

Praise for More Effective C++: 35 New Ways
to Improve Your Programs and Designs

“This is an enlightening book on many aspects of C++: both the regions of the
language you seldom visit, and the familiar ones you THOUGHT you understood.
Only by understanding deeply how the C++ compiler interprets your code can
you hope to write robust software using this language. This book is an invaluable
resource for gaining that level of understanding. After reading this book, I feel like
I've been through a code review with a master C++ programmer, and picked up
many of his most valuable insights.”

— Fred Wild, Vice President of Technology,
Advantage Software Technologies

“This book includes a great collection of important techniques for writing
programs that use C++ well. It explains how to design and implement the ideas,
and what hidden pitfalls lurk in some obvious alternative designs. It also includes
clear explanations of features recently added to C++. Anyone who wants to use
these new features will want a copy of this book close at hand for ready reference.”

— Christopher J. Van Wyk, Professor,
Mathematics and Computer Science, Drew University

“Industrial strength C++ at its best. The perfect companion to those who have
read Effective C++.”

— Eric Nagler, C++ Instructor and Author,
University of California Santa Cruz Extension

“More Effective C++ is a thorough and valuable follow-up to Scott's first book,
Effective C++. I believe that every professional C++ developer should read and
commit to memory the tips in both Effective C++ and More Effective C++. I've
found that the tips cover poorly understood, yet important and sometimes arcane
facets of the language. I strongly recommend this book, along with his first, to
developers, testers, and managers ... everyone can benefit from his expert
knowledge and excellent presentation.”

— Steve Burkett, Software Consultant

This page intentionally left blank

More Effective C++

Addison-Wesley Professional Computing Series
Brian W. Kernighan, Consulting Editor

Matthew H. Austern, Generic Programming and the STL: Using and Extending the C++ Standard Template Library
David R. Butenhof, Programming with POSIX® Threads
Brent Callaghan, NFS Illustrated
Tom Cargill, C++ Programming Style
William R. Cheswick/Steven M. Bellovin/Aviel D. Rubin, Firewalls and Internet Security, Second Edition: Repelling

the Wily Hacker
David A. Curry, UNIX® System Security: A Guide for Users and System Administrators
Stephen C. Dewhurst, C++ Gotchas: Avoiding Common Problems in Coding and Design
Dan Farmer/Wietse Venema, Forensic Discovery
Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns: Elements of Reusable Object-

Oriented Software
Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns CD: Elements of Reusable Object-

Oriented Software
Peter Haggar, Practical Java™ Programming Language Guide
David R. Hanson, C Interfaces and Implementations: Techniques for Creating Reusable Software
Mark Harrison/Michael McLennan, Effective Tcl/Tk Programming: Writing Better Programs with Tcl and Tk
Michi Henning/Steve Vinoski, Advanced CORBA® Programming with C++
Brian W. Kernighan/Rob Pike, The Practice of Programming
S. Keshav, An Engineering Approach to Computer Networking: ATM Networks, the Internet, and the Telephone Network
John Lakos, Large-Scale C++ Software Design
Scott Meyers, Effective C++ CD: 85 Specific Ways to Improve Your Programs and Designs
Scott Meyers, Effective C++, Third Edition: 55 Specific Ways to Improve Your Programs and Designs
Scott Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs
Scott Meyers, Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library
Robert B. Murray, C++ Strategies and Tactics
David R. Musser/Gillmer J. Derge/Atul Saini, STL Tutorial and Reference Guide, Second Edition:

C++ Programming with the Standard Template Library
John K. Ousterhout, Tcl and the Tk Toolkit
Craig Partridge, Gigabit Networking
Radia Perlman, Interconnections, Second Edition: Bridges, Routers, Switches, and Internetworking Protocols
Stephen A. Rago, UNIX® System V Network Programming
Eric S. Raymond, The Art of UNIX Programming
Marc J. Rochkind, Advanced UNIX Programming, Second Edition
Curt Schimmel, UNIX® Systems for Modern Architectures: Symmetric Multiprocessing and Caching for Kernel Programmers
W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols
W. Richard Stevens, TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX®

Domain Protocols
W. Richard Stevens/Bill Fenner/Andrew M. Rudoff, UNIX Network Programming Volume 1, Third Edition: The

Sockets Networking API
W. Richard Stevens/Stephen A. Rago, Advanced Programming in the UNIX® Environment, Second Edition
W. Richard Stevens/Gary R. Wright, TCP/IP Illustrated Volumes 1-3 Boxed Set
John Viega/Gary McGraw, Building Secure Software: How to Avoid Security Problems the Right Way
Gary R. Wright/W. Richard Stevens, TCP/IP Illustrated, Volume 2: The Implementation
Ruixi Yuan/W. Timothy Strayer, Virtual Private Networks: Technologies and Solutions

Visit www.awprofessional.com/series/professionalcomputing for more information about these titles.

http://www.awprofessional.com/series/professionalcomputing

More Effective C++
35 New Ways to Improve Your Programs and Designs

Scott Meyers

▲
▼▼

ADDISON-WESLEY

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

This e-book reproduces in electronic form the printed book content of More Effective C++: 35 New
Ways to Improve Your Programs and Designs, by Scott Meyers. Copyright © 1996 by Addison-Wesley,
an imprint of Pearson Education, Inc. ISBN: 0-201-63371-X.

LICENSE FOR PERSONAL USE: For the convenience of readers, this e-book is licensed and sold in
its PDF version without any digital rights management (DRM) applied. Purchasers of the PDF version
may, for their personal use only, install additional copies on multiple devices and copy or print excerpts
for themselves. The duplication, distribution, transfer, or sharing of this e-book’s content for any pur-
pose other than the purchaser’s personal use, in whole or in part, by any means, is strictly prohibited.

PERSONALIZATION NOTICE: To discourage unauthorized uses of this e-book and thereby allow its
publication without DRM, each copy of the PDF version identifies its purchaser. To encourage a DRM-
free policy, please protect your files from access by others.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in the original printed book and this e-book, and we were
aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of the original printed book and this e-book,
but make no expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

DISCOUNTS AND SITE LICENSES: The publisher offers discounted prices on this e-book when pur-
chased with its corresponding printed book or with other e-books by Scott Meyers. The publisher also
offers site licenses for these e-books (not available in some countries). For more information, please
visit: www.ScottMeyers-EBooks.com or www.informit.com/aw.

