is still so hard, even as security technologies improve. Every year, there are new ideas, new research results, and new products and services. But at the same time, every year, increasing complexity results in new vulnerabilities and attacks. We’re losing ground even as we improve.

Complexity also means that users often get security wrong. Complex systems often have lots of options, making them hard to use securely. Users regularly fail to change default passwords, or misconfigure access control on data in the cloud. In 2017, Stanford University blamed “misconfigured permissions” for exposing thousands of student and staff records. There are lots of these stories.

There are other reasons, aside from complexity, why attack is easier than defense. Attackers have a first-mover advantage, along with a natural agility that defenders often lack. They often don’t have to worry about laws, or about conventional morals or ethics, and can more quickly make use of technical innovations. Because of the current disincentives to improve, we’re terrible at proactive security. We rarely take preventive security measures until an attack happens. Attackers also have something to gain, while defense is typically a cost of doing business that companies are looking to minimize—and many executives still don’t believe they could be a target. More advantages go to the attacker.

This doesn’t mean that defense is futile, only that it’s difficult and expensive. It’s easier, of course, if the attacker is a lone criminal who can be persuaded to switch to an easier target. But a sufficiently skilled, funded, and motivated attacker will always get in. Talking about nation-state cyber operations, former NSA deputy director Chris Inglis was quoted as putting it this way: “If we were to score cyber the way we score soccer, the tally would be 462–456 twenty minutes into the game, i.e., all offense.” That’s about right.

Of course, just because attack is technically easy doesn’t mean it’s pervasive. Murder is easy, too, but few actually do it, because of all the social systems around identifying, condemning, and prosecuting murderers. On the Internet, prosecution is more difficult because attribution is difficult—a topic we’ll discuss in Chapter 3—and because the international nature of Internet attacks results in difficult jurisdictional issues.

The Internet+ will make these trends worse. More computers, and especially more different kinds of computers, means more complexity.

THERE ARE NEW VULNERABILITIES IN THE INTERCONNECTIONS

The Internet is filled with emergent properties and unintended consequences. That is, even experts really don’t understand how the different parts of the Internet interact with each other as well as we think we do, and we are regularly surprised by how things actually work. This is also true for vulnerabilities.

The more we network things together, the more vulnerabilities in one system will affect other systems. Three examples:

	In 2013, criminals hacked into Target Corporation’s network, stealing data on 70 million customers and 40 million credit/debit cards. The criminals gained access into Target’s network because they were first able to steal log-in credentials from one of the company’s heating and air-conditioning vendors.

	In 2016, hackers collected millions of IoT computers—routers, DVRs, webcams, and so on—into a massive botnet called Mirai. Then they used that botnet to launch a distributed denial-of-service attack—a DDoS attack—against the domain name provider Dyn. Dyn provided a critical Internet function for many major Internet sites. So when Dyn went down, dozens of popular websites, like Reddit, BBC, Yelp, PayPal, and Etsy, were knocked offline.

	In 2017, hackers penetrated an unnamed casino’s network through an Internet-connected fish tank, stealing data.

Systems can affect other systems in unforeseen, and potentially harmful, ways. What might seem benign to the designers of a particular system becomes harmful when it’s combined with some other system. Vulnerabilities on one system cascade into other systems, and the result is a vulnerability that no one saw coming. This is how things like the Three Mile Island nuclear disaster, the Challenger space shuttle explosion, or the 2003 blackout in the US and Canada could happen.

Unintended effects like these have two ramifications. One: the interconnections make it harder for us to figure out which system is at fault. And two: it’s possible that no single system is actually at fault. The cause might be the insecure interaction of two individually secure systems. In 2012, someone compromised reporter Mat Honan’s Amazon account, which allowed them to gain access to his Apple account, which gave them access to his Gmail account, which allowed them to take over his Twitter account. The particular trajectory of the attack is important; some of the vulnerabilities weren’t in the individual systems, but became exploitable only when used in conjunction with each other.

There are other examples. A vulnerability in Samsung smart refrigerators left users’ Gmail accounts open to attack. The gyroscope on your iPhone, put there to detect motion and orientation, is sensitive enough to pick up acoustic vibrations and therefore can eavesdrop on conversations. The antivirus software sold by Kaspersky accidentally (or purposefully) steals US government secrets.

