Infrared and Millimeter Waves

VOLUME 9 MILLIMETER COMPONENTS AND TECHNIQUES, Part I

Edited by Kenneth J. Button

INFRARED AND MILLIMETER WAVES

VOLUME 9 MILLIMETER COMPONENTS AND TECHNIQUES, PART I

CONTRIBUTORS

Edward E. Altshuler	Tatsuo Itoh
J. W. M. BAARS	E. KAMMERER
Anders Bondeson	MARVIN B. KLEIN
G. BOUCHER	WALLACE M. MANHEIMER
Ph. Boulanger	K. MIYAUCHI
P. Charbit	G. MOURIER
G. FAILLON	Edward Ott
A. Herscovici	JUAN RIVERA

INFRARED AND MILLIMETER WAVES

VOLUME 9 MILLIMETER COMPONENTS AND TECHNIQUES, PART I

Edited by KENNETH J. BUTTON

NATIONAL MAGNET LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS

1983

ACADEMIC PRESS A Subsidiary of Harcourt Brace Jovanovich, Publishers

New York London Paris San Diego San Francisco São Paulo Sydney Tokyo Toronto COPYRIGHT © 1983, BY ACADEMIC PRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1 7DX

Library of Congress Cataloging in Publication Data

Main entry under title:

Infrared and millimeter waves.

Includes bibliographies and indexes. Contents: v. 1. Sources of radiation.--v. 2. Instrumentation.--[etc.]--v. 9. Millimeter components and techniques. Part 1. 1. Infra-red wave devices. 2. Millimeter wave devices. I. Button, Kenneth J. TA1570.152 621.36'2 79-6949 ISBN 0-12-147709-6 (v. 9)

PRINTED IN THE UNITED STATES OF AMERICA

83 84 85 86 9 8 7 6 5 4 3 2 1

CONTENTS

List of Contributors	ix
Preface	xi
CONTENTS OF OTHER VOLUMES	xiii

Chapter 1 Millimeter-Wave Communications	
K. Miyauchi	
I. Introduction	1
II. Devices and Components for Millimeter-Wave	
Communication Systems	5
III. Guided Millimeter-Wave Communication	
Systems	30
IV. Millimeter-Wave Terrestrial Radio Communication Systems	51
V. Satellite Communication in Millimeter Waves	73
References	89
Chapter 2 A Comparative Study of Millimeter-Wave	
Transmission Lines	
Tatsuo Itoh and Juan Rivera	
I. Introduction	95
II. List of Transmission Lines	96
III. Conclusion	130
References	131
Chapter 3 Dielectric Waveguide Electrooptic Devices	
Marvin B. Klein	
I. Introduction	133
II. Electrooptic Properties of Ferroelectric	
Materials	135
III. Candidate Waveguide Structures for Phase	
Childian a	145

	Shifting	145
IV.	Properties of the TE ₁₀ Mode in H Guide	148
V.	TE ₁₀ -Mode Parameters for LiNbO ₃ H Guide	153
VI.	LiNbO ₃ H-Guide Phase Shifters at 95 GHz	158

CONTENTS

VII.	Other Electrooptic Devices	164
VIII.	Prospects for Improved Materials	172
IX.	Conclusion	173
	References	174

Chapter 4 Millimeter-Wave Propagation and Remote Sensing of the Atmosphere Edward E. Altshuler

I.	Introduction	177
II.	Atmospheric Effects on Propagated Waves	181
III.	Transmission Paths	206
IV.	Remote Sensing of the Atmosphere	223
ν.	Conclusion	235
	References	236

Chapter 5 **Technology of Large Radio Telescopes for Millimeter and Submillimeter Wavelengths** J. W. M. Baars

I.	Introduction	241
II.	Natural Limits	245
III.	Structural Design—Homology	247
IV.	Temperature Effects	254
ν.	Thermal Control of the 30-m Millimeter	
	Telescope	256
VI.	Wind Effects	260
VII.	Radome, Astrodome, or Exposed?	260
VIII.	Reflector Surface	264
IX.	Measuring and Setting the Reflector Profile	269
Χ.	Pointing and Tracking—Servo Control	274
XI.	Electromagnetic and Operational Aspects	277
XII.	Conclusion	279
	References	. 279