Copyright © 2008 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

E-book ISBN 13: 978-0-321-51581-0
E-book ISBN 10: 0-321-51581-1
Second e-book release, April 2011 (essentially identical to the 28th Paper Printing).

http://www.ScottMeyers-EBooks.com
http://www.informit.com/aw

For Clancy,
my favorite enemy within.

This page intentionally left blank

Contents

Acknowledgments xi

Introduction 1

Basics 9

Item 1: Distinguish between pointers and references. 9

Item 2: Prefer C++-style casts. 12

Item 3: Never treat arrays polymorphically. 16

Item 4: Avoid gratuitous default constructors. 19

Operators 24

Item 5: Be wary of user-defined conversion functions. 24

Item 6: Distinguish between prefix and postfix forms of
increment and decrement operators. 31

Item 7: Never overload &&, ||, or ,. 35

Item 8: Understand the different meanings of new
and delete. 38

Exceptions 44

Item 9: Use destructors to prevent resource leaks. 45

Item 10: Prevent resource leaks in constructors. 50

Item 11: Prevent exceptions from leaving destructors. 58

Item 12: Understand how throwing an exception differs from
passing a parameter or calling a virtual function. 61

Item 13: Catch exceptions by reference. 68

Item 14: Use exception specifications judiciously. 72

Item 15: Understand the costs of exception handling. 78

x Contents

Efficiency 81

Item 16: Remember the 80-20 rule. 82

Item 17: Consider using lazy evaluation. 85

Item 18: Amortize the cost of expected computations. 93

Item 19: Understand the origin of temporary objects. 98

Item 20: Facilitate the return value optimization. 101

Item 21: Overload to avoid implicit type conversions. 105

Item 22: Consider using op= instead of stand-alone op. 107

Item 23: Consider alternative libraries. 110

Item 24: Understand the costs of virtual functions, multiple
inheritance, virtual base classes, and RTTI. 113

Techniques 123

Item 25: Virtualizing constructors and non-member
functions. 123

Item 26: Limiting the number of objects of a class. 130

Item 27: Requiring or prohibiting heap-based objects. 145

Item 28: Smart pointers. 159

Item 29: Reference counting. 183

Item 30: Proxy classes. 213

Item 31: Making functions virtual with respect to more
than one object. 228

Miscellany 252

Item 32: Program in the future tense. 252

Item 33: Make non-leaf classes abstract. 258

Item 34: Understand how to combine C++ and C in the
same program. 270

Item 35: Familiarize yourself with the language standard. 277

Recommended Reading 285

An auto_ptr Implementation 291

General Index 295

Index of Example Classes, Functions, and Templates 313

Acknowledgments

A great number of people helped bring this book into existence. Some
contributed ideas for technical topics, some helped with the process of
producing the book, and some just made life more fun while I was
working on it.

When the number of contributors to a book is large, it is not uncom-
mon to dispense with individual acknowledgments in favor of a ge-
neric “Contributors to this book are too numerous to mention.” I
prefer to follow the expansive lead of John L. Hennessy and David A.
Patterson in Computer Architecture: A Quantitative Approach (Morgan
Kaufmann, first edition 1990). In addition to motivating the compre-
hensive acknowledgments that follow, their book provides hard data
for the 90-10 rule, which I refer to in Item 16.

The Items

With the exception of direct quotations, all the words in this book are
mine. However, many of the ideas I discuss came from others. I have
done my best to keep track of who contributed what, but I know I have
included information from sources I now fail to recall, foremost among
them many posters to the Usenet newsgroups comp.lang.c++ and
comp.std.c++.

Many ideas in the C++ community have been developed independently
by many people. In what follows, I note only where I was exposed to
particular ideas, not necessarily where those ideas originated.

Brian Kernighan suggested the use of macros to approximate the syn-
tax of the new C++ casting operators I describe in Item 2.

In Item 3, my warning about deleting an array of derived class objects
through a base class pointer is based on material in Dan Saks’ “Got-
chas” talk, which he’s given at several conferences and trade shows.

http://www.amazon.com/gp/product/0123704901?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0123704901

xii

In
tio
Ko

Ja
po
fix

Da
bro
ne
did
din

Th
Ite
Str
Th
Ca
sit

So
4 o

My
in
ha
cat
up

Ite
Tra
loa
me
on
sol

In
on

Th
(se
ma
to

Th
Bu
Re
Sm
Acknowledgments

Item 5, the proxy class technique for preventing unwanted applica-
n of single-argument constructors is based on material in Andrew
enig's column in the January 1994 C++ Report.

mes Kanze made a posting to comp.lang.c++ on implementing
stfix increment and decrement operators via the corresponding pre-
 functions; I use his technique in Item 6.

vid Cok, writing me about material I covered in Effective C++,
ught to my attention the distinction between operator new and the
w operator that is the crux of Item 8. Even after reading his letter, I
n’t really understand the distinction, but without his initial prod-
g, I probably still wouldn’t.

e notion of using destructors to prevent resource leaks (used in
m 9) comes from section 15.3 of Margaret A. Ellis’ and Bjarne
oustrup’s The Annotated C++ Reference Manual (see page 285).
ere the technique is called resource acquisition is initialization. Tom
rgill suggested I shift the focus of the approach from resource acqui-
ion to resource release.

me of my discussion in Item 11 was inspired by material in Chapter
f Taligent’s Guide to Designing Programs (Addison-Wesley, 1994).

 description of over-eager memory allocation for the DynArray class
Item 18 is based on Tom Cargill’s article, “A Dynamic vector is
rder than it looks,” in the June 1992 C++ Report. A more sophisti-
ed design for a dynamic array class can be found in Cargill’s follow-
 column in the January 1994 C++ Report.

m 21 was inspired by Brian Kernighan’s paper, “An AWK to C++
nslator,” at the 1991 USENIX C++ Conference. His use of over-
ded operators (sixty-seven of them!) to handle mixed-type arith-
tic operations, though designed to solve a problem unrelated to the
e I explore in Item 21, led me to consider multiple overloadings as a
ution to the problem of temporary creation.

