

Effective STL

Addison-Wesley Professional Computing Series
Brian W. Kernighan, Consulting Editor

Matthew H. Austern, Generic Programming and the STL: Using and Extending the C++ Standard Template Library
David R. Butenhof, Programming with POSIX® Threads
Brent Callaghan, NFS Illustrated
Tom Cargill, C++ Programming Style
William R. Cheswick/Steven M. Bellovin/Aviel D. Rubin, Firewalls and Internet Security, Second Edition: Repelling

the Wily Hacker
David A. Curry, UNIX® System Security: A Guide for Users and System Administrators
Stephen C. Dewhurst, C++ Gotchas: Avoiding Common Problems in Coding and Design
Dan Farmer/Wietse Venema, Forensic Discovery
Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns: Elements of Reusable Object-

Oriented Software
Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns CD: Elements of Reusable Object-

Oriented Software
Peter Haggar, Practical Java™ Programming Language Guide
David R. Hanson, C Interfaces and Implementations: Techniques for Creating Reusable Software
Mark Harrison/Michael McLennan, Effective Tcl/Tk Programming: Writing Better Programs with Tcl and Tk
Michi Henning/Steve Vinoski, Advanced CORBA® Programming with C++
Brian W. Kernighan/Rob Pike, The Practice of Programming
S. Keshav, An Engineering Approach to Computer Networking: ATM Networks, the Internet, and the Telephone Network
John Lakos, Large-Scale C++ Software Design
Scott Meyers, Effective C++ CD: 85 Specific Ways to Improve Your Programs and Designs
Scott Meyers, Effective C++, Third Edition: 55 Specific Ways to Improve Your Programs and Designs
Scott Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs
Scott Meyers, Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library
Robert B. Murray, C++ Strategies and Tactics
David R. Musser/Gillmer J. Derge/Atul Saini, STL Tutorial and Reference Guide, Second Edition:

C++ Programming with the Standard Template Library
John K. Ousterhout, Tcl and the Tk Toolkit
Craig Partridge, Gigabit Networking
Radia Perlman, Interconnections, Second Edition: Bridges, Routers, Switches, and Internetworking Protocols
Stephen A. Rago, UNIX® System V Network Programming
Eric S. Raymond, The Art of UNIX Programming
Marc J. Rochkind, Advanced UNIX Programming, Second Edition
Curt Schimmel, UNIX® Systems for Modern Architectures: Symmetric Multiprocessing and Caching for Kernel Programmers
W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols
W. Richard Stevens, TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX®

Domain Protocols
W. Richard Stevens/Bill Fenner/Andrew M. Rudoff, UNIX Network Programming Volume 1, Third Edition: The

Sockets Networking API
W. Richard Stevens/Stephen A. Rago, Advanced Programming in the UNIX® Environment, Second Edition
W. Richard Stevens/Gary R. Wright, TCP/IP Illustrated Volumes 1-3 Boxed Set
John Viega/Gary McGraw, Building Secure Software: How to Avoid Security Problems the Right Way
Gary R. Wright/W. Richard Stevens, TCP/IP Illustrated, Volume 2: The Implementation
Ruixi Yuan/W. Timothy Strayer, Virtual Private Networks: Technologies and Solutions

Visit www.awprofessional.com/series/professionalcomputing for more information about these titles.

http://www.awprofessional.com/series/professionalcomputing

Effective STL
50 Specific Ways to Improve Your Use of the

Standard Template Library

Scott Meyers

▲
▼▼

ADDISON-WESLEY

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

This e-book reproduces in electronic form the printed book content of Effective STL: 50 Specific Ways
to Improve Your Use of the Standard Template Library, by Scott Meyers. Copyright © 2001 by Addison-
Wesley, an imprint of Pearson Education, Inc. ISBN: 0-201-74962-9.

LICENSE FOR PERSONAL USE: For the convenience of readers, this e-book is licensed and sold in
its PDF version without any digital rights management (DRM) applied. Purchasers of the PDF version
may, for their personal use only, install additional copies on multiple devices and copy or print excerpts
for themselves. The duplication, distribution, transfer, or sharing of this e-book’s content for any pur-
pose other than the purchaser’s personal use, in whole or in part, by any means, is strictly prohibited.