Chapter 6	6 A Gyrotron Study Program	
	G. Boucher, Ph. Boulanger, P. Charbit, G. Faillon,	
	A. Herscovici, E. Kammerer, and G. Mourier	
I.	Single-Cavity Oscillators at 35 GHz	283
II.	Self-Consistent Calculations of Beam-Waveguide	
	Interaction	285
III.	Space-Charge Effects in Traveling-Wave Gyrotron	
	Amplifiers (Small Signal Theory)	291
IV.	Proposed Scheme for an Infrared Electron Maser	
	and Its Electron Source	301
V.	Conclusion	307
	References	308

CC)N'	ΤI	ΕN	T	`S

Chapter	7 Multimode Analysis of Quasi-Optical	
	Gyrotrons and Gryoklystrons	
	Anders Bondeson, Wallace M. Manheimer, and Edward Ott	
I.	Introduction	310
II.	Field and Particle Equations	312
III.	Linear Theory of the Quasi-Optical Gyroklystron	315
IV.	Single-Mode Nonlinear Computations	320
V.	Multimode Formulation	327
VI.	Multimode Simulations	330
VII.	Conclusion	338
	References	339

INDEX

341

vii

This page intentionally left blank

LIST OF CONTRIBUTORS

Numbers in parentheses indicate the pages on which the authors' contributions begin.

- EDWARD E. ALTSHULER (177), Rome Air Development Center, Electromagnetic Sciences Division, Hanscom Air Force Base, Massachusetts 01731
- J. W. M. BAARS (241), Max-Planck-Institut für Radioastronomie, 5300 Bonn, Germany
- ANDERS BONDESON¹ (309), Laboratory for Plasma and Fusion Energy Studies, University of Maryland, College Park, Maryland 20742
- G. BOUCHER (283), THOMSON-CSF, Division Tubes Électroniques, 92102 Boulogne Billancourt, France
- PH. BOULANGER (283), THOMSON-CSF, Division Tubes Électroniques, 92102 Boulogne Billancourt, France
- P. CHARBIT (283), THOMSON-CSF, Division Tubes Électroniques, 92102 Boulogne Billancourt, France
- G. FAILLON (283), THOMSON-CSF, Division Tubes Électroniques, 92102 Boulogne Billancourt, France
- A. HERSCOVICI (283), THOMSON-CSF, Division Tubes Électroniques, 92102 Boulogne Billancourt, France
- TATSUO ITOH (95), Department of Electrical Engineering, The University of Texas at Austin, Austin, Texas 78712
- E. KAMMERER (283), THOMSON-CSF, Division Tubes Électroniques, 92102 Boulogne Billancourt, France
- MARVIN B. KLEIN (133), Hughes Research Laboratories, Malibu, California 90265
- WALLACE M. MANHEIMER (309), Plasma Theory Branch, Plasma Dynamics Division, Naval Research Laboratory, Washington, D.C. 20375
- K. MIYAUCHI (1), Research and Development Bureau, Nippon Telegraph and Telephone Public Corporation, Yokosuka, Japan 238-03
- G. MOURIER (283), Division Tubes Électroniques, THOMSON-CSF, 92102 Boulogne Billancourt, France

¹Present address: Institute for Electromagnetic Field Theory, Chalmers University of Technology, 412 96 Göteborg, Sweden.

- EDWARD OTT (309), Laboratory for Plasma and Fusion Energy Studies, University of Maryland, College Park, Maryland 20742, and Plasma Theory Branch, Plasma Dynamics Division, Naval Research Laboratory, Washington, D.C. 20375
- JUAN RIVERA² (95), Department of Electrical Engineering, The University of Texas at Austin, Austin, Texas 78712

²Present address: TRW Inc., Redondo Beach, California 90278.

PREFACE

This is the first of a series of books that will adhere closely to the theme "Millimeter Components and Techniques." We have not emphasized millimeter waves as the strict theme of a book since Volume 4: "Millimeter Systems" published in 1981. We are correcting our neglect of this emerging technology by publishing three books in rapid succession. This first one of the subseries opens with a chapter on the general topic of "Millimeter-Wave Communications" by Dr. K. Miyauchi. Then we address one of the most important problems in millimeter-wave components: the transmission line. We shall have five or six chapters on this subject eventually, but we start, of course, with Professor Tatsuo Itoh and Dr. Juan Rivera on "Comparative Studies of Millimeter-Wave Transmission Lines," which includes some important examples of devices. Chapter 3 deals with the emerging science and technology of "Dielectric Waveguide Electrooptic Devices" by Dr. Marvin B. Klein. There will be more on transmission lines and resonators in Volume 10. In the meantime, we shall open up three more aspects of this theme, namely, "Millimeter-Wave Propagation and Remote Sensing of the Atmosphere'' by Edward E. Altshuler, "Technology of Large Radio Telescopes for Millimeter and Submillimeter Wavelengths" by J. W. M. Baars, and, finally, two chapters on gyrotrons.