Item 26, my design of a template class for counting objects is based
 a posting to comp.lang.c++ by Jamshid Afshar.

e idea of a mixin class to keep track of pointers from operator new
e Item 27) is based on a suggestion by Don Box. Steve Clamage
de the idea practical by explaining how dynamic_cast can be used
find the beginning of memory for an object.
e discussion of smart pointers in Item 28 is based in part on Steven
roff’s and Rob Murray’s C++ Oracle column in the October 1993 C++
port; on Daniel R. Edelson’s classic paper, “Smart Pointers: They’re
art, but They’re Not Pointers,” in the proceedings of the 1992

http://www.amazon.com/gp/product/0201408880?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201408880

Acknowledgments xiii
USENIX C++ Conference; on section 15.9.1 of Bjarne Stroustrup’s The
Design and Evolution of C++ (see page 285); on Gregory Colvin’s “C++
Memory Management” class notes from C/C++ Solutions ’95; and on
Cay Horstmann’s column in the March-April 1993 issue of the C++ Re-
port. I developed some of the material myself, though. Really.

In Item 29, the use of a base class to store reference counts and of
smart pointers to manipulate those counts is based on Rob Murray’s
discussions of the same topics in sections 6.3.2 and 7.4.2, respec-
tively, of his C++ Strategies and Tactics (see page 286). The design for
adding reference counting to existing classes follows that presented by
Cay Horstmann in his March-April 1993 column in the C++ Report.

In Item 30, my discussion of lvalue contexts is based on comments in
Dan Saks’ column in the C User’s Journal (now the C/C++ Users Jour-
nal) of January 1993. The observation that non-proxy member func-
tions are unavailable when called through proxies comes from an
unpublished paper by Cay Horstmann.

The use of runtime type information to build vtbl-like arrays of func-
tion pointers (in Item 31) is based on ideas put forward by Bjarne
Stroustrup in postings to comp.lang.c++ and in section 13.8.1 of his
The Design and Evolution of C++ (see page 285).

The material in Item 33 is based on several of my C++ Report columns
in 1994 and 1995. Those columns, in turn, included comments I re-
ceived from Klaus Kreft about how to use dynamic_cast to implement
a virtual operator= that detects arguments of the wrong type.

Much of the material in Item 34 was motivated by Steve Clamage’s ar-
ticle, “Linking C++ with other languages,” in the May 1992 C++ Re-
port. In that same Item, my treatment of the problems caused by
functions like strdup was motivated by an anonymous reviewer.

The Book

Reviewing draft copies of a book is hard — and vitally important —
work. I am grateful that so many people were willing to invest their
time and energy on my behalf. I am especially grateful to Jill Huchital,
Tim Johnson, Brian Kernighan, Eric Nagler, and Chris Van Wyk, as
they read the book (or large portions of it) more than once. In addition
to these gluttons for punishment, complete drafts of the manuscript
were read by Katrina Avery, Don Box, Steve Burkett, Tom Cargill,
Tony Davis, Carolyn Duby, Bruce Eckel, Read Fleming, Cay Horst-
mann, James Kanze, Russ Paielli, Steve Rosenthal, Robin Rowe, Dan
Saks, Chris Sells, Webb Stacy, Dave Swift, Steve Vinoski, and Fred
Wild. Partial drafts were reviewed by Bob Beauchaine, Gerd Hoeren,

xiv

Jef
com
tio

On
ma
Da
Ev
Ra
Sch
Jef
Mi
urt
Ba
Ch
Ch
nig
na
Ku
Ch
Cr
Ah
ma
Ry
allo
thi

Du
em
Cla
em

Joh
the
po
vie
fol
ava

Br
cop
so
lan
in
a b
Ch
ers
Acknowledgments

f Jackson, and Nancy L. Urbano. Each of these reviewers made
ments that greatly improved the accuracy, utility, and presenta-

n of the material you find here.

ce the book came out, I received corrections and suggestions from
ny people: Luis Kida, John Potter, Tim Uttormark, Mike Fulkerson,
n Saks, Wolfgang Glunz, Clovis Tondo, Michael Loftus, Liz Hanks, Wil
ers, Stefan Kuhlins, Jim McCracken, Alan Duchan, John Jacobsma,
mesh Nagabushnam, Ed Willink, Kirk Swenson, Jack Reeves, Doug
midt, Tim Buchowski, Paul Chisholm, Andrew Klein, Eric Nagler,

frey Smith, Sam Bent, Oleg Shteynbuk, Anton Doblmaier, Ulf
chaelis, Sekhar Muddana, Michael Baker, Yechiel Kimchi, David Pap-
, Ian Haggard, Robert Schwartz, David Halpin, Graham Mark, David
rrett, Damian Kanarek, Ron Coutts, Lance Whitesel, Jon Lachelt,
eryl Ferguson, Munir Mahmood, Klaus-Georg Adams, David Goh,
ris Morley, Rainer Baumschlager, Christopher Tavares, Brian Ker-
han, Charles Green, Mark Rodgers, Bobby Schmidt, Sivaramakrish-
n J., Eric Anderson, Phil Brabbin, Feliks Kluzniak, Evan McLean,
rt Miller, Niels Dekker, Balog Pal, Dean Stanton, William Mattison,
ulsu Park, Pankaj Datta, John Newell, Ani Taggu, Christopher
eutzi, Chris Wineinger, Alexander Bogdanchikov, Michael Tegtmeyer,
aron Robbins, Davide Gennaro, Adrian Spermezan, Matthias Hof-
nn, Chang Chen, John Wismar, Mark Symonds, Thomas Kim, Ita
an, Rice Yeh, Colas Schretter, and Johannes Laire. Their suggestions
wed me to improve More Effective C++ in updated printings (such as

s one), and I greatly appreciate their help.

ring preparation of this book, I faced many questions about the
erging ISO/ANSI standard for C++, and I am grateful to Steve
mage and Dan Saks for taking the time to respond to my incessant
ail queries.

n Max Skaller and Steve Rumsby conspired to get me the HTML for
 draft ANSI C++ standard before it was widely available. Vivian Neou

inted me to the Netscape WWW browser as a stand-alone HTML
wer under (16 bit) Microsoft Windows, and I am deeply grateful to the
ks at Netscape Communications for making their fine viewer freely
ilable on such a pathetic excuse for an operating system.

yan Hobbs and Hachemi Zenad generously arranged to get me a
y of the internal engineering version of the MetaWare C++ compiler
I could check the code in this book using the latest features of the
guage. Cay Horstmann helped me get the compiler up and running

the very foreign world of DOS and DOS extenders. Borland provided
eta copy of their most advanced compiler, and Eric Nagler and

ris Sells provided invaluable help in testing code for me on compil-
 to which I had no access.

