ACADEMIC PRESS London New York San Francisco

Phytochemical Society Symposia Series No. 13

Biochemical Aspects of Plant-Parasite Relationships

edited by J. Friend and D.R. Threlfall

Biochemical Aspects of Plant-Parasite Relationships

Annual Proceedings of the Phytochemical Society

- 1. Biosynthetic Pathways in Higher Plants Edited by J. B. PRIDHAM AND T. SWAIN
- 2. Comparative Phytochemistry *Edited by* T. SWAIN
- **3. Terpenoids in Plants** *Edited by* J. B. PRIDHAM
- 4. Plant Cell Organelles Edited by J. B. PRIDHAM
- 5. Perspectives in Phytochemistry Edited by J. B. HARBORNE and T. SWAIN
- 6. Phytochemical Phylogeny Edited by J. B. HARBORNE
- 7. Aspects of Terpenoid Chemistry and Biochemistry Edited by T. W. GOODWIN
- 8. Phytochemical Ecology Edited by J. B. HARBORNE
- 9. Biosynthesis and its Control in Plants Edited by B. V. MILBORROW
- **10. Plant Carbohydrate Biochemistry** *Edited by* J. B. PRIDHAM
- 11. The Chemistry and Biochemistry of Plant Proteins Edited by J. B. HARBORNE AND C. F. VAN SUMERE
- 12. Recent Advances in the Chemistry and Biochemistry of Plant Lipids Edited by T. GALLIARD AND E. I. MERCER

Biochemical Aspects of Plant-Parasite Relationships

PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY SYMPOSIUM UNIVERSITY OF HULL, ENGLAND APRIL, 1975

Edited by

J. FRIEND and D. R. THRELFALL Department of Plant Biology, University of Hull, England

ACADEMIC PRESS LONDON NEW YORK SAN FRANCISCO A Subsidiary of Harcourt Brace Jovanovich, Publishers

ACADEMIC PRESS INC. (LONDON) LTD. 24/28 Oval Road, London NW1

United States Edition published by ACADEMIC PRESS INC. 111 Fifth Avenue New York, New York 10003

Copyright © 1976 by ACADEMIC PRESS INC. (LONDON) LTD.

All Rights Reserved

No part of this book may be reproduced in any form by photostat, microfilm, or any other means, without written permission from the publishers

Library of Congress Catalog Card Number: 76-27189 ISBN: 0-12-267950-4

> PRINTED IN GREAT BRITAIN BY WILLIAM CLOWES & SONS LIMITED LONDON, BECCLES AND COLCHESTER

Contributors

- D. F. BATEMAN, Department of Plant Pathology, Cornell University, Ithaca, New York 14853, U.S.A. (p. 79).
- J. A. CALLOW, Department of Plant Sciences, University of Leeds, Leeds, England (p. 305).
- J. R. COLEY-SMITH, Department of Plant Biology, The University, Hull, England (p. 11).
- W. W. CURRIER, Department of Plant Pathology, Montana State University, Bozeman, Montana, U.S.A. (p. 225).
- J. M. DALY, Laboratory of Agricultural Biochemistry, University of Nebraska, Lincoln, Nebraska 68503, U.S.A. (p. 117).
- B. J. DEVERALL, Department of Plant Pathology and Agricultural Entomology, University of Sydney, N.S.W. 2006, Australia (p. 207).
- J. FRIEND, Department of Plant Biology, The University, Hull, England (p. 291).
- D. S. INGRAM, Botany School, Downing Street, Cambridge, England (p. 43).
- R. JOHNSON, Plant Breeding Institute, Cambridge, England (p. 25).
- H. W. KNOCHE, Laboratory of Agricultural Biochemistry, University of Nebraska, Lincoln, Nebraska 68503, U.S.A. (p. 117).
- J. Kuć, Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, U.S.A. (p. 225).
- J. C. OVEREEM, Institute of Organic Chemistry, T.N.O., Utrecht, Netherlands (p. 195).
- T. F. PREECE, Agriculture Building, University of Leeds, Leeds, England (p. 1).
- S. G. PUEPPKE, Department of Plant Pathology, Cornell University, Ithaca, New York 14853, U.S.A. (p. 239).
- D. J. ROYLE, Department of Hop Research, Wye College (University of London), near Ashford, Kent, England (p. 161).
- J. A. SARGENT, A.R.C. Unit of Developmental Botany, 181A Huntingdon Road, Cambridge, England (p. 43).
- M. J. SHIH, Department of Biological Sciences, Simon Fraser University, Burnaby 2, B.C., Canada (p. 225).
- G. A. STROBEL, Department of Plant Pathology, Montana State University, Bozeman, Montana 59715, U.S.A. (p. 135).
- I. C. TOMMERUP, A.R.C. Unit of Developmental Botany, 181A Huntingdon Road, Cambridge, England (p. 43).
- H. D. VANETTEN, Department of Plant Pathology, Cornell University, Ithaca, New York 14853, U.S.A. (p. 239).
- R. K. S. WOOD, Department of Botany, Imperial College of Science and Technology, London, England (p. 105).