PERSONALIZATION NOTICE: To discourage unauthorized uses of this e-book and thereby allow its
publication without DRM, each copy of the PDF version identifies its purchaser. To encourage a DRM-
free policy, please protect your files from access by others.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in the original printed book and this e-book, and we were
aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of the original printed book and this e-book,
but make no expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

The excerpt from How the Grinch Stole Christmas! by Dr. Seuss is trademarked and copyright ©
Dr. Seuss Enterprises, L.P., 1957 (renewed 1985). Used by permission of Random House Children’s
Books, a division of Random House, Inc.

DISCOUNTS AND SITE LICENSES: The publisher offers discounted prices on this e-book when pur-
chased with its corresponding printed book or with other e-books by Scott Meyers. The publisher also
offers site licenses for these e-books (not available in some countries). For more information, please
visit: www.ScottMeyers-EBooks.com or www.informit.com/aw

Copyright © 2008 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

E-book ISBN 13: 978-0-321-51580-3
E-book ISBN 10: 0-321-51580-3
Second e-book release, April 2011 (essentially identical to the 13th Paper Printing).

http://www.ScottMeyers-EBooks.com
http://www.informit.com/aw
http://www.amazon.com/gp/product/0394800796?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0394800796

For Woofieland.

This page intentionally left blank

Preface xi

Acknowledgments xv

Introduction 1

Chapter 1: Containers 11

Item 1: Choose your containers with care. 11
Item 2: Beware the illusion of container-independent code. 15
Item 3: Make copying cheap and correct for objects

in containers. 20
Item 4: Call empty instead of checking size() against zero. 23
Item 5: Prefer range member functions to their single-element

counterparts. 24
Item 6: Be alert for C++’s most vexing parse. 33
Item 7: When using containers of newed pointers, remember to

delete the pointers before the container is destroyed. 36
Item 8: Never create containers of auto_ptrs. 40
Item 9: Choose carefully among erasing options. 43
Item 10: Be aware of allocator conventions and restrictions. 48
Item 11: Understand the legitimate uses of custom allocators. 54
Item 12: Have realistic expectations about the thread safety

of STL containers. 58

Chapter 2: vector and string 63

Item 13: Prefer vector and string to dynamically allocated arrays. 63
Item 14: Use reserve to avoid unnecessary reallocations. 66
Item 15: Be aware of variations in string implementations. 68

Contents

viii Contents Effective STL
Item 16: Know how to pass vector and string data to legacy APIs. 74
Item 17: Use “the swap trick” to trim excess capacity. 77
Item 18: Avoid using vector<bool>. 79

Chapter 3: Associative Containers 83

Item 19: Understand the difference between equality and
equivalence. 83

Item 20: Specify comparison types for associative containers
of pointers. 88

Item 21: Always have comparison functions return false for
equal values. 92

Item 22: Avoid in-place key modification in set and multiset. 95
Item 23: Consider replacing associative containers with

sorted vectors. 100
Item 24: Choose carefully between map::operator[] and

map::insert when efficiency is important. 106
Item 25: Familiarize yourself with the nonstandard hashed

containers. 111

Chapter 4: Iterators 116

Item 26: Prefer iterator to const_iterator, reverse_iterator, and
const_reverse_iterator. 116

Item 27: Use distance and advance to convert a container’s
const_iterators to iterators. 120

Item 28: Understand how to use a reverse_iterator’s base iterator. 123
Item 29: Consider istreambuf_iterators for character-by-character

input. 126

Chapter 5: Algorithms 128

Item 30: Make sure destination ranges are big enough. 129
Item 31: Know your sorting options. 133
Item 32: Follow remove-like algorithms by erase if you really

want to remove something. 139
Item 33: Be wary of remove-like algorithms on containers of

pointers. 143
Item 34: Note which algorithms expect sorted ranges. 146
Item 35: Implement simple case-insensitive string

comparisons via mismatch or lexicographical_compare. 150
Item 36: Understand the proper implementation of copy_if. 154

Effective STL Contents ix
Item 37: Use accumulate or for_each to summarize ranges. 156