Acknowled

Without the
sion of Addi
Kim Dawle
Pradeepa Si
ment, patien

Chris Guzik
Tim Johnso
to critique l

Tom Cargill
tions (see pa

The People

Kathy Reed
surely she d
French had
materials w
Wait, my ed
grateful. Th
and Beth M
worked on t

My wife, Na
put up with
book, and k
say we’d do
done, and w

Finally, I m
changed ou
finished bo
substantiall
gments xv

 staff at the Corporate and Professional Publishing Divi-
son-Wesley, there would be no book, and I am indebted to
y, Lana Langlois, Simone Payment, Marty Rabinowitz,
va, John Wait, and the rest of the staff for their encourage-
ce, and help with the production of this work.

owski helped draft the back cover copy for this book, and
n stole time from his research on low-temperature physics
ater versions of that text.

 graciously agreed to make his C++ Report article on excep-
ge 287) available at the Addison-Wesley Internet site.

 was responsible for my introduction to programming;
idn’t deserve to have to put up with a kid like me. Donald
 faith in my ability to develop and present C++ teaching
hen I had no track record. He also introduced me to John
itor at Addison-Wesley, an act for which I will always be
e triumvirate at Beaver Ridge — Jayni Besaw, Lorri Fields,
cKee — provided untold entertainment on my breaks as I
he book.

ncy L. Urbano, put up with me and put up with me and
 me as I worked on the book, continued to work on the
ept working on the book. How many times did she hear me
 something after the book was done? Now the book is
e will do those things. She amazes me. I love her.

ust acknowledge our puppy, Persephone, whose existence
r world forever. Without her, this book would have been
th sooner and with less sleep deprivation, but also with
y less comic relief.

This page intentionally left blank

Introduction

IntroductionThese are heady days for C++ programmers. Commercially available
less than a decade, C++ has nevertheless emerged as the language of
choice for systems programming on nearly all major computing plat-
forms. Companies and individuals with challenging programming
problems increasingly embrace the language, and the question faced
by those who do not use C++ is often when they will start, not if. Stan-
dardization of C++ is complete, and the breadth and scope of the ac-
companying library — which both dwarfs and subsumes that of C —
makes it possible to write rich, complex programs without sacrificing
portability or implementing common algorithms and data structures
from scratch. C++ compilers continue to proliferate, the features they
offer continue to expand, and the quality of the code they generate con-
tinues to improve. Tools and environments for C++ development grow
ever more abundant, powerful, and robust. Commercial libraries all
but obviate the need to write code in many application areas.

As the language has matured and our experience with it has increased,
our needs for information about it have changed. In 1990, people
wanted to know what C++ was. By 1992, they wanted to know how to
make it work. Now C++ programmers ask higher-level questions: How
can I design my software so it will adapt to future demands? How can
I improve the efficiency of my code without compromising its correct-
ness or making it harder to use? How can I implement sophisticated
functionality not directly supported by the language?

In this book, I answer these questions and many others like them.

This book shows how to design and implement C++ software that is
more effective: more likely to behave correctly; more robust in the face
of exceptions; more efficient; more portable; makes better use of lan-
guage features; adapts to change more gracefully; works better in a
mixed-language environment; is easier to use correctly; is harder to
use incorrectly. In short, software that’s just better.

2 Introduction
The material in this book is divided into 35 Items. Each Item summa-
rizes accumulated wisdom of the C++ programming community on a
particular topic. Most Items take the form of guidelines, and the expla-
nation accompanying each guideline describes why the guideline ex-
ists, what happens if you fail to follow it, and under what conditions it
may make sense to violate the guideline anyway.

Items fall into several categories. Some concern particular language
features, especially newer features with which you may have little ex-
perience. For example, Items 9 through 15 are devoted to exceptions.
Other Items explain how to combine the features of the language to
achieve higher-level goals. Items 25 through 31, for instance, describe
how to constrain the number or placement of objects, how to create
functions that act “virtual” on the type of more than one object, how to
create “smart pointers,” and more. Still other Items address broader
topics; Items 16 through 24 focus on efficiency. No matter what the
topic of a particular Item, each takes a no-nonsense approach to the
subject. In More Effective C++, you learn how to use C++ more effec-
tively. The descriptions of language features that make up the bulk of
most C++ texts are in this book mere background information.

An implication of this approach is that you should be familiar with C++
before reading this book. I take for granted that you understand
classes, protection levels, virtual and nonvirtual functions, etc., and I
assume you are acquainted with the concepts behind templates and
exceptions. At the same time, I don’t expect you to be a language ex-
pert, so when poking into lesser-known corners of C++, I always ex-
plain what’s going on.

The C++ in More Effective C++

The C++ I describe in this book is the language specified by the 1998
International Standard for C++. This means I may use a few features
your compilers don’t yet support. Don’t worry. The only “new” feature
I assume you have is templates, and templates are now almost univer-
sally available. I use exceptions, too, but that use is largely confined to
Items 9 through 15, which are specifically devoted to exceptions. If you
don’t have access to a compiler offering exceptions, that’s okay. It
won’t affect your ability to take advantage of the material in the other
parts of the book. Furthermore, you should read Items 9 through 15
even if you don’t have support for exceptions, because those items ex-
amine issues you need to understand in any case.

I recognize that just because the standardization committee blesses a
feature or endorses a practice, there’s no guarantee that the feature is
present in current compilers or the practice is applicable to existing

Introduction 3
environments. When faced with a discrepancy between theory (what
the committee says) and practice (what actually works), I discuss both,
though my bias is toward things that work. Because I discuss both,
this book will aid you as your compilers approach conformance with
the standard. It will show you how to use existing constructs to ap-
proximate language features your compilers don’t yet support, and it
will guide you when you decide to transform workarounds into newly-
supported features.

Notice that I refer to your compilers — plural. Different compilers im-
plement varying approximations to the standard, so I encourage you to
develop your code under at least two compilers. Doing so will help you
avoid inadvertent dependence on one vendor’s proprietary language
extension or its misinterpretation of the standard. It will also help keep
you away from the bleeding edge of compiler technology, e.g., from new
features supported by only one vendor. Such features are often poorly
implemented (buggy or slow — frequently both), and upon their intro-
duction, the C++ community lacks experience to advise you in their
proper use. Blazing trails can be exciting, but when your goal is pro-
ducing reliable code, it’s often best to let others test the waters before
jumping in.

There are two constructs you’ll see in this book that may not be famil-
iar to you. Both are relatively recent language extensions. Some com-
pilers support them, but if your compilers don’t, you can easily
approximate them with features you do have.

