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Preface 

In recent years, a number of important developments have led to a dramatic 
increase in our ! understanding of chromosomes in biology and medicine. The 
sequence arrangement, transcriptional capacity, and functional significance of 
repeated and unique DNA sequences have been extensively studied. Refined 
investigations of chromosome and chromatin structure have been made possible 
with improvements in electron microscopic techniques, the use of premature 
chromosome condensation, and in situ hybridization. By the use of various dyes 
and treatments, mitotic chromosomes can now be visualized as having character-
istic banding patterns, facilitating identification of individual chromosomes. 
Relationships between the human karyotype and those of other primates have 
been determined using differential staining techniques and comparative analysis 
of repeated DNA sequences. Gene mapping has been greatly accelerated with the 
use of rodent - human somatic hybrids. 

Reviews of advances on the organization of the eukaryotic genome have been 
available for some time, yet they have not focused on the genome of greatest 
interest to us, that of man. The aim of this volume is to fill this gap by bringing 
together authoritative contributions encompassing much of the knowledge 
available on the fine structure and molecular organization of the human genome. 

Geneticists, molecular biologists, and cytogeneticists, particularly those in-
terested in the human genome, will find this book to be an invaluable guide. 

Jorge J. Yunis 

xi 
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I. INTRODUCTION 

A major obstacle encountered in studying the genome of higher eukaryotes 
including man has centered around the large amount of DNA present in the 
nuclei of these cells. Compared to the extensively studied prokaryotic genome of 
Escherichia coli, consisting of 3.2 X 10

6
 nucleotide pairs (Cairns, 1963), the 

genome of the lower eukaryote Drosophila melanogaster contains approximately 

1 
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50 times that amount of DNA (Laird, 1971); while the human genome contains 
1000 times the amount of DNA of E. coli, or 2.7 X 10

9
 nucleotide pairs (Sober, 

1970; Rees and Jones, 1972). Most of the prokaryotic genome is transcribed 
(McCarthy and Bolton, 1964; Kennell, 1968; Grouse etal, 1972) and codes for 
approximately 3000 informational genes, while the Drosophila and human 
genomes have enough DNA to encode over 150,000 and 3 million such genes, 
respectively. Since man and other eukaryotes probably do not need such a large 
number of genes, explanations for the large amounts of DNA in eukaryotes have 
been sought. 

II. RENATURATION STUDIES OF EUKARYOTIC DNA 

The first step to the solution of the apparent enigma was the demonstration 
by Britten and co-workers of the presence of repetitive nucleotide sequences 
within the DNA of eukaryotic organisms (Bolton et al, 1966; Waring and 
Britten, 1966; Britten and Kohne, 1968). Renaturation experiments done on a 
number of highly sheared animal DNA's have shown relatively constant propor-
tions of repetitive and unique sequence DNA's (Britten and Kohne, 1968; 
Davidson et al, 1974). In mammals, for example, repetitive sequences usually 
account for 30-40% of the genome, and unique sequences for the remaining 
60-70%. Modeling after the prokaryotic system of gene regulation, transcription 
and translation, it was assumed that structural gene sequences would be 
represented in the unique copy DNA, whereas repetitive sequences were sus-
pected of having regulatory functions (Britten and Davidson, 1969; Georgiev, 
1969). Even under this assumption, however, the question remained as to the 
number of informational gene sequences present in the 60-70% of the genome 
consisting of unique copy DNA. 

Detailed characterization of the arrangement of repetitive and nonrepetitive 
sequences was carried out in the genome of sea urchin and Xenopus (Davidson 
et al, 1973; Graham et al, 1974). The techniques employed included analyses 
of hydroxyapatite binding as a function of fragment length after low Cot 
incubation with carrier DNA's, measurement of repetitive sequence length by 
isolation of single-strand-specific, nuclease-resistant duplex on agarose gel 
column, and direct measurement with electron microscopy. The results of these 
studies revealed that unique copy DNA averaging 1000 nucleotides alternate 
with repetitive sequences averaging 200-400 nucleotides in about 50% of the 
genome. Two other patterns were also seen: long period interspersion of unique 
copy DNA several thousands of nucleotides in length with a few percent of 
repetitive sequences in about 40% of the genome, and clustered highly repetitive 
sequences in 5-10% of the total DNA. Similar patterns have since been reported 
in other eukaryotes (Firtel and Kindle, 1975; Angerer et al, 1975). The only 



1. Organization and Function of the Human Genome 3 

organism which has been shown to have a large digression from the above 
pattern is Drosophila melanogaster (Manning et al, 1975). In these animals, 
although the highly repetitive DNA sequences show a similar uninterrupted 
pattern, the remainder of the genome consists of interspersed unique and 
repetitive sequences covering a wide range with repetitive regions ranging from 
500 to 13,000 base pairs averaging 5600, and unique copy stretches ranging 
from 2500 to 40,000 base pairs and averaging 13,000 nucleotides. 