This page intentionally left blank

Preface

In recent years there has been increasingly more emphasis on the use of biochemical methods and techniques for research in plant pathology and it has now become possible to offer biochemical explanations for several phytopathological phenomena.

It was the intention of the organizers of the Phytochemical Society Symposium held at Hull in April, 1975, on Biochemical Aspects of Plant Parasite Relationships to display some of the more biochemical of the recent research, particularly on the mechanisms involved in the invasion of plants by pathogens, the production of disease symptoms, and the mechanisms involved in the resistance of plants to the invading microorganisms.

Papers on the genetics of fungal-plant interactions and on structural features both of infection and of resistance are included in the volume. The reason for this inclusion is that there has been a tendency for plant biochemists to neglect both structure and genetics as aspects of their investigations and yet it is often through an understanding of the structural and genetical basis of the plant-parasite interaction that a sensible biochemical explanation can be given.

For various reasons it was not possible to produce this volume as soon after the Symposium as has been common for previous volumes of proceedings of the Phytochemical Society. However the authors have revised their manuscripts during the period of enforced delay. *October*, 1976 J. FRIEND

J. Friend D. R. Threlfall This page intentionally left blank

Contents

Contributors	5.	•							v
Preface			•	•	•	•	•		vii

CHAPTER 1

Some Observations on Leaf Surfaces During the Early Stages of Infection by Fungi

T. F. Preece

I.	Introduction						1
II.	The Pre-penetration Stages of Infect	tion o	f Leav	ves			2
III.	The Arrival of Spores on Leaves						3
IV.	Adhesion of Spores on Leaves .				•		5
V.	External Growth Prior to Penetration	on					5
VI.	Rain-water Washing Leaf Surfaces		•				7
VII.	Pollen on Leaves and Infection						8
Refe	rences						9

CHAPTER 2

Some Interactions in Soil Between Plants, Sclerotium-forming Fungi and other Microorganisms

J. R. Coley-Smith

Ι.	Introduct	ion .						•		•		11
II.	The Natu	re of Fur	igal S	clerot	ia.				•.			12
III.	Host-stim	ulated G	ermin	nation	of Sc	leroti	a.					13
IV.	The Effec	t of Fung	al Sc	leroti	a on tl	ne Soi	l Mic	roflora	а.			18
Ack	nowledge	nents			•							22
Ref	erences .											22

CHAPTER 3

Development and Use of some Genetically Controlled Lines for Studies of Host-Parasite Interactions

R. Johnson

I.	Introduction .								25
II.	Host Lines .								26
	A. Nearly-isogeni	c Lin	es.	•			•		26
	B. Chromosome	Subst	itutio	n Lines		•			32
	C. Genetically Di	verse	Host	Lines					34
III.	Pathogen Lines								35
IV.	Conclusions .								38
Ack	nowledgements			•					40
Ref	erences								40