If 100 systems are all interacting with each other, that’s about 5,000 interactions and 5,000 potential vulnerabilities resulting from those interactions. If 300 systems are all interacting with each other, that’s 45,000 interactions. One thousand systems means half a million interactions. Most of them will be benign or uninteresting, but some of them will have very damaging consequences.

COMPUTERS FAIL DIFFERENTLY

Computers don’t fail in the same way “normal” things do. They’re vulnerable in three different and important ways.

One: distance doesn’t matter. In the real world, we’re concerned about security against the average attacker. We don’t buy a door lock to keep out the world’s best burglar. We buy one to keep out the average burglars that are likely to be wandering around our neighborhoods. I have a home in Cambridge, and if there’s a super-skilled burglar in Canberra, I don’t care. She’s not going to fly around the world to rob my house. On the Internet, though, a Canberra hacker can just as easily hack my home network as she can hack a network across the street.

Two: the ability to attack computers is decoupled from the skill to attack them. Software encapsulates skill. That super-skilled hacker in Canberra can encapsulate her expertise into software. She can automate her attack and have it run while she sleeps. She can then give it to everyone else in the world. This is where the term “script kiddie” comes from: someone with minimal skill but powerful software. If the world’s best burglar could freely distribute a tool that allowed the average burglar to break into your house, you would be more concerned about home security.

Free distribution of potentially dangerous hacking tools happens all the time on the Internet. The attacker who created the Mirai botnet released his code to the world, and within a week a dozen attack tools had incorporated it. This is an example of what we call malware: worms and viruses and rootkits that give even unskilled attackers enormous capabilities. Hackers can buy rootkits on the black market. They can hire ransomware-as-a-service. European companies like HackingTeam and Gamma Group sell attack tools to smaller governments around the globe. The Russian Federal Security Service had a 21-year-old Kazakh Canadian citizen, Karim Baratov, running the phishing attacks that led to the successful attack on the Democratic National Committee in 2016. The malware was created by the skilled hacker Alexsey Belan.

Three: computers fail all at once or not at all. “Class break” is a concept from computer security. It’s a particular kind of security vulnerability that breaks not just one system, but an entire class of systems. Examples might be an operating system vulnerability that allows an attacker to take remote control of every computer that runs on that operating system. Or a vulnerability in Internet-enabled digital video recorders and webcams that allows an attacker to conscript those devices into a botnet.

The Estonian national ID card suffered a class break in 2017. A cryptographic flaw forced the government to suspend 760,000 cards used for all sorts of government services, some in high-security settings.

The risks are exacerbated by software and hardware monoculture. Nearly all of us use one of three computer operating systems and one of two mobile operating systems. More than half of us use the Chrome web browser; the other half use one of five others. Most of us use Microsoft Word for word processing and Excel for spreadsheets. Nearly all of us read PDFs, look at JPEGs, listen to MP3s, and watch AVI video files. Nearly every device in the world communicates using the same TCP/IP Internet protocols. And basic computer standards are not the only source of monocultures. According to a 2011 DHS study, GPS is essential to 11 out of 15 critical infrastructure sectors. Class breaks in these, and countless other common functions and protocols, can easily affect many millions of devices and people. Right now, the IoT is showing more diversity, but that won’t last unless some pretty basic economic policies change. In the future, there will only be a few IoT processors, a few IoT operating systems, a few controllers, and a few communications protocols.

Class breaks lead to worms, viruses, and other malware. Think “attack once, impact many.” We’ve conceived of voting fraud as unauthorized individuals trying to vote, not as the remote manipulation by a single person or organization of Internet-connected voting machines or online voter rolls. But this is how computer systems fail: someone hacks the machines.

Consider a pickpocket. Her skill took time to develop. Each victim is a new job, and success at one theft doesn’t guarantee success with the next. Electronic door locks, like the ones you now find in hotel rooms, have different vulnerabilities. An attacker can find a flaw in the design that allows him to create a key card that opens every door. If he publishes his attack software, then it’s not just the attacker, but anyone, who can now open every lock. And if those locks are connected to the Internet, attackers could potentially open door locks remotely—they could open every door lock remotely at the same time. That’s a class break.