Chapter 6: Functors, Functor Classes,
Functions, etc. 162

Item 38: Design functor classes for pass-by-value. 162
Item 39: Make predicates pure functions. 166
Item 40: Make functor classes adaptable. 169
Item 41: Understand the reasons for ptr_fun, mem_fun, and

mem_fun_ref. 173
Item 42: Make sure less<T> means operator<. 177

Chapter 7: Programming with the STL 181

Item 43: Prefer algorithm calls to hand-written loops. 181
Item 44: Prefer member functions to algorithms with the

same names. 190
Item 45: Distinguish among count, find, binary_search,

lower_bound, upper_bound, and equal_range. 192
Item 46: Consider function objects instead of functions as

algorithm parameters. 201
Item 47: Avoid producing write-only code. 206
Item 48: Always #include the proper headers. 209
Item 49: Learn to decipher STL-related compiler diagnostics. 210
Item 50: Familiarize yourself with STL-related web sites. 217

Bibliography 225

Appendix A: Locales and Case-Insensitive
String Comparisons 229

Appendix B: Remarks on Microsoft’s
STL Platforms 239

Index 245

This page intentionally left blank

It came without ribbons! It came without tags!
It came without packages, boxes or bags!

— Dr. Seuss, How the Grinch Stole
Christmas!, Random House, 1957

I first wrote about the Standard Template Library in 1995, when I
concluded the final Item of More Effective C++ with a brief STL over-
view. I should have known better. Shortly thereafter, I began receiving
mail asking when I’d write Effective STL.

I resisted the idea for several years. At first, I wasn’t familiar enough
with the STL to offer advice on it, but as time went on and my experi-
ence with it grew, this concern gave way to other reservations. There
was never any question that the library represented a breakthrough in
efficient and extensible design, but when it came to using the STL,
there were practical problems I couldn’t overlook. Porting all but the
simplest STL programs was a challenge, not only because library im-
plementations varied, but also because template support in the un-
derlying compilers ranged from good to awful. STL tutorials were hard
to come by, so learning “the STL way of programming” was difficult,
and once that hurdle was overcome, finding comprehensible and ac-
curate reference documentation was a challenge. Perhaps most
daunting, even the smallest STL usage error often led to a blizzard of
compiler diagnostics, each thousands of characters long, most refer-
ring to classes, functions, or templates not mentioned in the offending
source code, almost all incomprehensible. Though I had great admira-
tion for the STL and for the people behind it, I felt uncomfortable rec-
ommending it to practicing programmers. I wasn’t sure it was possible
to use the STL effectively.

Then I began to notice something that took me by surprise. Despite
the portability problems, despite the dismal documentation, despite
the compiler diagnostics resembling transmission line noise, many of

Preface

http://www.amazon.com/gp/product/0394800796?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0394800796
http://www.amazon.com/gp/product/0394800796?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0394800796
http://www.amazon.com/gp/product/020163371X?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=020163371X

xii Preface Effective STL
my consulting clients were using the STL anyway. Furthermore, they
weren’t just playing with it, they were using it in production code!
That was a revelation. I knew that the STL featured an elegant design,
but any library for which programmers are willing to endure portabil-
ity headaches, poor documentation, and incomprehensible error mes-
sages has a lot more going for it than just good design. For an
increasingly large number of professional programmers, I realized,
even a bad implementation of the STL was preferable to no implemen-
tation at all.

Furthermore, I knew that the situation regarding the STL would only
get better. Libraries and compilers would grow more conformant with
the Standard (they have), better documentation would become avail-
able (it has — consult the bibliography beginning on page 225), and
compiler diagnostics would improve (for the most part, we’re still wait-
ing, but Item 49 offers suggestions for how to cope while we wait). I
therefore decided to chip in and do my part for the STL movement.
This book is the result: 50 specific ways to improve your use of C++’s
Standard Template Library.

My original plan was to write the book in the second half of 1999, and
with that thought in mind, I put together an outline. But then I
changed course. I suspended work on the book and developed an in-
troductory training course on the STL, which I then taught several
times to groups of programmers. About a year later, I returned to the
book, significantly revising the outline based on my experiences with
the training course. In the same way that my Effective C++ has been
successful by being grounded in the problems faced by real program-
mers, it’s my hope that Effective STL similarly addresses the practical
aspects of STL programming — the aspects most important to profes-
sional developers.