CHAPTER 4

Structural Aspects of Infection by Biotrophic Fungi

D. S. Ingram, J. A. Sargent and I. C. Tommerup

I.	Introduction					43
II.	The Infection of Lettuce by Bremia lactu	cae				45
	A. Pre-penetration					45
	B. Penetration					54
	C. Intracellular Infection Structures .					58
III.	Discussion					70
	A. Alteration of the Metabolism of the I	Host				71
	B. Molecular Exchange					72
	C. Incompatibility					73
Refe	erences	•		•	•	77

CHAPTER 5

Plant Cell Wall Hydrolysis by Pathogens

D. F. Bateman

I.	Introduction						79
II.	The Plant Cell Wall: A Current Concept						80
III.	Enzymes that Cleave Cell Wall Polysaccha	rides					84
	A. Pectic Enzymes.						84
	B. Hemicellulases and Cellulases						85
IV.	Regulation of Production of Polysaccharic	dases	by Pa	thoge	ns		85
V.	Enzymatic Degradation of Cell Walls			. 0			89
	A. Decomposition of Isolated Walls.						89
	B. Decomposition of Host Cell Walls in I	nfect	ed Tis	sues			9 0
VI.	Enzymatic Basis of Tissue Maceration and	l its C	Conseq	uence	s		93
VIL	Conclusions			•			97
Refe	rences						99

CHAPTER 6

Killing of Protoplasts

R. K. S. Wood

I. Introd	uction .								105
II. Relation	on between Cell	Separ	ation a	nd Pr	otopla	ast De	ath		106
III. Action	of Pectic Enzy	mes or	1 Paren	chym	a				106
IV. Effect	of Other Enzym	nes on	Parenc	hyma					107
V. Effects	of Plasmolysis								108
VI. Effects	of Enzymes of	her tha	n Pect	ic Enz	ymes				109
VII. Killing	of Protoplasts	other	than by	Pect	ic Enz	ymes			110
VIII. Other	Causes of Deat	h of Pı	otopla	sts					110
IX. Conse	uences of Prot	oplast	Death						113
References	• • •								115

CHAPTER 7

Hormonal Involvement in Metabolism of Host-Parasite Interactions

J. M. Daly and H. W. Knoche

I.	Introduction .											117
II.	Hormones and Pat	hogene	esis									119
III.	Hormonal Change	s in Di	sease	s Caus	ed by	Biotro	ophic	Organ	nisms			122
	A. Respiration and	d Host	Grov	wth	•							122
	B. IAA Decarboxy	ylation	and	Diseas	e Res	istance	e					123
	C. Peroxidase Cha	inges										124
	D. Properties of Is	ozyme	9						•			126
	E. Cytokinins and	Trans	locati	ion						•		127
	F. Other Hormone	es			•							128
IV.	Present Outlook											128
Ack	nowledgements			•	•	•					•	131
Refe	erences	•	•		•	•	•		•	•		131

CHAPTER 8

Toxins of Plant Pathogenic Bacteria and Fungi

Gary A. Strobel

I. Introduction .							135
II. Helminthosporoside							136
III. Some Other Host-specif	fic To:	xins					143
A. H. victoriae and P. o	circina	<i>ita</i> To	xins				143
B. A. kikuchiana Toxin	ι.						145
C. H. carbonum Toxin				•			145
D. H. maydis Toxins							146
E. P. maydis Toxin							147
F. Alternariolide .							147
IV. Stemphylin .							147
V. Toxic Glycopeptides an	d Poly	ysacch	arides	8.			148
VI. Fusicoccin							150
VII. Some Amino Acid Deri	ved B	acteria	al Tox	ins			152
A. Tabtoxins .							152
B. Phaseotoxins .							153
C. Rhizobitoxine.							154
D. Syringomycin.							154
VIII. Non Host-specific Alter	naria	Toxin	s				154
IX. Concluding Comments							155
Acknowledgements .							156
References							156