In 2012, this happened to Onity, a company that makes electronic locks fitted on over four million hotel rooms for chains like Marriott, Hilton, and InterContinental. A homemade device enabled hackers to open the locks in seconds. Someone figured that out, and instructions on how to build the device quickly spread. It took months for Onity to realize it had been hacked, and—because there was no way to patch the system (I’ll talk about this in Chapter 2)—hotel rooms were vulnerable for months and even years afterwards.

Class breaks are not a new concept in risk management. It’s the difference between home burglaries and house fires, which happen occasionally to different houses in a neighborhood over the course of the year, and floods and earthquakes, which either happen to everyone in the neighborhood or to no one. But computers have aspects of both at the same time, while also having aspects of a public health risk model.

This nature of computer failures changes the nature of security failures, and completely upends how we need to defend against them. We’re not concerned about the threat posed by the average attacker. We’re concerned about the most extreme individual who can ruin it for everyone.

ATTACKS ALWAYS GET BETTER, EASIER, AND FASTER

The Data Encryption Standard, or DES, is an encryption algorithm from the 1970s. Its security was deliberately designed to be strong enough to resist then-feasible attacks, but just barely. In 1976, cryptography experts estimated that building a machine to break DES would cost $20 million. In my 1995 book Applied Cryptography, I estimated that the cost had dropped to $1 million. In 1998, the Electronic Frontier Foundation built a custom machine for $250,000 that could break DES encryption in less than a day. Today, you can do it on your laptop.

In another realm, in the 1990s, cell phones were designed to automatically trust cell towers without any authentication systems. This was because authentication was hard, and it was hard to deploy fake cell phone towers. Fast-forward a half decade, and stingray fake cell towers became an FBI secret surveillance tool. Fast-forward another half decade, and setting up a fake cell phone tower became so easy that hackers demonstrate it onstage at conferences.

Similarly, the increasing speed of computers has made them exponentially faster at brute-force password guessing: trying every password until it finds the correct one. Meanwhile, the typical length and complexity of passwords that the average person is willing and able to remember has remained constant. The result is passwords that were secure ten years ago but are insecure today.

I first heard this aphorism from an NSA employee: “Attacks always get better; they never get worse.” Attacks get faster, cheaper, and easier. What is theoretical today becomes practical tomorrow. And because our information systems stay around far longer than we plan for, we have to plan for attackers with future technology.

Attackers also learn and adapt. This is what makes security different from safety. Tornadoes are a safety issue, and we could talk about different defenses against them and their relative effectiveness, and wonder about how future technological advances might better protect us from their destructiveness. But whatever we choose to do or not do, we know that tornadoes will never adapt to our defenses and change their behavior. They’re just tornadoes.

Human adversaries are different. They’re creative and intelligent. They change tactics, invent new things, and adapt all the time. Attackers examine our systems, looking for class breaks. And once one of them finds one, they’ll exploit it again and again until the vulnerability is fixed. A security measure that protects networks today might not work tomorrow because the attackers will have figured out how to get around it.

All this means that expertise flows downhill. Yesterday’s top-secret military capabilities become today’s PhD theses and tomorrow’s hacking tools. Differential cryptanalysis was such a capability, discovered by the NSA sometime before 1970. In the 1970s, IBM mathematicians discovered it again when they designed DES. The NSA classified IBM’s discovery, but the technique was rediscovered by academic cryptographers in the late 1980s.

Defense is always in flux. What worked yesterday might not work today and almost certainly won’t work tomorrow.

2

Patching Is Failing as a Security Paradigm

There are two basic paradigms of security. The first comes from the real world of dangerous technologies: the world of automobiles, planes, pharmaceuticals, architecture and construction, and medical devices. It’s the traditional way we do design, and can be best summed up as “Get it right the first time.” This is the world of rigorous testing, of security certifications, and licensed engineers. At the extreme, it’s a slow and expensive process: think of all the safety testing Boeing conducts on its new aircraft, or any pharmaceutical company conducts before releasing a new drug in the market. It’s also the world of slow and expensive changes, because each change has to go through the same process.