The first construct is the bool type, which has as its values the key-
words true and false. If your compilers haven’t implemented bool,
there are two ways to approximate it. One is to use a global enum:

enum bool { false, true };

This allows you to overload functions on the basis of whether they take
a bool or an int, but it has the disadvantage that the built-in compar-
ison operators (i.e., ==, <, >=, etc.) still return ints. As a result, code
like the following will not behave the way it’s supposed to:

void f(int);
void f(bool);

int x, y;
...
f(x < y); // calls f(int), but it

// should call f(bool)

The enum approximation may thus lead to code whose behavior
changes when you submit it to a compiler that truly supports bool.

4 Introduction
An alternative is to use a typedef for bool and constant objects for
true and false:

typedef int bool;

const bool false = 0;
const bool true = 1;

This is compatible with the traditional semantics of C and C++, and the
behavior of programs using this approximation won’t change when
they’re ported to bool-supporting compilers. The drawback is that you
can’t differentiate between bool and int when overloading functions.
Both approximations are reasonable. Choose the one that best fits
your circumstances.

The second new construct is really four constructs, the casting forms
static_cast, const_cast, dynamic_cast, and reinterpret_cast.
If you’re not familiar with these casts, you’ll want to turn to Item 2 and
read all about them. Not only do they do more than the C-style casts
they replace, they do it better. I use these new casting forms whenever
I need to perform a cast in this book.

There is more to C++ than the language itself. There is also the stan-
dard library. Where possible, I employ the standard string type in-
stead of using raw char* pointers, and I encourage you to do the
same. string objects are no more difficult to manipulate than char*-
based strings, and they relieve you of most memory-management con-
cerns. Furthermore, string objects are less susceptible to memory
leaks if an exception is thrown (see Items 9 and 10). A well-imple-
mented string type can hold its own in an efficiency contest with its
char* equivalent, and it may even do better. (For insight into how this
could be, see Item 29.) If you don’t have access to an implementation
of the standard string type, you almost certainly have access to some
string-like class. Use it. Just about anything is preferable to raw
char*s.

I use data structures from the standard library whenever I can. Such
data structures are drawn from the Standard Template Library (the
“STL” — see Item 35). The STL includes bitsets, vectors, lists, queues,
stacks, maps, sets, and more, and you should prefer these standard-
ized data structures to the ad hoc equivalents you might otherwise be
tempted to write. Your compilers may not have the STL bundled in, but
don’t let that keep you from using it. Thanks to Silicon Graphics, you
can download a free copy that works with many compilers from the
SGI STL web site: http://www.sgi.com/tech/stl/.

http://www.sgi.com/tech/stl/

Introduction 5
If you currently use a library of algorithms and data structures and are
happy with it, there’s no need to switch to the STL just because it’s
“standard.” However, if you have a choice between using an STL com-
ponent or writing your own code from scratch, you should lean toward
using the STL. Remember code reuse? STL (and the rest of the stan-
dard library) has lots of code that is very much worth reusing.

Conventions and Terminology

Any time I mention inheritance in this book, I mean public inheritance.
If I don’t mean public inheritance, I’ll say so explicitly. When drawing
inheritance hierarchies, I depict base-derived relationships by drawing
arrows from derived classes to base classes. For example, here is a hi-
erarchy from Item 31:

This notation is the reverse of the convention I employed in the first
(but not the second) edition of Effective C++. I’m now convinced that
most C++ practitioners draw inheritance arrows from derived to base
classes, and I am happy to follow suit. Within such diagrams, abstract
classes (e.g., GameObject) are shaded and concrete classes (e.g.,
SpaceShip) are unshaded.

Inheritance gives rise to pointers and references with two different
types, a static type and a dynamic type. The static type of a pointer or
reference is its declared type. The dynamic type is determined by the
type of object it actually refers to. Here are some examples based on
the classes above:

GameObject *pgo = // static type of pgo is
new SpaceShip; // GameObject*, dynamic

// type is SpaceShip*

Asteroid *pa = new Asteroid; // static type of pa is
// Asteroid*. So is its
// dynamic type

pgo = pa; // static type of pgo is
// still (and always)
// GameObject*. Its
// dynamic type is now
// Asteroid*

GameObject

SpaceShip SpaceStation Asteroid

6 Introduction
GameObject& rgo = *pa; // static type of rgo is
// GameObject, dynamic
// type is Asteroid

These examples also demonstrate a naming convention I like. pgo is a
pointer-to-GameObject; pa is a pointer-to-Asteroid; rgo is a refer-
ence-to-GameObject. I often concoct pointer and reference names in
this fashion.

Two of my favorite parameter names are lhs and rhs, abbreviations
for “left-hand side” and “right-hand side,” respectively. To understand
the rationale behind these names, consider a class for representing ra-
tional numbers:

class Rational { ... };

If I wanted a function to compare pairs of Rational objects, I’d declare
it like this:

bool operator==(const Rational& lhs, const Rational& rhs);

That would let me write this kind of code:

Rational r1, r2;

...

if (r1 == r2) ...

Within the call to operator==, r1 appears on the left-hand side of the
“==” and is bound to lhs, while r2 appears on the right-hand side of
the “==” and is bound to rhs.

Other abbreviations I employ include ctor for “constructor,” dtor for
“destructor,” and RTTI for C++’s support for runtime type identification
(of which dynamic_cast is the most commonly used component).

When you allocate memory and fail to free it, you have a memory leak.
Memory leaks arise in both C and C++, but in C++, memory leaks leak
more than just memory. That’s because C++ automatically calls con-
structors when objects are created, and constructors may themselves
allocate resources. For example, consider this code:

class Widget { ... }; // some class — it doesn’t
// matter what it is

Widget *pw = new Widget; // dynamically allocate a
// Widget object

... // assume pw is never
// deleted

This code leaks memory, because the Widget pointed to by pw is never
deleted. However, if the Widget constructor allocates additional re-

Introduction 7
sources that are to be released when the Widget is destroyed (such as
file descriptors, semaphores, window handles, database locks, etc.),
those resources are lost just as surely as the memory is. To emphasize
that memory leaks in C++ often leak other resources, too, I usually
speak of resource leaks in this book rather than memory leaks.