CHAPTER 9

Structural Features of Resistance to Plant Diseases

D. J. Royle

I. Introduction			•			161
II. Inoculum Deposition		•				163

III.	Entry of	the Pa	thoge	n							170
	A. Direc	t Entr	у								170
	B. Entry	throu	igh N	atura	al Ope	enings		•		•	178
IV.	Colonizat	tion ai	nd Sp	orula	ation						186
· V.	Conclusio	ons .									189
Ref	erences .			•	•	•		• .			1 9 0

CHAPTER 10

Pre-existing Antimicrobiol Substances in Plants and their Role in Disease Resistance

J. C. Overeem

I.	Introduction								195
II.	Tulipalin and	Tuliposid							197
III.	Wyerone								198
IV.	Phenolic Com	npounds							198
	A. Pyrocatech	hol and Pro	oto	catechuic	Ac	cid .			198
	B. Phloridzin	and Phlor	eti	n.					199
V.	Antifungal Co	ompounds	in	Wood	•	•			200
VI.	Antifungal Co	ompounds	in '	Graminea	ıe				202
VII.	Concluding R	emarks					•		205
Refe	rences .								205

CHAPTER 11

Current Perspectives in Research on Phytoalexins

B. J. Deverall

I.	Definitions and General	Probl	lems							208
II.	Phytoalexins in the High	er Pla	ants							209
	A. Characterized Compo	ounds	s.						•	209
B. De novo Synthesis or Release from Precursors										212
	C. Restriction to Some I	Plant	Famili	es						216
III.	Roles of Phytoalexins in	Hype	ersensit	ivity	and l	Lesion	ı Limi	tation		218
IV.	The Induction of Phytoal	lexin	Forma	tion						220
Ack	nowledgements .									222
Ref	erences									222

CHAPTER 12

Terpenoid Phytoalexins

J. Kuć, W. W. Currier and M. J. Shih

I.	Introduction											225
II.	Terpenoids Pr	oduce	d in 1	Infecte	d Pot	ato						226
III.	Relationship	of Ter	benoi	d Met	abolis	m to 1	Diseas	se Res	istanc	e		228
IV.	Nature of the	Initiat	or of	Rishi	tin Bi	osyntł	nesis					233
V.	Stability of Te	rpeno	ids P	roduce	ed in I	nfecte	d Pot	ato Sl	ices			235
VI.	Conclusion											235
Ack	nowledgement	ts										236
Ref	erences .						• .					236

CHAPTER 13

Isoflavonoid Phytoalexins

H. D. VanEtten and S. G. Pueppke

I. Introduction		•		239
II. Types and Sources of Isoflavonoid Phytoalexins .				240
III. Biosynthesis of Isoflavonoids				246
A. Formation of the C_{15} Skeleton				246
B. The Point of Divergence between Flavonoid and Isofl	avonc	oid Bio)-	
synthesis.				247
C. Biosynthetic Relationships among Isoflayonoids				249
D. Hydroxylation, Methylation, and Prenylation of Isofla	vonoi	ds		251
E. Turnover of Isoflavonoids in Higher Plants.				252
IV. Induction				253
A. Inducers.				253
B. Localization of Phytoalexin Accumulation .				256
C. Mechanism of Induction				257
V. Biological Action Spectrum				259
A. Activity against Fungi			Ì	259
B. Activity against Other Organisms				262
VI. Cytological and Physiological Effects on Fungi.				263
VII. Structural Requirements for Antifungal Activity				266
VIII. Fungal Metabolism of the Isoflavonoid Phytoalexins.				270
A. Identity of Fungal Metabolites of Phytoalexins .				270
B. Enzymology				273
C. Metabolism and Tolerance				274
D. Fungal Metabolism of the Isoflavonoid Phytoalexins in	situ			278
IX Isoflayonoid Phytoalexins and Pathogenesis		-		279
A. Differential Synthesis				279
B. Differential Sensitivity				280
C. Additional Considerations				281
X. Conclusions			÷	282
Acknowledgements				283

