Stochastic Tools
in Turbulence
APPLIED MATHEMATICS
AND MECHANICS

An International Series of Monographs

EDITORS

FRANÇOIS N. FRENKIEL
Washington, D. C.

G. TEMPLE
The Queen's College
Oxford University
Oxford, England

Volume 1. K. Oswatitsch: Gas Dynamics, English version by G. Kuerti (1956)
Volume 7. S. Fred Singer (ed.): Torques and Attitude Sensing in Earth Satellites (1964)

In preparation
Henri Cabannes: Theoretical Magnetofluiddynamics
STOCHASTIC TOOLS
IN TURBULENCE

JOHN L. LUMLEY
AEROSPACE ENGINEERING DEPARTMENT
PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PENNSYLVANIA

Contents

Preface
ix

1. **Probability Distributions and Densities**
 1.1 Definition of Probability
 1.2 Formalizing the Definition
 1.3 Measure and Lebesgue Integration
 1.4 Distribution Function
 1.5 The Probability Density Function
 1.6 A Simple Example of the Distribution and Density Functions
 1.7 Expected Values
 1.8 Joint Distribution Functions
 1.9 The Joint Density Function
 1.10 Expected Values
 1.11 Conditional Probabilities
 1.12 Conditional Expectations
 1.13 Statistical Independence and Lack of Correlation
 1.14 Change of Variable

2. **Moments, Characteristic Functions, and the Gaussian Distribution**
 2.1 Moments Defined
 2.2 Significance of the Moments
 2.3 The Correlation Matrix and Principal Axes
 2.4 The Characteristic Function
 2.5 Properties of the Characteristic Function
 2.6 Two Simple Examples
 2.7 The Central-Limit Theorem for Independent Variables
 2.8 The Gaussian Distribution from a More Physical Point of View
 2.9 Moments of a Gaussian Distribution
 2.10 The Jointly Normal Distribution
 2.11 Cumulants
 2.12 The Gram–Charlier Expansion
CONTENTS

3. Random Functions

3.1 Generalities: Multipoint Characteristic Functions 43
3.2 Statistics for Derivatives and Integrals 44
3.3 Processes and Characteristic Functionals: The Gaussian Process 47
3.4 Limit Processes of Random Functions 50
3.5 The Representation Problem 54
3.6 Finite Total Energy and Characteristic Eddies 57
3.7 Calculation of the Characteristic Eddies 59
3.8 Rate of Convergence of the Series of Eigenfunctions 60
3.9 Stationarity and the Ergodic Problem 62
3.10 Autocorrelations of Stationary Processes and Their Properties 68
3.11 Estimation by Time Averages 71
3.12 The Representation Problem for Stationary Processes: Spectra 76
3.13 Estimation by Time Averages with Zero Integral Scale 79
3.14 Another Type of Representation Theorem for Stationary Processes: Characteristic Eddies 80
3.15 Alternate Approaches to Harmonic Decomposition for Stationary Processes 82
3.16 A Central-Limit Theorem for Random Functions 84

4. Random Processes in More Dimensions

4.1 Multidimensional Vector Fields of Finite Energy 95
4.2 Homogeneity, Averaging, and Ergodicity in Several Dimensions 96
4.3 The Homogeneous Scalar Field: One-Dimensional Spectra 98
4.4 The Homogeneous Scalar Field: The Three-Dimensional Spectrum 100
4.5 The Homogeneous Scalar Field: Consequences of Isotropy 100
4.6 The Homogeneous Scalar Field: General Form of the Spectra 102
4.7 The Solenoidal Homogeneous Vector Field: Implications of Incompressibility 104
4.8 The Solenoidal Homogeneous Vector Field: One-Dimensional Spectra 107
4.9 The Solenoidal Homogeneous Vector Field: The Three-Dimensional Spectrum 107
4.10 The Solenoidal Homogeneous Vector Field: Consequences of Isotropy 108
4.11 The Solenoidal Homogeneous Vector Field: General Form of the Spectra 111
4.12 Characteristic Eddies for a Homogeneous Vector Field 113
4.13 Incompletely Homogeneous Fields: Co- and Quadrature Spectra and Coherence 114
4.14 Characteristic Eddies for an Incompletely Homogeneous Field 117
4.15 Multiple-Valued Functions 121
4.16 Distribution of Solutions for an Algebraic Equation 130

Appendix 1. Fourier Transforms

A1.1 Fourier Transforms of Well-Behaved Functions 137
A1.2 The Inverse Transform 138
A1.3 The Convolution 139
Preface

This book is about the mathematical tools that are available to describe stochastic vector fields and to solve problems relating to them. I am principally interested in turbulence, a phenomenon occurring in fluids, and although the material in this book has applicability beyond the needs of turbulence, much of what is covered arises from these needs. To use a word suggested by R. W. Stewart, the turbulence syndrome includes the following symptoms: The velocity field is such a complicated function of space and time that a statistical description is easier than a detailed description; it is essentially three-dimensional, in the sense that the dynamical mechanism responsible for it (the stretching of vorticity by velocity gradients) can only take place in three dimensions; it is essentially nonlinear and rotational, for the same reasons; a system of partial differential equations exists, relating the instantaneous velocity field to itself at every time and place. Most problems in classical fluid mechanics are reduced to solubility by two-dimensionality, linearity, or irrotationality; in turbulence these familiar and useful techniques must be discarded. Most problems in classical stochastic processes are reduced to solubility by statistical independence, or the assumption of a normal distribution (which is equivalent) or some other stochastic model; because of the governing differential equations, the turbulent velocity field at two space-time points is, in principle, never independent—in fact, the entire dynamical behavior is involved in the departure from statistical independence. The equations, in fact, preclude the assumption of any ad hoc model, although this is often done in the absence of a better idea. The needs of turbulence, then, will best be met by a discussion of stochastic vector fields which emphasizes three-dimensional aspects, and gives short shrift to linear problems and stochastic model building. This book attempts to provide such a treatment. Other books available either emphasize one-dimensional aspects and linear problems, such as are appropriate to communication theory, or emphasize statistical independence, Markov processes, Brownian motion, and other stochastic models relevant to other physical problems and of interest to mathematicians.
The above description does not do justice to several works. Chapters two and six of Monin and Yaglom (1970) have many points of similarity with the present work, differing principally in the selection and weighting of material, and in the mathematical point of view. Yaglom (1962) covers related material, but is limited to stationary processes. Other works, such as Doob (1953) represent a mathematical level that is difficult for the beginning student to grasp. This latter statement is a serious one, which it is necessary to discuss before we can proceed.

This book is intended to satisfy a need somewhere between that of the theoretician and the experimentalist. For the former, nothing will replace a thorough grounding in the various branches of mathematics involved in this subject. From a practical point of view, however, he must be motivated; if one waits to tell him about turbulence until he has studied all the necessary mathematics, one will probably never see him again. It is necessary to provide him first with a background in the structure of the subject, and this will probably be all the coverage that the experimentalist will need.

Many rigorous works are also elegant, a word difficult to define which I have always taken to mean displaying a certain unity of creation and economy of line; it must be very satisfying to produce an elegant piece of work. Most of this book is written from the point of view of generalized functions, and it might have been more elegant to adhere to this point of view throughout. However, I feel that sometimes a point of view and degree of generality may be appropriate for some things, and not for others, and the attempt to present everything from a single point of view may obscure parts of the subject. Accordingly, I have used the ideas of generalized functions whenever they seemed to me to result in simplification. The same is true with regard to very general (unrestrictive) assumptions; as a result, both the point of view and the degree of generality varies from place to place in the book.