You won’t see many inline functions in this book. That’s not because I
dislike inlining. Far from it, I believe that inline functions are an im-
portant feature of C++. However, the criteria for determining whether a
function should be inlined can be complex, subtle, and platform-de-
pendent. As a result, I avoid inlining unless there is a point about in-
lining I wish to make. When you see a non-inline function in More
Effective C++, that doesn’t mean I think it would be a bad idea to de-
clare the function inline, it just means the decision to inline that
function is independent of the material I’m examining at that point in
the book.

A few C++ features have been deprecated by the standardization com-
mittee. Such features are slated for eventual removal from the lan-
guage, because newer features have been added that do what the
deprecated features do, but do it better. In this book, I identify depre-
cated constructs and explain what features replace them. You should
try to avoid deprecated features where you can, but there’s no reason
to be overly concerned about their use. In the interest of preserving
backward compatibility for their customers, compiler vendors are
likely to support deprecated features for many years.

A client is somebody (a programmer) or something (a class or function,
typically) that uses the code you write. For example, if you write a Date
class (for representing birthdays, deadlines, when the Second Coming
occurs, etc.), anybody using that class is your client. Furthermore, any
sections of code that use the Date class are your clients as well. Cli-
ents are important. In fact, clients are the name of the game! If nobody
uses the software you write, why write it? You will find I worry a lot
about making things easier for clients, often at the expense of making
things more difficult for you, because good software is “clientcentric”
— it revolves around clients. If this strikes you as unreasonably phil-
anthropic, view it instead through a lens of self-interest. Do you ever
use the classes or functions you write? If so, you’re your own client, so
making things easier for clients in general also makes them easier for
you.

When discussing class or function templates and the classes or func-
tions generated from them, I reserve the right to be sloppy about the
difference between the templates and their instantiations. For exam-
ple, if Array is a class template taking a type parameter T, I may refer
to a particular instantiation of the template as an Array, even though

8

Ar
tio
as
mi
tem

Re

I h
po
of
ple
ing
ad
ges

I co
ha
me
bu

Alt

I m
ing
wit
at
wo
ces
ab

If y
join
Ma

En
Introduction

ray<T> is really the name of the class. Similarly, if swap is a func-
n template taking a type parameter T, I may refer to an instantiation
swap instead of swap<T>. In cases where this kind of shorthand
ght be unclear, I include template parameters when referring to
plate instantiations.

porting Bugs, Making Suggestions, Getting Book Updates

ave tried to make this book as accurate, readable, and useful as
ssible, but I know there is room for improvement. If you find an error
any kind — technical, grammatical, typographical, whatever —
ase tell me about it. I will try to correct the mistake in future print-
s of the book, and if you are the first person to report it, I will gladly
d your name to the book’s acknowledgments. If you have other sug-
tions for improvement, I welcome those, too.

ntinue to collect guidelines for effective programming in C++. If you
ve ideas for new guidelines, I’d be delighted if you’d share them with
. Send your guidelines, your comments, your criticisms, and your
g reports to:

Scott Meyers
c/o Editor-in-Chief, Corporate and Professional Publishing
Addison-Wesley Publishing Company
1 Jacob Way
Reading, MA 01867
U. S. A.

ernatively, you may send electronic mail to mec++@aristeia.com.

aintain a list of changes to this book since its first printing, includ-
 bug-fixes, clarifications, and technical updates. This list, along
h other book-related information, is available from Addison-Wesley
World Wide Web URL http://www.awl.com/cp/mec++.html. If you
uld like a copy of the list of changes to this book, but you lack ac-
s to the Internet, please send a request to one of the addresses

ove, and I will see that the list is sent to you.

ou’d like to be notified when I make changes to this book, consider
ing my mailing list. For details, consult http://www.aristeia.com/
ilingList/index.html.

ough preliminaries. On with the show!

http://www.awl.com/cp/mec++.html
http://www.aristeia.com/MailingList/index.html
http://www.aristeia.com/MailingList/index.html
mailto:mec++@aristeia.com

Basics

BasicsAh, the basics. Pointers, references, casts, arrays, constructors — you
can’t get much more basic than that. All but the simplest C++ pro-
grams use most of these features, and many programs use them all.

In spite of our familiarity with these parts of the language, sometimes
they can still surprise us. This is especially true for programmers mak-
ing the transition from C to C++, because the concepts behind refer-
ences, dynamic casts, default constructors, and other non-C features
are usually a little murky.

This chapter describes the differences between pointers and references
and offers guidance on when to use each. It introduces the new C++
syntax for casts and explains why the new casts are superior to the C-
style casts they replace. It examines the C notion of arrays and the C++
notion of polymorphism, and it describes why mixing the two is an idea
whose time will never come. Finally, it considers the pros and cons of
default constructors and suggests ways to work around language re-
strictions that encourage you to have one when none makes sense.

By heeding the advice in the items that follow, you’ll make progress to-
ward a worthy goal: producing software that expresses your design in-
tentions clearly and correctly.

Item 1: Distinguish between pointers and references.
Pointers versus ReferencesPointers and references look different enough (pointers use the “*” and
“->” operators, references use “.”), but they seem to do similar things.
Both pointers and references let you refer to other objects indirectly.
How, then, do you decide when to use one and not the other?

First, recognize that there is no such thing as a null reference. A refer-
ence must always refer to some object. As a result, if you have a vari-
able whose purpose is to refer to another object, but it is possible that
there might not be an object to refer to, you should make the variable

10 Item 1
a pointer, because then you can set it to null. On the other hand, if the
variable must always refer to an object, i.e., if your design does not
allow for the possibility that the variable is null, you should probably
make the variable a reference.

“But wait,” you wonder, “what about underhandedness like this?”

char *pc = 0; // set pointer to null

char& rc = *pc; // make reference refer to
// dereferenced null pointer

Well, this is evil, pure and simple. The results are undefined (compilers
can generate output to do anything they like), and people who write
this kind of code should be shunned until they agree to cease and de-
sist. If you have to worry about things like this in your software, you’re
probably best off avoiding references entirely. Either that or finding a
better class of programmers to work with. We’ll henceforth ignore the
possibility that a reference can be “null.”