CHAPTER 14

Lignification in Infected Tissue

J. Friend

L	Introduction				291
П.	Lignification in the Solanaceae in Response to Fungal Infec	tion	•	•	293
	•	•	293		
	B. Specificity of the Tuber Response to P. Infestans				295
	C. Lignification in Leaves			ż	296
III.	The Nature of Lignin-like Material				298
IV.	Insoluble Esters of Phenolic Acids	•			299
	A. Mechanism of Antifungal Action				299
	B. Occurrence in the Plant Kingdom.				301
Ackı	nowledgements				302
Refe	rences				302

CHAPTER 15

Nucleic Acid Metabolism in Biotrophic Infections

J. A. Callow

I.	Introduction						•						305
II.	Nucleic Acid	Syntl	nesis	in No	on-neo	plast	ic, Rı	ist and	d Pov	vdery	Milde	w	
	Diseases.					•							306
	A. Early Stuc	lies on	Tota	al RN	A and	DN	A Syn	thesis					306
	B. Synthesis	of Spe	cific	RNA	Molec	ules	•						309
III.	Nucleic Acid	Synthe	esis ir	1 Neoj	plastic	Tiss	ues, Ir	iduced	l by Si	mut F	ungi		314
	A. RNA Syn	thesis			•								314
	B. DNA Syn	thesis	and l	Endop	olyplc	oidy							318
	C. Gene Am	plificat	ion c	or Gen	e Util	izatic	on?						323
IV.	Ribonuclease	Enzyr	nes a	nd Di	sease								325
V.	Nucleic Acid	Trans	fer a	nd the	e Poss	ible I	Role o	of RN	A in 1	Host–	Parasi	te	
	Specificity	•			•								326
Ack	nowledgement	ts							•		•	•	329
Refe	erences .	•	•	•	•	•	•	•	•	•	•	•	329
Aut	hor Index	•	•	•	•	•	•		•	·	•		331
Sub	ject Index								•	•	•	•	347

,

CHAPTER 1

Some Observations on Leaf Surfaces During the Early Stages of Infection by Fungi

T. F. PREECE

Agriculture Building, The University of Leeds, Leeds, England

I.	Introduction						1
II.	The Pre-penetration Stages of Infect	ion of	f Leav	res			2
III.	The Arrival of Spores on Leaves						3
IV.	Adhesion of Spores on Leaves.						5
V.	External Growth Prior to Penetration	n					5
VI.	Rain-water Washing Leaf Surfaces						7
VII.	Pollen on Leaves and Infection						8
Refe	rences			•	•		9

I. INTRODUCTION

It is sometimes difficult for plant pathologists to see relevance to controlling plant disease in elegant and detailed basic studies of particular host-parasite interactions, perhaps concerned with membrane damage or changes in the nucleic acids of host plants. I personally accept without reservation the definition of plant pathology given by Moore (1949), which is that it is the job of plant pathologists to "influence the practices of crop husbandry". Crop husbandry goes on in fields, orchards, forests and market gardens. Although more protected kinds of crop husbandry are found in glasshouses and special structures such as mushroom houses, it does not take place in laboratories. One way of reminding ourselves of the essentials of our subject is to look at diseased plants in the field, and in particular to examine, microscopically, the pre-penetration stages of disease, under field conditions. We would then be assured that we know more of the disease before trying to understand it and before attempting control measures.

However, that is not to say that current effort in physiological and biochemical plant pathology is not essential for further progress. Of course it is; what is more, some of our models of the host-parasite interaction are in an exciting stage of development at the present time, as the other contributions in this volume will testify.