I am always on the lookout for ways to improve my understanding of
C++. If you have suggestions for new guidelines for STL programming
or if you have comments on the guidelines in this book, please let me
know. In addition, it is my continuing goal to make this book as accu-
rate as possible, so for each error in this book that is reported to me —
be it technical, grammatical, typographical, or otherwise — I will, in
future printings, gladly add to the acknowledgments the name of the
first person to bring that error to my attention. Send your suggested
guidelines, your comments, and your criticisms to estl@aristeia.com.

I maintain a list of changes to this book since its first printing, includ-
ing bug-fixes, clarifications, and technical updates. The list is avail-
able at the Effective STL Errata web site, http://www.aristeia.com/
BookErrata/estl1e-errata.html.

http://www.aristeia.com/BookErrata/estl1e-errata.html
http://www.aristeia.com/BookErrata/estl1e-errata.html
mailto:estl@aristeia.com
http://www.amazon.com/gp/product/0321334876?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321334876

Effective STL Preface xiii
If you’d like to be notified when I make changes to this book, I encour-
age you to join my mailing list. I use the list to make announcements
likely to be of interest to people who follow my work on C++. For de-
tails, consult http://www.aristeia.com/MailingList/.

SCOTT DOUGLAS MEYERS STAFFORD, OREGON
http://www.aristeia.com/ APRIL 2001

http://www.aristeia.com/
http://www.aristeia.com/MailingList/

This page intentionally left blank

I had an enormous amount of help during the roughly two years it
took me to make some sense of the STL, create a training course on it,
and write this book. Of all my sources of assistance, two were particu-
larly important. The first is Mark Rodgers. Mark generously volun-
teered to review my training materials as I created them, and I learned
more about the STL from him than from anybody else. He also acted
as a technical reviewer for this book, again providing observations and
insights that improved virtually every Item.

The other outstanding source of information was several C++-related
Usenet newsgroups, especially comp.lang.c++.moderated (“clcm”),
comp.std.c++, and microsoft.public.vc.stl. For well over a decade, I’ve de-
pended on the participants in newsgroups like these to answer my
questions and challenge my thinking, and it’s difficult to imagine what
I’d do without them. I am deeply grateful to the Usenet community for
their help with both this book and my prior publications on C++.

My understanding of the STL was shaped by a variety of publications,
the most important of which are listed in the Bibliography. I leaned
especially heavily on Josuttis’ The C++ Standard Library [3].

This book is fundamentally a summary of insights and observations
made by others, though a few of the ideas are my own. I’ve tried to
keep track of where I learned what, but the task is hopeless, because
a typical Item contains information garnered from many sources over
a long period of time. What follows is incomplete, but it’s the best I
can do. Please note that my goal here is to summarize where I first
learned of an idea or technique, not where the idea or technique was
originally developed or who came up with it.

In Item 1, my observation that node-based containers offer better sup-
port for transactional semantics is based on section 5.11.2 of Josuttis’
The C++ Standard Library [3]. Item 2 includes an example from Mark
Rodgers on how typedefs help when allocator types are changed.