We do this because the costs of getting it wrong are so great. We don’t want buildings collapsing on us, planes falling out of the sky, or thousands of people dying from a pharmaceutical’s side effects or drug interaction. And while we can’t eliminate all those risks completely, we can mitigate them by doing a lot of up-front work.

The alternative security paradigm comes from the fast-moving, freewheeling, highly complex, and heretofore largely benign world of software. Its motto is “Make sure your security is agile” or, in Facebook lingo, “Move fast and break things.” In this model, we try to make sure we can update our systems quickly when security vulnerabilities are discovered. We try to build systems that are survivable, that can recover from attack, that actually mitigate attacks, and that adapt to changing threats. But mostly we build systems that we can quickly and efficiently patch. We can argue how well we achieve these goals, but we accept the problems because the cost of getting it wrong isn’t that great.

In Internet+ security, these two paradigms are colliding. They’re colliding in your cars. They’re colliding in home appliances. They’re colliding in computerized medical devices. They’re colliding in home thermostats, computerized voting machines, and traffic control systems—and in our chemical plants, dams, and power plants. They’re colliding again and again, and the stakes are getting higher because failures can affect life and property.

Patching is something we all do all the time with our software—we usually call it “updating”—and it’s the primary mechanism we have to keep our systems secure. How it works (and doesn’t), and how it will fare in the future, is important to understand in order to fully appreciate the security challenges we face.

There are undiscovered vulnerabilities in every piece of software. They lie dormant for months and years, and new ones are discovered all the time by everyone from companies to governments to independent researchers to cybercriminals. We maintain security through (1) discoverers disclosing a found vulnerability to the software vendor and the public, (2) vendors quickly issuing a security patch to fix the vulnerability, and (3) users installing that patch.

It took us a long time to get here. In the early 1990s, researchers would disclose vulnerabilities to the vendors only. Vendors would respond by basically not doing anything, maybe getting around to fixing the vulnerabilities years later. Researchers then started publicly announcing that they had found a vulnerability, in an effort to get vendors to do something about it—only to have the vendors belittle them, declare their attacks “theoretical” and not worth worrying about, threaten them with legal action, and continue to not fix anything. The only solution that spurred vendors into action was for researchers to publish details about the vulnerability. Today, researchers give software vendors advance warning when they find a vulnerability, but then they publish the details. Publication has become the stick that motivates vendors to quickly release security patches, as well as the means for researchers to learn from each other and get credit for their work; this publication further improves security by giving other researchers both knowledge and incentive. If you hear the term “responsible disclosure,” it refers to this process.

Lots of researchers—from lone hackers to academic researchers to corporate engineers—find and responsibly disclose vulnerabilities. Companies offer bug bounties to hackers who bring vulnerabilities to them instead of publishing those vulnerabilities or using them to commit crimes. Google has an entire team, called Project Zero, devoted to finding vulnerabilities in commonly used software, both public-domain and proprietary. You can argue with the motivations of these researchers—many are in it for the publicity or competitive advantage—but not with the results. Despite the seemingly endless stream of vulnerabilities, any piece of software becomes more secure as they are found and patched.

It’s not happily ever after, though. There are several problems with the find-and-patch system, many of which are being exacerbated by the Internet+. Let’s look at the situation in terms of the entire ecosystem—researching vulnerabilities, disclosing vulnerabilities to the manufacturer, writing and publishing patches, and installing patches—in reverse chronological order.

Installing patches: I remember those early years when users, especially corporate networks, were hesitant to install patches. Patches were often poorly tested, and far too often they broke more than they fixed. This was true for everyone who released software: operating system vendors, large software vendors, and so on. Things have changed over the years. The big operating system organizations—Microsoft, Apple, and Linux in particular—have become much better about testing their patches before releasing them. As people have become more comfortable with patches, they have become better about installing them more quickly and more often. At the same time, vendors are now making patches easier to install.

Still, not everyone patches their systems. The industry rule of thumb is that a quarter of us install patches on the day they’re issued, a quarter within the month, a quarter within the year, and a quarter never do. The patch rate is even lower for military, industrial, and healthcare systems because of how specialized the software is. It’s more likely that a patch will break some critical functionality.