T. F. PREECE

II. THE PRE-PENETRATION STAGES OF INFECTION OF LEAVES

Almost all of the current basic work in plant pathology is concerned with events which occur *after* parasites have penetrated their hosts. *Before* these later stages of disease can occur, the early pre-penetration stages must be successful. Earlier plant pathologists, such as Marshall Ward (Large, 1940) clearly grasped, and exploited, the fact that during the arrival, adhesion and external growth stages fungal spores on leaves are the most vulnerable to changes in the environment and in particular to the action of fungicidal sprays. The spore of a pathogenic fungus arriving at a leaf surface is a living organism in a most delicate phase of its life history, struggling for existence. It eventually has to make contact with host cell membranes if it is to achieve the possibility (at least) of a more compatible, safe environment; alternatively, for the expression of the host genotype-fungus genotype interaction.

What factors interplay in microevents prior to penetration? Do the events on leaf surfaces differ from the early stages of growth from fungal spores on artificial surfaces? We, as good experimental plant pathologists, use apparently clean fungal spore suspensions and leaves grown in closely controlled environments. But the leaves of crop plants in the field exposed to the weather are much more "messy" than the simple models we may have in our minds (Preece, 1963). The natural history of field infection, and in particular of the pre-penetration stages of infection, is complex, and awkward to handle experimentally, but are we "missing the wood whilst looking at the trees"? This is an extreme suggestion, but, if it generates observation followed by experiments, then it is justified. Our minds are conditioned. Two things especially have helped to induce the idea that the early microscopic stages of infection in the field do not need modern work. These are (1) the comforting generalized notion of a "typical" infecting spore, and (2) the ease with which many spores germinate in water on glass slides. It is a fact that what we know of the earliest stages of infection in particular diseases-the pre-penetration stages-often depends on a single drawing or photomicrograph in a paper concerned with the earliest attempts to control a disease, usually by a field plant pathologist working against time. It is time for a reexamination (with the light microscope) of the details of leaf surface phenomena in infections under field conditions, prior to more sophisticated work. Modern analysis of the various leaf surface environmental factors is needed, as is a more detailed study of the microbial components which we now know are present on every leaf (Last, 1971). With further work we might discern patterns in the "Achilles heel" prepenetration biology of fungal diseases. These might well be general patterns or be generalizations associated with particular groups of diseases, or hosts, or parasites, or environmental situations. It seems likely that much is about to be discovered about the leaf surfaces during the early stages of infection. In the most recent issue of the "Annals of Applied Biology", for example, Russell (1976) reports on the significance of mere position on the leaf surface of wheat in the germination of *Puccinia striiformis* uredospores. (The percentage germination was higher on the adaxial surface, particularly on the distal parts, than on the abaxial surface of leaves of adult wheat plants.)

I have been asked to present here some of the particular contributions my research students have made to our picture of leaf pre-penetration biology. In doing so I would like to emphasize that not only is our ignorance immense, but also that whole areas of questioning are neglected here. Interactions between the phyllophane microflora and pathogens are discussed elsewhere (Preece and Dickinson, 1971; Dickinson and Preece, 1976). Light effects on spore germination on leaves need a separate review; present indications are that light may be much more important than hitherto suspected. We are now studying the effects of chemical additives to the leaf surface environment, whether by accident (e.g. pollutants, dusts) or by design (e.g. pesticides, fertilizers). The more obvious (but little studied) animals and their products at the leaf surface (e.g. the microbiological effects of the movements of insects) need study. I omit in this account too, considerations of viruses, bacterial infections and actinomycetes.