Acknowledgments

xvi Acknowledgments Effective STL
Item 5 was motivated by Reeves’ C++ Report column, “STL
Gotchas” [17]. Item 8 sprang from Item 37 in Sutter’s Exceptional
C++ [8], and Kevlin Henney provided important details on how con-
tainers of auto_ptrs fail in practice. In Usenet postings, Matt Austern
provided examples of when allocators are useful, and I include his ex-
amples in Item 11. Item 12 is based on the discussion of thread safety
at the SGI STL web site [21]. The material in Item 13 on the perfor-
mance implications of reference counting in a multithreaded environ-
ment is drawn from Sutter’s writings on this topic [20]. The idea for
Item 15 came from Reeves’ C++ Report column, “Using Standard string
in the Real World, Part 2,” [18]. In Item 16, Mark Rodgers came up
with the technique I show for having a C API write data directly into a
vector. Item 17 includes information from Usenet postings by Siemel
Naran and Carl Barron. I stole Item 18 from Sutter’s C++ Report col-
umn, “When Is a Container Not a Container?” [12]. In Item 20, Mark
Rodgers contributed the idea of transforming a pointer into an object
via a dereferencing functor, and Scott Lewandowski came up with the
version of DereferenceLess I present. Item 21 originated in a Doug Har-
rison posting to microsoft.public.vc.stl, but the decision to restrict the
focus of that Item to equality was mine. I based Item 22 on Sutter’s
C++ Report column, “Standard Library News: sets and maps” [13];
Matt Austern helped me understand the status of the Standardization
Committee’s Library Issue #103. Item 23 was inspired by Austern’s
C++ Report article, “Why You Shouldn’t Use set — and What to Use
Instead” [15]; David Smallberg provided a neat refinement for my im-
plementation of DataCompare. My description of Dinkumware’s hashed
containers is based on Plauger’s C/C++ Users Journal column, “Hash
Tables” [16]. Mark Rodgers doesn’t agree with the overall advice of
Item 26, but an early motivation for that Item was his observation
that some container member functions accept only arguments of type
iterator. My treatment of Item 29 was motivated and informed by
Usenet discussions involving Matt Austern and James Kanze; I was
also influenced by Kreft and Langer’s C++ Report article, “A Sophisti-
cated Implementation of User-Defined Inserters and Extractors” [25].
Item 30 is due to a discussion in section 5.4.2 of Josuttis’ The C++
Standard Library [3]. In Item 31, Marco Dalla Gasperina contributed
the example use of nth_element to calculate medians, and use of that
algorithm for finding percentiles comes straight out of section 18.7.1
of Stroustrup’s The C++ Programming Language [7]. Item 32 was influ-
enced by the material in section 5.6.1 of Josuttis’ The C++ Standard
Library [3]. Item 35 originated in Austern’s C++ Report column “How
to Do Case-Insensitive String Comparison” [11], and James Kanze’s
and John Potter’s clcm postings helped me refine my understanding of
the issues involved. Stroustrup’s implementation for copy_if, which I

Effective STL Acknowledgments xvii
show in Item 36, is from section 18.6.1 of his The C++ Programming
Language [7]. Item 39 was largely motivated by the publications of Jo-
suttis, who has written about “stateful predicates” in his The C++
Standard Library [3], in Standard Library Issue #92, and in his C++
Report article, “Predicates vs. Function Objects” [14]. In my treatment,
I use his example and recommend a solution he has proposed, though
the use of the term “pure function” is my own. Matt Austern con-
firmed my suspicion in Item 41 about the history of the terms
mem_fun and mem_fun_ref. Item 42 can be traced to a lecture I got
from Mark Rodgers when I considered violating that guideline. Mark
Rodgers is also responsible for the insight in Item 44 that non-mem-
ber searches over maps and multimaps examine both components of
each pair, while member searches examine only the first (key) compo-
nent. Item 45 contains information from various clcm contributors, in-
cluding John Potter, Marcin Kasperski, Pete Becker, Dennis Yelle, and
David Abrahams. David Smallberg alerted me to the utility of
equal_range in performing equivalence-based searches and counts
over sorted sequence containers. Andrei Alexandrescu helped me un-
derstand the conditions under which “the reference-to-reference prob-
lem” I describe in Item 50 arises, and I modeled my example of the
problem on a similar example provided by Mark Rodgers at the Boost
Web Site [22].

Credit for the material in Appendix A goes to Matt Austern, of course.
I’m grateful that he not only gave me permission to include it in this
book, he also tweaked it to make it even better than the original.

Good technical books require a thorough pre-publication vetting, and
I was fortunate to benefit from the insights of an unusually talented
group of technical reviewers. Brian Kernighan and Cliff Green offered
early comments on a partial draft, and complete versions of the manu-
script were scrutinized by Doug Harrison, Brian Kernighan, Tim
Johnson, Francis Glassborow, Andrei Alexandrescu, David Smallberg,
Aaron Campbell, Jared Manning, Herb Sutter, Stephen Dewhurst,
Matt Austern, Gillmer Derge, Aaron Moore, Thomas Becker, Victor
Von, and, of course, Mark Rodgers. Katrina Avery did the copyediting.