People who are using pirated copies of software often can’t get updates. Some people just don’t want to be bothered. Others forget. Some people don’t patch because they’re tired of vendors slipping unwanted features and software into updates. Some IoT systems are just harder to update. How often do you update the software in your router, refrigerator, or microwave? Never is my guess. And no, they don’t update automatically.

Three 2017 examples illustrate the problem. Equifax was hacked because it didn’t install a patch for its Apache web server that had been available two months previously. The WannaCry malware was a worldwide scourge, but it only affected unpatched Windows systems. The Amnesia IoT botnet made use of a vulnerability in digital video recorders that had been disclosed and fixed a year earlier, but existing machines couldn’t be patched.

The situation is worse for the computers embedded in IoT devices. In a lot of systems—both low-cost and expensive—users have to manually download and install relevant patches. Often the patching process is tedious and complicated, and beyond the skill of the average user. Sometimes, ISPs have the ability to remotely patch things like routers and modems, but this is also rare. Even worse, many embedded devices don’t have any way to be patched. Right now, the only way for you to update the firmware in your hackable DVR is to throw it away and buy a new one.

At the low end of the market, the result is hundreds of millions of devices that have been sitting on the Internet, unpatched and insecure, for the last five to ten years. In 2010, a security researcher analyzed 30 home routers and was able to break into half of them, including some of the most popular and common brands. Things haven’t improved since then.

Hackers are starting to notice. The malware DNSChanger attacks home routers, as well as computers. In Brazil in 2012, 4.5 million DSL routers were compromised for purposes of financial fraud. In 2013, a Linux worm targeted routers, cameras, and other embedded devices. In 2016, the Mirai botnet used vulnerabilities in digital video recorders, webcams, and routers; it exploited such rookie security mistakes as devices having default passwords.

The difficulty of patching also plagues expensive IoT devices that you might expect to be better designed. In 2015, Chrysler recalled 1.4 million vehicles to patch the security vulnerability I opened this book with. The only way to patch them was for Chrysler to mail every car owner a USB drive to plug into a port on the vehicle’s dashboard. In 2017, Abbott Labs told 465,000 pacemaker patients that they had to go to an authorized clinic for a critical security update. At least the patients didn’t have to have their chests opened up.

This is likely to be a temporary problem, at least for more expensive devices. Industries that aren’t used to patching will learn how to do it. Companies selling expensive equipment with embedded computers will learn how to design their systems to be patched automatically. Compare Tesla to Chrysler: Tesla pushes updates and patches to cars automatically, and updates the systems overnight. Kindle does the same thing: owners have no control over the patching process, and usually have no idea that their devices have even been patched.

Writing and publishing patches: Vendors can be slow to release security patches. One 2016 survey found that about 20% of all vulnerabilities—and 7% of vulnerabilities in the “top 50 applications”—did not have a patch available the same day the vulnerability was disclosed.
OEBPS/xhtml/nav.xhtml

Contents

		Cover

		Title

		Contents

		Introduction: Everything Is Becoming a Computer

		Part I: The Trends

		1. Computers Are Still Hard to Secure

		2. Patching Is Failing as a Security Paradigm

		3. Knowing Who’s Who on the Internet Is Getting Harder

		4. Everyone Favors Insecurity

		5. Risks Are Becoming Catastrophic

		Part II: The Solutions

		6. What a Secure Internet+ Looks Like

		7. How We Can Secure the Internet+

		8. Government Is Who Enables Security

		9. How Governments Can Prioritize Defense over Offense

		10. Plan B: What’s Likely to Happen

		11. Where Policy Can Go Wrong

		12. Towards a Trusted, Resilient, and Peaceful Internet+

		Conclusion: Bring Technology and Policy Together

		Acknowledgments

		Notes

		Index

		About the Author

		Copyright

Guide

		Cover

		Contents

		Title

Page List

		iii

		v

		vi

		vii

		viii

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

OEBPS/images/9780393608892_fc.jpg
BRUCE SCHNEIER

CLICK HERETO |
KILL EVERYBODY

eeeee ity and Survival in
a Hyp eeeeeeeee ted World

OEBPS/images/pub.jpg