In man, Schmid and Deininger (1975) have recently reported a pattern of 
interspersed repetitive, single copy and inverted repeats in 50% of the genome. 
The average repetitive and nonrepetitive segments were thought to be 400 and 
2000 nucleotides, respectively, although measurement by either electron mi-
croscopy or isolation of single-strand, nuclease-resistant duplexes was not carried 
out. 

Evidence supporting the idea that unique copy sequences contiguous to 
repetitive DNA represent structural genes has been presented by Davidson et al. 
(1975) in the sea urchin genome. These authors have shown that 80-100% of 
the mRNA molecules present in sea urchin embryos are transcribed from single 
copy DNA sequences adjacent to interspersed repetitive sequences in the 
genome. However, single copy DNA finely interspersed with short repetitive 
sequences represents 40% of the total genome. As will be described in the 
following section, the implication that these large amounts of DNA all represent 
structural genes contradicts other estimates of gene number, which conclude 
only 1-6% of the eukaryotic genome represents informational genes. 

III. GENE NUMBER AND GENOME TRANSCRIPTION 

Several lines of evidence exist in favor of the tenet that only a small 
percentage of the eukaryotic genome represents structural genes. Ohta and 
Kimura (1971) postulated that less than 6% of the mammalian genome repre-
sents structural genes based on mutation rate and the resultant genetic load. In 
the giant salivary chromosomes of Drosophila, Judd and co-workers (Judd et ai, 
1972; Judd and Young, 1974) observed that each chromomere represents one 
functional genetic unit, putting the total number of informational genes in this 
species at about 5000. In agreement with this view, it has been found that 
cytoplasmic polysomal RNA's from a large number of eukaryotes, including 
Drosophila and man, transcribe from approximately 2% of the genome (Green-
berg and Perry, 1971; Galau et αϊ, 1974; Lewin, 1975). Moreover, Bishop et al. 
(1975) have shown that in Drosophila the total number of mRNA sequences ex-
pressed within the different stages of the life cycle of the fly do not exceed the 
5000 chromomeres of the polytene chromosomes. 
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In contrast to this low amount of DNA responsible for mRNA transcription, 
it is known that a large amount of the DNA of the eukaryotic genome is 
transcribed but not translated. On the average, assuming asymmetrical transcrip-
tion, total cellular RNA is transcribed from at least 10-30% of the single copy 
DNA of the total genome (Davidson and Hough, 1971; Gelderman et al, 1971; 
Grouse et al, 1972, 1973; Grady and Campbell, 1973; Turner and Laird, 1973). 
Additive experiments with RNA's from different organs showed that there is a 
considerable, although not total, overlap between RNA's from different tissues. 
In the case of the slime mold, it was shown that, overall, 56% of the genome is 
represented by transcripts between the amoeba and midculmination stages 
(Firtel, 1972). 

A partial explanation for the discrepancy found between the large amount of 
transcribed DNA and the small percentage of the genome believed to represent 
messages can be found in recent studies on heterogeneous nuclear RNA 
(HnRNA). In mammalian cells, HnRNA was found to have more than five times 
the complexity of mRNA (Getz et al, 1975), and in sea urchin embryos mRNA 
represents 2.7% of the genome, while 28.5% of the total single copy DNA 
hybridizes to HnRNA (Galau et al, 1974; Hough et al, 1975). Since there is also 
evidence that a large portion of the HnRNA of the sea urchin is composed of 
interspersed nonrepetitive and repetitive sequences (Smith et al, 1974), it is 
possible that a large portion of the 50% finely interspersed single copy and 
repetitive DNA of the sea urchin is involved in HnRNA transcription. 

