Microbial Xylanolytic ENZYMES
This page intentionally left blank
Progress in Biochemistry and Biotechnology

Microbial Xylanolytic ENZYMES

PRATIMA BAJPAI
Consultant-Pulp and Paper, Kanpur, India
Contents

[List of figures] ix
[List of tables] xi
[Preface] xiii
[Acknowledgments] xv

1. General background on microbial xylanolytic enzymes
1.1 Introduction on enzymes
1.2 Xylan
1.3 Xylanases
References 8
Further reading 11
Relevant websites 12

2. Xylan occurrence and structure 13
2.1 Introduction 13
2.2 Xylan occurrence and structure 13
2.3 Xylan interactions with cellulose and lignin 23
References 24
Further reading 28

3. Microbial xylanolytic enzyme system and their properties 29
3.1 Introduction 29
3.2 Endo-1,4-β-xylanases 30
3.3 β-D-Xylosidases 38
3.4 Acetylxylan esterase 41
3.5 Arabinase 43
3.6 α-Glucuronidases 45
3.7 Ferulic acid esterase and p-coumaric acid esterase 48
References 50
Further reading 57

4. Structure and synergism between the enzymes of the xylanolytic complex 59
4.1 Introduction 59
4.2 Xylanosomes 59
4.3 Synergistic action between multiple forms of xylanase 61
4.4 Multiple forms of xylanases 62
References 65
Further reading 68
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4 Feed</td>
<td>187</td>
</tr>
<tr>
<td>11.5 Textiles</td>
<td>191</td>
</tr>
<tr>
<td>11.6 Pharmaceuticals and chemicals</td>
<td>193</td>
</tr>
<tr>
<td>11.7 Biofuel industry</td>
<td>196</td>
</tr>
<tr>
<td>11.8 Brewing</td>
<td>198</td>
</tr>
<tr>
<td>11.9 Other applications</td>
<td>198</td>
</tr>
<tr>
<td>References</td>
<td>199</td>
</tr>
<tr>
<td>Relevant websites</td>
<td>211</td>
</tr>
</tbody>
</table>

12. Challenges and future trends in application of xylanases

- References
- Further reading

Glossary of terms

Index
This page intentionally left blank
List of figures

Figure 1.1 Structure of lignocellulosic biomass. 2

Figure 2.1 A hypothetical plant Xylan. 14

Figure 2.2 Principal hemicelluloses structure in softwood, (A) Galactoglucomannans, (B) Arabinoglucuronoxylan. 14

Figure 2.3 Structure of Glucuronoxylan Primary structure of MGX (1), AGX (2), water-soluble AGX (ws-AGX) (3), and water-soluble AX (4). 4-O-methyl-d-glucurono-d-xylan (MGX) (arabino)glucuronoxylans (AGXs) (glucurono)arabinoxylans (GAXs) arabinoxylans (AXs). 15

Figure 2.4 Xylan structures from spruce, poplar, and switchgrass secondary walls. Graphical representation of the main structural features of (A) arabinoglucuronoxylan (AGX) from spruce, (B) acetylated glucuronoxylan (AcGX) from poplar, (C) acetylated glucuronoarabinoxylan (AcGAX) from switchgrass. 16

Figure 3.1 Schematic representation of the xylan polymer and xylanolytic enzymes system. 30

Figure 3.2 Overall structure of a family 10 xylanase (2F8Q) showing the typical TIM-barrel fold (A) top (B) side view. 36

Figure 3.3 Homology-based 3D structure of xylanase proteins by using Swiss-Prot model: (A) Side view, (B) Top view. 36

Figure 3.4 Catalytic mechanism of α-glucuronidase enzymes. These enzymes bind oligosaccharides with 4-O-methyl glucuronic acid side chains substituted at the 2' hydroxyl group of a terminal xylose residue at the nonreducing end. The catalytic base then activates a water molecule which displaces the attached xylose residue. 48

Figure 11.1A Scanning electron micrograph of unbleached (control) eucalyptus kraft pulp (500×). 158

Figure 11.1B Scanning electron micrograph of eucalyptus kraft pulp after enzymatic treatment (300×). 159
Figure 11.2 (A–D): Scanning electron micrographs of Eucalyptus kraft pulp. An Untreated eucalyptus kraft pulp showing smooth surfaces on kraft pulp. (B) Eucalyptus kraft pulp treated with xylanase from *Streptomyces* sp. QG-11-3 showing swelling and separation of pulp microfibrils. (C) Eucalyptus kraft pulp treated with xylanase from *Streptomyces* sp. QG-11-3 followed by chemical treatment with 4.5% Cl2. (D) Growth of *Streptomyces* sp. QG-11-3 on eucalyptus kraft pulp fiber showing extent of penetration of organism mycelia in the eucalyptus kraft pulp. 161

Figure 11.3 Typical xylanase and acidification site. 162

Figure 11.4A SEM micrograph (1500×) of the untreated pulp, after refining; the fiber surfaces were observed to be smooth. 169

Figure 11.4B SEM micrograph (1500×) of enzyme-treated pulp; the fiber surfaces were observed to be rough, with wrinkles and peeling of microfibrils. 169