The next book, Volume 10: "Millimeter Components and Techniques, Part II," will continue with the development of this theme. We shall have a chapter, "Microwave Open Resonator Techniques," by Professor A. L. Cullen and a chapter, "Microwave Open Resonators in Gyrotrons," by Professors Cheng-he Xu and Le-zhu Zhou. Dr. C. W. Roberson and colleagues have given us "A Free-Electron Laser Driven by a Long-Pulse Induction Linac." We are sure that we shall include "Integrated-Circuit Antennas" by David B. Rutledge and colleagues and "Near-Millimeter Imaging with Integrated Planar Receptors" by Professor K. S. Yngvesson. Finally, as promised, we have tried to get extensive reviews of emerging component and transmission techniques, and we shall not go into production until we have "Properties and Capabilities of Millimeter-Wave IMPATT Devices" by R. K. Mains and G. I. Haddad. Concerning detectors, we have a chapter on "³He Refrigerators and Bolometers for Infrared and Millimeter-Wave Observations" by Dr. G. Chanin and Dr. J. P. Torre.

PREFACE

In the next volumes we have hopes for the long-awaited chapter on "Groove Guide for Short Millimetric Waveguide Systems" by Professor Douglas Harris and Yat Man Choi, "The Modified H Guide" by Professor Frederick Tischer, "Millimeter-Wave Hybrid Integrated Circuit Techniques" by A. G. Cardiosmenos, and "Photoconductive Detectors" by D. K. Shivanandan. For additional emphasis on components, we expect "Millimeter-Wave Integrated Circuits" from Charles Seashore, "InP and GaAs Devices at Millimeter Wavelengths" by I. G. Eddison, "Dielectric-Based Active and Passive Millimeter-Wave Components" by N. Deo, and "Integrated Fin-Line Components for Radar and Radiometer Applications" by W. Menzel. The chapters in the planning stages are literally too numerous to mention here so we refer you to the Preface of Volume 10.

CONTENTS OF OTHER VOLUMES

Volume 1: Sources of Radiation

J. L. Hirshfield, Gyrotrons

H. J. Kuno, IMPATT Devices for Generation of Millimeter Waves

Thomas A. DeTemple, Pulsed Optically Pumped Far Infrared Lasers

G. Kantorowicz and P. Palluel, Backward Wave Oscillators

K. Mizuno and S. Ono, The Ledatron

F. K. Kneubühl and E. Affolter, Infrared and Submillimeter-Wave Waveguides

P. Sprangle, Robert A. Smith, and V. L. Granatstein, Free Electron Lasers and Stimulated Scattering from Relativistic Electron Beams

Volume 2: Instrumentation

- N. C. Luhmann, Jr, Instrumentation and Techniques for Plasma Diagnostics: An Overview
- D. Véron, Submillimeter Interferometry of High-Density Plasmas
- J. R. Birch and T. J. Parker, Dispersive Fourier Transform Spectroscopy
- B. L. Bean and S. Perkowitz, Far Infrared Submillimeter Spectroscopy with an Optically Pumped Laser

Wallace M. Manheimer, Electron Cyclotron Heating of Tokamaks

Volume 3: Submillimeter Techniques

- T. G. Blaney, Detection Techniques at Short Millimeter and Submillimeter Wavelengths: An Overview
- W. M. Kelley and G. T. Wrixon, Optimization of Schottky-Barrier Diodes for Low-Noise, Low-Conversion Loss Operation at Near-Millimeter Wavelengths
- A. Hadni, Pyroelectricity and Pyroelectric Detectors
- A. F. Gibson and M. F. Kimmitt, Photon Drag Detection
- F. W. Kneubühl and Ch. Sturzenegger, Electrically Excited Submillimeter-Wave Lasers

- Michael von Ortenberg, Submillimeter Magnetospectroscopy of Charge Carriers in Semiconductors by Use of the Strip-Line Technique
- Eizo Otsuka, Cyclotron Resonance and Related Studies of Semiconductors in Off-Thermal Equilibrium