One of the most challenging parts of preparing a book is finding good
technical reviewers. I thank John Potter for introducing me to Jared
Manning and Aaron Campbell.

Herb Sutter kindly agreed to act as my surrogate in compiling, run-
ning, and reporting on the behavior of some STL test programs under
a beta version of Microsoft’s Visual Studio .NET, while Leor Zolman
undertook the herculean task of testing all the code in this book. Any
errors that remain are my fault, of course, not Herb’s or Leor’s.

xviii

Angelik
aspects
tion ob
likely to

This pr
was ab
readers
Manast
Harold
Mikolic
Potter,
Wang,
Wayne
Seyed
Wolfram
Abrams
Ruedig
Niebler
Shlomi
Page, A
Camero
Rotting
ful for t

My col
and no
tants n
Hansen
especia
Adobe),
Johnso
ple, bu

Abbi St

As she
Nancy,
usual f
needed
than C+

And th
birthda
ice crea
Acknowledgments Effective STL

a Langer opened my eyes to the indeterminate status of some
 of STL function objects. This book has less to say about func-
jects than it otherwise might, but what it does say is more
 remain true. At least I hope it is.

inting of the book is better than earlier printings, because I
le to address problems identified by the following sharp-eyed
: Jon Webb, Michael Hawkins, Derek Price, Jim Scheller, Carl
er, Herb Sutter, Albert Franklin, George King, Dave Miller,
Howe, John Fuller, Tim McCarthy, John Hershberger, Igor

-Torreira, Stephan Bergmann, Robert Allan Schwartz, John
David Grigsby, Sanjay Pattni, Jesper Andersen, Jing Tao

André Blavier, Dan Schmidt, Bradley White, Adam Petersen,
Goertel, Gabriel Netterdag, Jason Kenny, Scott Blachowicz,
H. Haeri, Gareth McCaughan, Giulio Agostini, Fraser Ross,
 Burkhardt, Keith Stanley, Leor Zolman, Chan Ki Lok, Motti
ky, Kevlin Henney, Stefan Kuhlins, Phillip Ngan, Jim Phillips,

er Dreier, Guru Chandar, Charles Brockman, Day Barr, Eric
, Sharad Kala, Declan Moran, Nick de Smith, David Callaway,
 Frank, Andrea Griffini, Hans Eckardt, David Smallberg, Matt
ndy Fyfe, Vincent Stojanov, Randy Parker, Thomas Schell,
n Mac Minn, Mark Davis, Giora Unger, Julie Nahil, Martin
er, Neil Henderson, Andrew Savige, and Molly Sharp. I’m grate-
heir help in improving Effective STL.

laborators at Addison-Wesley included John Wait (my editor
w a senior VP), Alicia Carey and Susannah Buzard (his assis-
 and n+1), John Fuller (the production coordinator), Karin
 (the cover designer), Jason Jones (all-around technical guru,
lly with respect to the demonic software spewed forth by
 Marty Rabinowitz (their boss, but he works, too), and Curt
n, Chanda Leary-Coutu, and Robin Bruce (all marketing peo-
t still very nice).

aley made Sunday lunches a routinely pleasurable experience.

has for the six books and one CD that came before it, my wife,
 tolerated the demands of my research and writing with her
orbearance and offered me encouragement and support when I
 it most. She never fails to remind me that there’s more to life
+ and software.
en there’s our dog, Persephone. As I write this, it is her sixth
y. Tonight, she and Nancy and I will visit Baskin-Robbins for
m. Persephone will have vanilla. One scoop. In a cup. To go.

You’re already familiar with the STL. You know how to create contain-
ers, iterate over their contents, add and remove elements, and apply
common algorithms, such as find and sort. But you’re not satisfied.
You can’t shake the sensation that the STL offers more than you’re
taking advantage of. Tasks that should be simple aren’t. Operations
that should be straightforward leak resources or behave erratically.
Procedures that should be efficient demand more time or memory
than you’re willing to give them. Yes, you know how to use the STL,
but you’re not sure you’re using it effectively.

I wrote this book for you.