Figure 11.5 The efficacy of xylanase to improve ADG, G:F, AID of fiber (NSP, TDF, or NDF), and ATTD of fiber of pigs fed corn-based diets. 190

Figure 11.6A Scanning electron micrograph of control cotton (0701DR001) fabric at low magnification. 192

Figure 11.6B SEM of enzymatically desized cotton (0701DR001) fabric at high magnification. 192

Figure 11.6C SEM of bioscourd cotton (0701DR001) fabric using xylanase, at high magnification. 193

Figure 11.7 Various fermentation products of xyloses. 196

Figure 12.1 Xylanase as a greener tool in different industries. 214

Figure 12.2 Future prospect for development in area of xylanase production using conventional and advanced approaches. 215
List of tables

Table 1.1 Xylanolytic enzymes. 3
Table 1.2 Classification of xylanases. 5
Table 1.3 Major Players in Xylanase market. 8
Table 2.1 Main structural elements commonly found in land plant cell wall xylans. 18
Table 3.1 Characteristics of Xylanases from different microorganisms. 31
Table 3.2 Production of esterases from hemicellulolytic microorganisms. 42
Table 3.3 Properties of α-arabinosidases produced from different microorganisms. 45
Table 3.4 Production of α-glucuronidase by different fungi and bacteria. 47
Table 3.5 Properties of purified glucuronidases from different fungi. 47
Table 3.6 Substrate specificities of T. aurantiacus and A. bisporus α-glucuronidases. 47
Table 5.1 Xylanase-producing bacteria and actinomycetes. 72
Table 5.2 Xylanase-producing fungi. 74
Table 5.3 Sources of microbial xylanases with demonstrated activity. 75
Table 5.4 Advantages of SSF processes over liquid batch fermentation. 76
Table 5.5 Factors affecting microbial synthesis of enzymes in an SSF system. 77
Table 5.6 Disadvantages of SSF. 77
Table 5.7 Glycoside hydrolase families containing enzymes with a demonstrated activity on xylan. The fold, mechanism of action, and catalytic residues characteristic to each family are given. 82
Table 5.8 Family 10 xylanases for which structural coordinates are available. 83
Table 5.9 Family 11 xylanases for which structural coordinates are available. 84
Table 7.1 Cloning and expression of xylanase genes in E. coli. 112
Table 7.2 Homologous expression of xylanase genes. 113
Table 7.3 Cloning of xylanase genes into hosts suitable for biotechnological application. 113
Table 8.1 Types of mutations. 118
Table 9.1 Purification methods used in industrial processes. 126
Table 9.2 Purification of xylanase of C. cellulans CKMX1. 130
Table 9.3 Purification of Bacillus sp. GRE7 xylanase. 132
Table 9.4 Properties of purified xylanase from different microorganisms. 134
Table 10.1 Benefits of immobilized enzyme. 140
Table 11.1 Effect of xylanase pretreatment on chlorine dioxide consumption in a DED bleaching sequence. 153
Table 11.2 Effect of xylanase-aided three-stage hydrogen peroxide bleaching on the reduction of lignin in *E. globulus* kraft pulp. 154
Table 11.3 Effect of xylanase pretreatment on kappa no. reduction in bagasse, rice straw, and wheat straw. 154
Table 11.4 Effect of xylanase-aided three-stage hydrogen peroxide bleaching on hexenuronic acid content in *E. globulus* kraft pulp. 155
Table 11.5 Plant-scale trial results with xylanase enzyme. 156
Table 11.6 Effect of xylanase-aided hydrogen peroxide bleaching on Hexenuronic acid content of *E. globules* kraft pulp. 157
Table 11.7 Increase in the brightness of pulps by various cellulase-free commercial xylanases using CDEHD bleaching sequence. 157
Table 11.8 Effect of xylanase-aided three-stage hydrogen peroxide bleaching on the brightness of *E. globulus* kraft pulp. 158
Table 11.9 Bleaching benefits with xylanases. 164
Table 11.10 Effect of enzyme treatment on power and steam consumption during manufacture of coating base—Plant-scale trial results. 170
Table 11.11 Effect of enzyme treatment on power consumption during manufacturing of high GSM base papers (art paper 102 GSM and supercoated art board 122 GSM)—Plant-scale trial results. 170
Table 11.12 Effect of *Aureobasidium pullulans* xylanase on pentosans from sulfite dissolving grade pulp (bleached). 174
Table 11.13 Effect of *Aureobasidium pullulans* xylanase on properties of sulfite pulps (unbleached). 176
Table 11.14 Effect of *Aureobasidium pullulans* xylanase on properties of sulfite pulp. 177
Table 11.15 Bleaching of sulfite pulp with *Aureobasidium pullulans* xylanase and reduced amount of active chlorine in OD1EOD2H sequence. 177
Table 11.16 Effect of different xylanases on shive removal factor, kappa no., and brightness. 178
Table 11.17 Effect of Shivex on shive factor in different bleaching stages at varying kappa factor. 179
Table 11.18 Effect of Shivex on shive removal. 180
Table 11.19 Shive removal in different bleaching sequences. 181
Table 11.20 Increase in final loaf volume by the addition of xylanases from different sources. 184