For the development of a fungal lesion on a leaf we need a source of spores, and an available leaf. Then follows the external pre-penetration stage. Penetration must occur. There must be internal development of the fungus, followed by release of spores from the lesion. Ultimately we might consider the fate of materials in the lesion (the death of the fungus in the leaf included). Our knowledge of these phases varies. I am concerned in this paper with some aspects of the external pre-penetration stage which includes (1) the arrival of the spore, (2) adhesion to the leaf surface and often (3) external growth prior to penetration. This external growth may (or may not) show each of the common morphologically definable phases of swelling, germ tube production and appressorium formation. We need to focus on where these stages occur on the leaf surface, how long each stage takes to occur, and what environment conditions prevail during each stage. The (apparently) saprophytic microflora (Preece and Dickinson, 1971; Dickinson and Preece, 1976) is part of the microenvironment of the arriving spores. Together with this microflora there may be unexpectedly significant objects -also part of the microenvironment of the pathogen, such as pollen grains (Chou and Preece, 1968).

III. THE ARRIVAL OF SPORES ON LEAVES

The numbers of airborne spores of particular fungi near a leaf out-of-doors is astoundingly variable with time, as the quantitative measurement of air spora using the Hirst (1952) spore trap reveals. Meredith (1966) noted that airborne conidia of *Helminthosporium* did not exceed three per cubic metre above affected plants, whereas Shanamuganathan and Arulpragasam (1966) working in tea fields, found concentrations of 10 000 basidiospores of *Exobassidium* per cubic metre above bushes affected by blister blight. Hirst (1953) reported the first quantitative records of diurnal patterns of spores in the air, in this finding very marked differences between fungal species. There may be, for example, distinct "wet" and "dry" period situations. Spores of *Erysiphe*, *Alternaria* and *Cladosporium* are dry air spores; Ascospores, such as those of *Venturia* and *Ophiobolus* are constituents of the damp air spora. The ascospores of *Mycosphaerella melonis* are found in highest concentration inside glasshouses when it rains outside (Fletcher and Preece, 1966).

The processes of change in concentration of spores near leaves are complex and little understood. Gregory (1961) gives much information and considers problems of movement in the air and deposition on to leaves by sedimentation and impaction. Turbulence is very important-it is however possible for sedimentation to occur in a moving air stream if it is non-turbulent (Chamberlain, 1967). As a non-turbulent air mass moves over the crop, particles such as rust spores sediment down to the laminar boundary layer of still air surrounding all objects such as leaves. Some spores will then penetrate the boundary layer-others float away from the leaf. Impaction is more complex. Efficiency of arrival at the leaf surface falls off with decreasing spore size, and increases with reduction in width of leaf. Efficiency of impaction is low on dry leaves. "Collection" of spores on natural surfaces is better, for example, than on sticky slides or tape. Rishbeth (1959) found maximum arrival rates of 20 spores of Fomes per 100 cm² of tree stump surface per hour, and much more commonly recorded 1-5 spores/100 cm² per hour deposited quite near sporophores. Barnes (1969) at Leeds compared the number of conidia of Erysiphe polygoni arriving on the surface of red clover leaves after exposure near a source of spores in 24 h periods with the atmospheric concentration of spores near the leaves recorded by a Hirst spore trap. These "airborne" and "deposited on leaves" counts are not related directly and there is much to be investigated. Numbers of Ervsiphe conidia, deposited on clover leaves were often low when trap catches were high. The maximum daily count recorded during a twelve-month study was of 56 per leaf; many daily values being between 0 and 10 per leaf. Relatively high counts of powdery mildew conidia on leaves coinciding with low trap catches were a notable feature of the observations by Barnes. In the case of already infected plants, the number of spores trapped by leaves is directly related to the number of mature sporulating lesions, as was shown in Exobasidium vexans infections of tea (Kerr and Rodrigo, 1967). These authors also reported on unexplained greater deposition on more susceptible cultivars. Bock (1962) showed that the final distribution of infecting uredospores of Hemiliea vastatrix on coffee leaves can be related to daily rainfall amounts. It becomes clear that each host-parasite-environment situation needs separate study inasfar as arrival of spores on leaves is concerned. It is