Volume 4: Millimeter Systems

James C. Wiltse, Introduction and Overview of Millimeter Waves

Edward K. Reedy and George W. Ewell, Millimeter Radar

Charles R. Seashore, Missile Guidance

- *N. Bruce Kramer*, Sources of Millimeter-Wave Radiation: Traveling-Wave Tube and Solid-State Sources
- Tatsuo Itoh, Dielectric Waveguide-Type Millimeter-Wave Integrated Circuits
- M. Tsuji, H. Shigesawa, and K. Takiyama, Submillimeter Guided Wave Experiments with Dielectric Waveguides
- Gary A. Gordon, Richard L. Hartman and Paul W. Kruse, Imaging-Mode Operation of Active NMMW Systems

Volume 5: Coherent Sources and Applications, Part I

Benjamin Lax, Coherent Sources and Scientific Applications

- J. O. Henningsen, Molecular Spectroscopy by Far-Infrared Laser Emission
- F. Strumia and M. Inguscio, Stark Spectroscopy and Frequency Tuning in Optically Pumped Far-Infrared Molecular Lasers

Jun-ichi Nishizawa, The GaAs TUNNETT Diodes

- V. L. Granatstein, M. E. Read, and L. R. Barnett, Measured Performance of Gyrotron Oscillators and Amplifiers
- F. K. Kneubühl and E. Affolter, Distributed-Feedback Gas Lasers

Volume 6: Systems and Components

- J. E. Harries, Infrared and Submillimeter Spectroscopy of the Atmosphere
- D. H. Martin, Polarizing (Martin-Puplett) Interferometric Spectrometers for the Near- and Submillimeter Spectra
- P. L. Richards and L. T. Greenberg, Infrared Detectors for Low-Background Astronomy: Incoherent and Coherent Devices from One Micrometer to One Millimeter
- M. V. Schneider, Metal-Semiconductor Junctions as Frequency Converters
- Paul F. Goldsmith, Quasi-Optical Techniques at Millimeter and Submillimeter Wavelengths
- G. D. Holah, Far-Infrared and Submillimeter-Wavelength Filters

Volume 7: Coherent Sources and Applications, Part II

- Thomas A. DeTemple and Edward J. Danielewicz, Continuous-Wave Optically Pumped Lasers
- R. G. Harrison and P. K. Gupta, Optically Pumped Mid-Infrared Molecular Gas Lasers
- Konrad Walzer, On the Optimization of Optically Pumped Far-Infrared Lasers
- J. P. Pichamuthu, Submillimeter Lasers with Electrical, Chemical, and Incoherent Optical Excitation
- D. D. Bićanić, Generation of Tunable Laser Sidebands in the THz Region by Frequency Mixing of the HCN Laser and a Microwave Source in a Metal– Semiconductor Diode
- J. Nishizawa and K. Suto, Semiconductor Raman and Brillouin Lasers for Far-Infrared Generation
- Donald E. Wortman and Richard P. Leavitt, The Orotron
- K. E. Kreischer and R. J. Temkin, High-Frequency Gyrotrons and Their Application to Tokamak Plasma Heating
- John L. Vomvoridis, P. Sprangle, and W. M. Manheimer, Theoretical Investigation of the Application of Quasi-Optical Open Resonators to the Electron Cyclotron Maser
- D. Dialetis and K. R. Chu, Mode Competition and Stability Analysis of the Gyrotron Oscillator

Volume 8: Electromagnetic Waves in Matter, Part I

- G. W. Chantry, Properties of Dielectric Materials
- W. F. X. Frank and U. Leute, Far-Infrared Spectroscopy of High Polymers
- S. Perkowitz, Submillimeter Solid-State Physics
- B. Jensen, Review of the Theory of Infrared and Far-Infrared Free-Carrier Behavior in Semiconductors
- A. Hadni, Review of Recent Improvements in Pyroelectric Detectors
- Tyuzi Ohyama and Eizo Otsuka, Cyclotron and Zeeman Transitions in Photoexcited Semiconductors at Far Infrared
- F. Gervais, High-Temperature Infrared Reflectivity Spectroscopy by Scanning Interferometry
- P. Goy, Millimeter and Submillimeter Waves Interacting with the Giant Atoms (Rydberg States)
- J. C. Maan, Far-Infrared Spectroscopy of InAs-GaSb Layered Structures

Volume 10: Millimeter Components and Techniques, Part II (In Press)