In Effective STL, I explain how to combine STL components to take full
advantage of the library’s design. Such information allows you to de-
velop simple, straightforward solutions to simple, straightforward
problems, and it also helps you design elegant approaches to more
complicated problems. I describe common STL usage errors, and I
show you how to avoid them. That helps you dodge resource leaks,
code that won’t port, and behavior that is undefined. I discuss ways to
optimize your code, so you can make the STL perform like the fast,
sleek machine it is intended to be.

The information in this book will make you a better STL programmer.
It will make you a more productive programmer. And it will make you
a happier programmer. Using the STL is fun, but using it effectively is
outrageous fun, the kind of fun where they have to drag you away
from the keyboard, because you just can’t believe the good time you’re
having. Even a cursory glance at the STL reveals that it is a won-
drously cool library, but the coolness runs broader and deeper than
you probably imagine. One of my primary goals in this book is to con-
vey to you just how amazing the library is, because in the nearly 30
years I’ve been programming, I’ve never seen anything like the STL.
You probably haven’t either.

Introduction

2 Introduction Effective STL
Defining, Using, and Extending the STL

There is no official definition of “the STL,” and different people mean
different things when they use the term. In this book, “the STL”
means the parts of C++’s Standard Library that work with iterators.
That includes the standard containers (including string), parts of the
iostream library, function objects, and algorithms. It excludes the
standard container adapters (stack, queue, and priority_queue) as well
as the containers bitset and valarray, because they lack iterator sup-
port. It doesn’t include arrays, either. True, arrays support iterators in
the form of pointers, but arrays are part of the C++ language, not the
library.

Technically, my definition of the STL excludes extensions of the stan-
dard C++ library, notably hashed containers, singly linked lists, ropes,
and a variety of nonstandard function objects. Even so, an effective
STL programmer needs to be aware of such extensions, so I mention
them where it’s appropriate. Indeed, Item 25 is devoted to an overview
of nonstandard hashed containers. They’re not in the STL now, but
something similar to them is almost certain to make it into the next
version of the standard C++ library, and there’s value in glimpsing the
future.

One of the reasons for the existence of STL extensions is that the STL
is a library designed to be extended. In this book, however, I focus on
using the STL, not on adding new components to it. You’ll find, for ex-
ample, that I have little to say about writing your own algorithms, and
I offer no guidance at all on writing new containers and iterators. I be-
lieve that it’s important to master what the STL already provides be-
fore you embark on increasing its capabilities, so that’s what I focus
on in Effective STL. When you decide to create your own STLesque
components, you’ll find advice on how to do it in books like Josuttis’
The C++ Standard Library [3] and Austern’s Generic Programming and
the STL [4]. One aspect of STL extension I do discuss in this book is
writing your own function objects. You can’t use the STL effectively
without knowing how to do that, so I’ve devoted an entire chapter to
the topic (Chapter 6).

Citations

The references to the books by Josuttis and Austern in the preceding
paragraph demonstrate how I handle bibliographic citations. In gen-
eral, I try to mention enough of a cited work to identify it for people
who are already familiar with it. If you already know about these au-
thors’ books, for example, you don’t have to turn to the Bibliography
to find out that [3] and [4] refer to books you already know. If you’re

Effective STL Introduction 3
not familiar with a publication, of course, the Bibliography (which be-
gins on page 225) gives you a full citation.

I cite three works often enough that I generally leave off the citation
number. The first of these is the International Standard for C++ [5],
which I usually refer to as simply “the Standard.” The other two are
my earlier books on C++, Effective C++ [1] and More Effective C++ [2].

The STL and Standards

I refer to the C++ Standard frequently, because Effective STL focuses
on portable, standard-conformant C++. In theory, everything I show in
this book will work with every C++ implementation. In practice, that
isn’t true. Shortcomings in compiler and STL implementations con-
spire to prevent some valid code from compiling or from behaving the
way it’s supposed to. Where that is commonly the case, I describe the
problems, and I explain how you can work around them.