HnRNA's are generally characterized by their overall rapid synthesis and 
degradation, large molecular weight, DNA-like base composition, their presence 
in all eukaryotes examined, and by the fact that the bulk of this class of 
molecules never leaves the nucleus (Sibatani et al, 1962; Georgiev and Mantieva, 
1962; Scherrer et al, 1963; for review, also see Georgiev, 1974; Darnell, 1975). 
Besides the unique copy sequences of HnRNA that are known to have from 5 to 
10 times the complexity of mRNA, HnRNA's also contain sequences transcribed 
from DNA of different degrees of repetitiveness. Holmes and Bonner (1974a) 
have suggested that in rat ascites cells, HnRNA molecules contain at least one 
middle repetitive sequence covalently attached to a single copy sequence. In 
these cells, HnRNA's are transcribed from approximately 12% of the genome, of 
which approximately 25% comes from repetitive and 75% from single copy DNA 
(Holmes and Bonner, 1974a,b). One type of repetitive sequence is characterized 
by its resistance to pancreatic RNase and is thought to be a double-stranded 
region that is formed by intramolecular base pairing. When denatured, the RNA 
sequences from the double-stranded regions, including those from He La cells, 
hybridize to DNA at a Coty2 of about 10 (Jelinek and Darnell, 1972; Ryskovef 
al, 1973a). A second type of repetitive sequence found in HnRNA of He La cells 
is largely (about 80%) made up of uridylic acid, is about 30 nucleotides in length 
and also hybridizes at a Coty2 of about 10 (Molloy et al, 1972). This oligo(U) 
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segment is located "only" in large (70-90 S) HnRNA molecules, is T\ ribo-
nuclease-resistant and pancreatic ribonuclease-sensitive. Recently, Molloy et al. 
(1974) found in He La cells that poly(A)-terminated HnRNA molecules longer 
than 20,000 nucleotides contain 2-3 units of oligo(U) nucleotides in fragments 
over 12,000 nucleotides away from the 3' poly(A) ("messenger" end), while 
double-stranded regions are found between 3000 and 8000 nucleotides from this 
end. 

That HnRNA may be the precursor of m RNA was suggested by a number of 
investigators soon after its discovery (Scherrer et al, 1963; Penman et al., 1963). 
Several models of genetic regulation have been proposed based on this concept 
(Scherrer and Marcaud, 1968; Georgiev, 1969, 1974; Darnell et al, 1973). 
Although differing in many details, these authors all share the view that 
HnRNA's consist of a noninformative region, which presumably has some 
regulatory function, and an informative segment representing mRNA. In agree-
ment with the view that messenger RNA's are formed from the posttranscrip-
tional modification of higher molecular weight precursor RNA, it has been 
found that rRNA's are processed in a nonconservative fashion from 45 S RNA in 
which approximately 50% of the molecule is lost in the formation of 28 S and 
18 S products (Maden, 1971; Choi and Saunders, 1974). Similarly, tRNA is 
processed from a higher molecular weight pre-tRNA (Burdon and Clason, 1969). 

Several lines of experimental evidence exist implicating HnRNA as the pre-
cursor of mRNA (for review, see Darnell, 1975). For instance, sequences 
transcribed from integrated DNA of tumor virus and sequences present in 
hemoglobin and immunoglobulin have been found in HnRNA (Lindberg and 
Darnell, 1970; Melli and Pemberton, 1972; Imaizumi et al, 1973; Williamson et 
al, 1973). More recently, Herman et al (1976) prepared cDNA to mRNA of 
He La cells and found that the bulk of the cDNA hybridized to isolated He La cell 
HnRNA. If HnRNA indeed contains mRNA as a part of its structure, the 
question then arises as to how it may participate in the regulation of mRNA 
formation. Although precise knowledge is not available, it is conceivable that the 
nonmessage part of HnRNA is needed either for transcriptional or posttranscrip-
tional control of mRNA formation. In the former case, the nonmessage part may 
be transcribed from sites of recognition similar to those found in bacteria. The 
presence of possible recognition sites in eukaryotic cells has been proposed in 
several models to explain gene regulation in higher eukaryotes (Britten and 
Davidson, 1969; Georgiev, 1969, 1974; Darnell et al, 1973). In contrast to the 
bacterial system, however, transcription of a large portion of nonmessage se-
quence into HnRNA raises the possibility of posttranscriptional regulation in 
addition to or in place of transcriptional control. Models for this type of 
regulation have been proposed (Scherrer and Marcaud, 1968; Darnell et al, 
1973) in which regulatory proteins would interact with HnRNA either to 
activate or suppress its processing into mRNA (Darnell, 1975). 