Because a reference must refer to an object, C++ requires that refer-
ences be initialized:

string& rs; // error! References must
// be initialized

string s("xyzzy");

string& rs = s; // okay, rs refers to s

Pointers are subject to no such restriction:

string *ps; // uninitialized pointer:
// valid but risky

The fact that there is no such thing as a null reference implies that it
can be more efficient to use references than to use pointers. That’s be-
cause there’s no need to test the validity of a reference before using it:

void printDouble(const double& rd)
{

cout << rd; // no need to test rd; it
} // must refer to a double

Pointers, on the other hand, should generally be tested against null:

void printDouble(const double *pd)
{
if (pd) { // check for null pointer
cout << *pd;

}
}

Pointers versus References 11
Another important difference between pointers and references is that
pointers may be reassigned to refer to different objects. A reference,
however, always refers to the object with which it is initialized:

string s1("Nancy");
string s2("Clancy");

string& rs = s1; // rs refers to s1

string *ps = &s1; // ps points to s1

rs = s2; // rs still refers to s1,
// but s1’s value is now
// "Clancy"

ps = &s2; // ps now points to s2;
// s1 is unchanged

In general, you should use a pointer whenever you need to take into
account the possibility that there’s nothing to refer to (in which case
you can set the pointer to null) or whenever you need to be able to refer
to different things at different times (in which case you can change
where the pointer points). You should use a reference whenever you
know there will always be an object to refer to and you also know that
once you’re referring to that object, you’ll never want to refer to any-
thing else.

There is one other situation in which you should use a reference, and
that’s when you’re implementing certain operators. The most common
example is operator[]. This operator typically needs to return some-
thing that can be used as the target of an assignment:

vector<int> v(10); // create an int vector of size 10;
// vector is a template in the
// standard C++ library (see Item 35)

v[5] = 10; // the target of this assignment is
// the return value of operator[]

If operator[] returned a pointer, this last statement would have to be
written this way:

*v[5] = 10;

But this makes it look like v is a vector of pointers, which it’s not. For
this reason, you’ll almost always want operator[] to return a refer-
ence. (For an interesting exception to this rule, see Item 30.)

References, then, are the feature of choice when you know you have
something to refer to and when you’ll never want to refer to anything
else. They’re also appropriate when implementing operators whose
syntactic requirements make the use of pointers undesirable. In all
other cases, stick with pointers.

12 Item 2
Item 2: Prefer C++-style casts.
New Casting OperatorsConsider the lowly cast. Nearly as much a programming pariah as the
goto, it nonetheless endures, because when worse comes to worst and
push comes to shove, casts can be necessary. Casts are especially nec-
essary when worse comes to worst and push comes to shove.

Still, C-style casts are not all they might be. For one thing, they’re
rather crude beasts, letting you cast pretty much any type to pretty
much any other type. It would be nice to be able to specify more pre-
cisely the purpose of each cast. There is a great difference, for example,
between a cast that changes a pointer-to-const-object into a pointer-
to-non-const-object (i.e., a cast that changes only the constness of an
object) and a cast that changes a pointer-to-base-class-object into a
pointer-to-derived-class-object (i.e., a cast that completely changes an
object’s type). Traditional C-style casts make no such distinctions.
(This is hardly a surprise. C-style casts were designed for C, not C++.)

A second problem with casts is that they are hard to find. Syntacti-
cally, casts consist of little more than a pair of parentheses and an
identifier, and parentheses and identifiers are used everywhere in C++.
This makes it tough to answer even the most basic cast-related ques-
tions, questions like, “Are any casts used in this program?” That’s be-
cause human readers are likely to overlook casts, and tools like grep
cannot distinguish them from non-cast constructs that are syntacti-
cally similar.

C++ addresses the shortcomings of C-style casts by introducing four
new cast operators, static_cast, const_cast, dynamic_cast, and
reinterpret_cast. For most purposes, all you need to know about
these operators is that what you are accustomed to writing like this,

(type) expression

you should now generally write like this:

static_cast<type>(expression)

For example, suppose you’d like to cast an int to a double to force an
expression involving ints to yield a floating point value. Using C-style
casts, you could do it like this:

int firstNumber, secondNumber;

...

double result = ((double)firstNumber)/secondNumber;

With the new casts, you’d write it this way:

double result = static_cast<double>(firstNumber)/secondNumber;

New Casting Operators 13
Now there’s a cast that’s easy to see, both for humans and for pro-
grams.

static_cast has basically the same power and meaning as the gen-
eral-purpose C-style cast. It also has the same kind of restrictions. For
example, you can’t cast a struct into an int or a double into a
pointer using static_cast any more than you can with a C-style cast.
Furthermore, static_cast can’t remove constness from an expres-
sion, because another new cast, const_cast, is designed specifically
to do that.

The other new C++ casts are used for more restricted purposes.
const_cast is used to cast away the constness or volatileness of
an expression. By using a const_cast, you emphasize (to both hu-
mans and compilers) that the only thing you want to change through
the cast is the constness or volatileness of something. This mean-
ing is enforced by compilers. If you try to employ const_cast for any-
thing other than modifying the constness or volatileness of an
expression, your cast will be rejected. Here are some examples:

class Widget { ... };
class SpecialWidget: public Widget { ... };

void update(SpecialWidget *psw);

SpecialWidget sw; // sw is a non-const object,
const SpecialWidget& csw = sw; // but csw is a reference to

// it as a const object

update(&csw); // error! can’t pass a const
// SpecialWidget* to a function
// taking a SpecialWidget*

update(const_cast<SpecialWidget*>(&csw));
// fine, the constness of &csw is
// explicitly cast away (and
// csw — and sw — may now be
// changed inside update)

update((SpecialWidget*)&csw);
// same as above, but using a
// harder-to-recognize C-style cast

Widget *pw = new SpecialWidget;

update(pw); // error! pw’s type is Widget*, but
// update takes a SpecialWidget*

update(const_cast<SpecialWidget*>(pw));
// error! const_cast can be used only
// to affect constness or volatileness,
// never to cast down the inheritance
// hierarchy

By far the most common use of const_cast is to cast away the con-
stness of an object.

14 Item 2
The second specialized type of cast, dynamic_cast, is used to perform
safe casts down or across an inheritance hierarchy. That is, you use
dynamic_cast to cast pointers or references to base class objects into
pointers or references to derived or sibling base class objects in such a
way that you can determine whether the casts succeeded.† Failed casts
are indicated by a null pointer (when casting pointers) or an exception
(when casting references):

Widget *pw;

...

update(dynamic_cast<SpecialWidget*>(pw));
// fine, passes to update a pointer
// to the SpecialWidget pw points to
// if pw really points to one,
// otherwise passes the null pointer

void updateViaRef(SpecialWidget& rsw);

updateViaRef(dynamic_cast<SpecialWidget&>(*pw));
// fine, passes to updateViaRef the
// SpecialWidget pw points to if pw
// really points to one, otherwise
// throws an exception

dynamic_casts are restricted to helping you navigate inheritance hi-
erarchies. They cannot be applied to types lacking virtual functions
(see also Item 24), nor can they cast away constness:

int firstNumber, secondNumber;
...
double result = dynamic_cast<double>(firstNumber)/secondNumber;

// error! int has no virtual functions

const SpecialWidget sw;
...
update(dynamic_cast<SpecialWidget*>(&sw));

// error! dynamic_cast can’t cast
// away constness

If you want to perform a cast on a type where inheritance is not in-
volved, you probably want a static_cast. To cast constness away,
you always want a const_cast.