- David B. Rutledge, Dean P. Neikirk, and Dayalan P. Kasilingham, Integrated-Circuit Antennas
- K. S. Yngvesson, Near-Millimeter Imaging with Integrated Planar Receptors
- Richard K. Mains and George I. Haddad, Properties and Capabilities of Millimeter-Wave IMPATT Devices
- A. L. Cullen, Microwave Open Resonator Techniques
- G. Chanin and J. P. Torre, ³He Refrigerators and Bolometers for Infrared and Millimeter-Wave Observations
- Cheng-he Xu and Le-zhu Zhou, Microwave Open Resonators in Gyrotrons
- C. W. Roberson, J. Pasour, F. Mako, R. Lucey, and P. Sprangle, A Free-Electron Laser Driven by a Long-Pulse Induction Linac

CHAPTER 1

Millimeter-Wave Communications

K. Miyauchi

Research and Development Bureau Nippon Telegraph and Telephone Public Corporation Yokosuka, Japan

I.	Introduction	1
II.	Devices and Components for Millimeter-Wave	
	Communication Systems	5
	A. Solid-State Devices	5
	B. Multiplexing and Demultiplexing Networks	21
	C. Filters and Nonreciprocal Circuits	27
III.	Guided Millimeter-Wave Communication	
	Systems	30
	A. Transmission Medium—Circular Waveguides	30
	B. W-40G System	37
	C. WT4 System	44
	D. Other Systems	48
IV.	Millimeter-Wave Terrestrial Radio	
	Communication Systems	51
	A. Fundamental Characteristics of Millimeter-Wave	
	Terrestrial Radio Communication Systems	51
	B . 20-GHz Digital Radio-Relay Systems	55
	C. Radio Systems in Frequency Bands above 25 GHz	58
V.	SATELLITE COMMUNICATION IN MILLIMETER WAVES	73
	A. General Status of Millimeter-Wave Satellite	
	Communication	73
	B. Communication Satellite Technology	73
	C. Earth Station Facilities	81
	D. System Examples	83
	References	89

I. Introduction

The exploitation of new frequency regions has always led to technological advances in the history of radio communication. The millimeter-wave region is a new frontier; it borders on the microwave region, which has been developed in the past 30 years and is now widely applied in various fields in modern society.

Improvements in microwave technology have made advanced and inexpensive equipment available. The steadily increasing demand for communications has resulted in the installation of numerous microwave systems and

K. MIYAUCHI

a critical shortage of frequencies. Millimeter waves are quite attractive because their information-carrying capabilities are far greater than those of microwaves.

Millimeter-wave technology, in comparison with that of microwaves, has disadvantages such as large rainfall attenuation, large circuit loss, low efficiency of receivers, and low transmitter output power. Recent intensive research has solved many problems associated with these disadvantages and made it possible to provide systems that feature good performance in the millimeter-wave region. We are now able to produce devices and components that satisfy the performance, reliability, and productibility requirements necessary to build practical millimeter-wave communication equipment up to 100 GHz.

In Section II of this chapter, we shall describe devices and components for millimeter-wave communication systems. Active devices for the generation, amplification, and detection of signals are of primary importance. Only electron tubes and point-contact diodes were available for these purposes in the past. We shall not describe the electron tubes because they have a relatively narrow area of application owing to the large size and high voltage of their power supply, although they are still quite useful for high-power amplifiers and oscillators. The point-contact diodes have had substantial problems in terms of electrical performance, long-term stability, and reproducibility. It recently became possible to build practical millimeter-wave communication equipment employing sophisticated solid-state devices such as IMPATT, Schottky-barrier, p-n junction, and p-i-n diodes.

The most remarkable breakthrough was the invention of impact-ionization avalanche and transit-time (IMPATT) diodes and the improvement of gallium arsenide diodes. The IMPATT diode utilizes the avalanche effect of a reversely biased p-n junction and is capable of oscillation and amplification in a frequency range of up to several hundred gigahertz. Although some cognates and different versions of the IMPATT diode, such as the TRAPATT, LSA, BARITT, and TUNNETT, have been proposed, the IMPATT diode is virtually the only device for carrier generation with sufficient power in the millimeter-wave region. Today, we can safely attain an oscillation power of about 8.0 mW at 100 GHz.

Gallium arsenide is a III-V compound and has an electron mobility approximately six times greater than that of silicon. The dielectric constants of gallium arsenide and silicon being equal, gallium arsenide provides us with diodes whose cutoff frequency is six times higher than that of silicon diodes. As a result of the improvement of the impurity doping and surface treatment technology of semiconductors, we can now obtain good diodes whose cutoff frequency is higher than 1000 GHz and whose current slope factor is very close to the theoretical limit.