Nonlinear Control for Blood Glucose Regulation of Diabetic Patients: An LMI Approach

Anirudh Nath
Rajeeb Dey
Valentina E. Balas
Nonlinear Control for Blood Glucose Regulation of Diabetic Patients: An LMI Approach
Advanced Studies in Complex Systems

Series Editors: Valentina E. Balas and Dumitru Baleanu
Nonlinear Control for Blood Glucose Regulation of Diabetic Patients: An LMI Approach

Anirudh Nath
GE Research
Bangalore (JFWTC), India

Rajeeb Dey
Department of Electrical Engineering
National Institute of Technology
Silchar, India

Valentina E. Balas
Department of Automatics and Applied Software
Aurel Vlaicu University
Arad, Romania
Contents

Preface ix
Acknowledgments xi
Acronyms xiii

1. Introduction 1
 1.1. Introduction 1
 1.2. The artificial pancreas system 2
 1.3. Current research challenges 3
 1.4. Safety algorithms and techniques for achieving tight glycemic control 6
 1.5. The philosophy of the monograph 7
 1.6. Theoretical background 7
 1.7. Organization of monograph 11
 References 11

2. A review on the existing artificial pancreas models 15
 2.1. Introduction 15
 2.2. Mathematical modeling of type 1 diabetic patients 15
 2.3. Important issues in models 29
 References 30

3. Control-oriented modeling of type 1 diabetic patients 35
 3.1. Introduction 35
 3.2. Intravenous T1D model 37
 3.3. Subcutaneous T1D model 39
 Augmented subcutaneous minimal model (ASMM) 39

 v
3.4. Parameter estimation of the ASMM 44
3.5. Model validation 46
3.6. Chapter summary 58
References 58

4. Design of nonlinear control technique based on feedback linearization 61
4.1. Introduction 61
4.2. IOFL controller with regional pole-placement technique 61
4.3. IOFL-RPP controller design for the ASMM 70
4.4. Chapter summary 76
References 76

5. Design of robust LMI-based control techniques 79
5.1. Introduction 79
5.2. Robust guaranteed cost output feedback control for BMM [1] 79
5.3. Robust observer based output feedback controller design 95
5.4. ROOF-AEM controller design for the ASMM 107
5.5. Chapter summary 110
References 110

6. Design of adaptive robust LMI-based control technique 113
6.1. Introduction 113
6.2. Adaptive robust observer based output feedback controller design 113
6.3. Chapter summary 122
References 122

7. Artificial pancreas system: in-silico model 123
7.1. Introduction 123
7.2. Control oriented in-silico APS 123
Parameter identification of subcutaneous glucose dynamics 124
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter estimation of meal absorption dynamics</td>
<td>128</td>
</tr>
<tr>
<td>Insulin pump dynamics</td>
<td>129</td>
</tr>
<tr>
<td>Comparative assessment</td>
<td>133</td>
</tr>
<tr>
<td>7.3. Chapter summary</td>
<td>134</td>
</tr>
<tr>
<td>References</td>
<td>134</td>
</tr>
<tr>
<td>8. Future research directions</td>
<td></td>
</tr>
<tr>
<td>8.1. Future improvements in control-oriented modeling</td>
<td>137</td>
</tr>
<tr>
<td>8.2. Future directions in nonlinear control design</td>
<td>137</td>
</tr>
<tr>
<td>8.3. Integration of safety algorithms and meal estimation in the control design</td>
<td>138</td>
</tr>
<tr>
<td>References</td>
<td>138</td>
</tr>
<tr>
<td>Index</td>
<td>141</td>
</tr>
</tbody>
</table>
This page intentionally left blank