The last of the four new casting forms is reinterpret_cast. This op-
erator is used to perform type conversions whose result is nearly al-
ways implementation-defined. As a result, reinterpret_casts are
rarely portable.

† A second, unrelated use of dynamic_cast is to find the beginning of the memory oc-
cupied by an object. We explore that capability in Item 27.

New Casting Operators 15
The most common use of reinterpret_cast is to cast between func-
tion pointer types. For example, suppose you have an array of pointers
to functions of a particular type:

typedef void (*FuncPtr)(); // a FuncPtr is a pointer
// to a function taking no
// args and returning void

FuncPtr funcPtrArray[10]; // funcPtrArray is an array
// of 10 FuncPtrs

Let us suppose you wish (for some unfathomable reason) to place a
pointer to the following function into funcPtrArray:

int doSomething();

You can’t do what you want without a cast, because doSomething has
the wrong type for funcPtrArray. The functions in funcPtrArray re-
turn void, but doSomething returns an int:

funcPtrArray[0] = &doSomething; // error! type mismatch

A reinterpret_cast lets you force compilers to see things your way:

funcPtrArray[0] = // this compiles
reinterpret_cast<FuncPtr>(&doSomething);

Casting function pointers is not portable (C++ offers no guarantee that
all function pointers are represented the same way), and in some cases
such casts yield incorrect results (see Item 31), so you should avoid
casting function pointers unless your back’s to the wall and a knife’s
at your throat. A sharp knife. A very sharp knife.

If your compilers lack support for the new casting forms, you can use
traditional casts in place of static_cast, const_cast, and
reinterpret_cast. Furthermore, you can use macros to approxi-
mate the new syntax:

#define static_cast(TYPE,EXPR) ((TYPE)(EXPR))
#define const_cast(TYPE,EXPR) ((TYPE)(EXPR))
#define reinterpret_cast(TYPE,EXPR) ((TYPE)(EXPR))

You’d use the approximations like this:

double result = static_cast(double, firstNumber)/secondNumber;

update(const_cast(SpecialWidget*, &sw));

funcPtrArray[0] = reinterpret_cast(FuncPtr, &doSomething);

These approximations won’t be as safe as the real things, of course,
but they will simplify the process of upgrading your code when your
compilers support the new casts.

16 Item 3
There is no easy way to emulate the behavior of a dynamic_cast, but
many libraries provide functions to perform safe inheritance-based
casts for you. If you lack such functions and you must perform this
type of cast, you can fall back on C-style casts for those, too, but then
you forego the ability to tell if the casts fail. Needless to say, you can
define a macro to look like dynamic_cast, just as you can for the other
casts:

#define dynamic_cast(TYPE,EXPR) ((TYPE)(EXPR))

Remember that this approximation is not performing a true
dynamic_cast; there is no way to tell if the cast fails.

I know, I know, the new casts are ugly and hard to type. If you find
them too unpleasant to look at, take solace in the knowledge that C-
style casts continue to be valid. However, what the new casts lack in
beauty they make up for in precision of meaning and easy recogniz-
ability. Programs that use the new casts are easier to parse (both for
humans and for tools), and they allow compilers to diagnose casting
errors that would otherwise go undetected. These are powerful argu-
ments for abandoning C-style casts, and there may also be a third:
perhaps making casts ugly and hard to type is a good thing.

Item 3: Never treat arrays polymorphically.
Arrays and PolymorphismOne of the most important features of inheritance is that you can ma-
nipulate derived class objects through pointers and references to base
class objects. Such pointers and references are said to behave polymor-
phically — as if they had multiple types. C++ also allows you to manip-
ulate arrays of derived class objects through base class pointers and
references. This is no feature at all, because it almost never works the
way you want it to.

For example, suppose you have a class BST (for binary search tree ob-
jects) and a second class, BalancedBST, that inherits from BST:

class BST { ... };

class BalancedBST: public BST { ... };

In a real program such classes would be templates, but that’s unim-
portant here, and adding all the template syntax just makes things
harder to read. For this discussion, we’ll assume BST and Bal-
ancedBST objects contain only ints.

Consider a function to print out the contents of each BST in an array
of BSTs:

Arrays and Polymorphism 17
void printBSTArray(ostream& s,
const BST array[],
int numElements)

{
for (int i = 0; i < numElements; ++i) {
s << array[i]; // this assumes an

} // operator<< is defined
} // for BST objects

This will work fine when you pass it an array of BST objects:

BST BSTArray[10];

...

printBSTArray(cout, BSTArray, 10); // works fine

Consider, however, what happens when you pass printBSTArray an
array of BalancedBST objects:

BalancedBST bBSTArray[10];

...

printBSTArray(cout, bBSTArray, 10); // works fine?

Your compilers will accept this function call without complaint, but
look again at the loop for which they must generate code:

for (int i = 0; i < numElements; ++i) {
s << array[i];

}

Now, array[i] is really just shorthand for an expression involving
pointer arithmetic: it stands for *(array+i). We know that array is a
pointer to the beginning of the array, but how far away from the mem-
ory location pointed to by array is the memory location pointed to by
array+i? The distance between them is i*sizeof(an object in the
array), because there are i objects between array[0] and array[i].
In order for compilers to emit code that walks through the array cor-
rectly, they must be able to determine the size of the objects in the ar-
ray. This is easy for them to do. The parameter array is declared to be
of type array-of-BST, so each element of the array must be a BST, and
the distance between array and array+i must be i*sizeof(BST).

At least that’s how your compilers look at it. But if you’ve passed an
array of BalancedBST objects to printBSTArray, your compilers are
probably wrong. In that case, they’d assume each object in the array is
the size of a BST, but each object would actually be the size of a Bal-
ancedBST. Derived classes usually have more data members than their
base classes, so derived class objects are usually larger than base
class objects. We thus expect a BalancedBST object to be larger than a