Sometimes, the easiest workaround is to use a different STL imple-
mentation. Appendix B gives an example of when this is the case. In
fact, the more you work with the STL, the more important it becomes
to distinguish between your compilers and your library implementa-
tions. When programmers run into difficulties trying to get legitimate
code to compile, it’s customary for them to blame their compilers, but
with the STL, compilers can be fine, while STL implementations are
faulty. To emphasize the fact that you are dependent on both your
compilers and your library implementations, I refer to your STL plat-
forms. An STL platform is the combination of a particular compiler
and a particular STL implementation. In this book, if I mention a com-
piler problem, you can be sure that I mean it’s the compiler that’s the
culprit. However, if I refer to a problem with your STL platform, you
should interpret that as “maybe a compiler bug, maybe a library bug,
possibly both.”

I generally refer to your “compilers” — plural. That’s an outgrowth of
my longstanding belief that you improve the quality (especially the
portability) of your code if you ensure that it works with more than
one compiler. Furthermore, using multiple compilers generally makes
it easier to unravel the Gordian nature of error messages arising from
improper use of the STL. (Item 49 is devoted to approaches to decod-
ing such messages.)

Another aspect of my emphasis on standard-conforming code is my
concern that you avoid constructs with undefined behavior. Such con-
structs may do anything at runtime. Unfortunately, this means they
may do precisely what you want them to, and that can lead to a false

4 Introduction Effective STL
sense of security. Too many programmers assume that undefined be-
havior always leads to an obvious problem, e.g., a segmentation fault
or other catastrophic failure. The results of undefined behavior can
actually be much more subtle, e.g., corruption of rarely-referenced
data. They can also vary across program runs. I find that a good work-
ing definition of undefined behavior is “works for me, works for you,
works during development and QA, but blows up in your most impor-
tant customer’s face.” It’s important to avoid undefined behavior, so I
point out common situations where it can arise. You should train
yourself to be alert for such situations.

Reference Counting

It’s close to impossible to discuss the STL without mentioning refer-
ence counting. As you’ll see in Items 7 and 33, designs based on con-
tainers of pointers almost invariably lead to reference counting. In
addition, many string implementations are internally reference
counted, and, as Item 15 explains, this may be an implementation de-
tail you can’t afford to ignore. In this book, I assume that you are fa-
miliar with the basics of reference counting. If you’re not, most
intermediate and advanced C++ texts cover the topic. In More Effective
C++, for example, the relevant material is in Items 28 and 29. If you
don’t know what reference counting is and you have no inclination to
learn, don’t worry. You’ll get through this book just fine, though there
may be a few sentences here and there that won’t make as much
sense as they otherwise would.

string and wstring

Whatever I say about string applies equally well to its wide-character
counterpart, wstring. Similarly, any time I refer to the relationship be-
tween string and char or char*, the same is true of the relationship be-
tween wstring and wchar_t or wchar_t*. In other words, just because I
don’t explicitly mention wide-character strings in this book, don’t as-
sume that the STL fails to support them. It supports them as well as
char-based strings. It has to. Both string and wstring are instantiations
of the same template, basic_string.

Terms, Terms, Terms

This is not an introductory book on the STL, so I assume you know
the fundamentals. Still, the following terms are sufficiently important
that I feel compelled to review them:

Effective STL Introduction 5
■ vector, string, deque, and list are known as the standard sequence
containers. The standard associative containers are set, multiset,
map, and multimap.

■ Iterators are divided into five categories, based on the operations
they support. Very briefly, input iterators are read-only iterators
where each iterated location may be read only once. Output itera-
tors are write-only iterators where each iterated location may be
written only once. Input and output iterators are modeled on read-
ing and writing input and output streams (e.g., files). It’s thus un-
surprising that the most common manifestations of input and
output iterators are istream_iterators and ostream_iterators, respec-
tively.

Forward iterators have the capabilities of both input and output it-
erators, but they can read or write a single location repeatedly.
They don’t support operator--, so they can move only forward with
any degree of efficiency. All standard STL containers support iter-
ators that are more powerful than forward iterators, but, as you’ll
see in Item 25, one design for hashed containers yields forward it-
erators. Containers for singly linked lists (considered in Item 50)
also offer forward iterators.

Bidirectional iterators are just like forward iterators, except they
can go backward as easily as they go forward. The standard asso-
ciative containers all offer bidirectional iterators. So does list.

Random access iterators do everything bidirectional iterators do,
but they also offer “iterator arithmetic,” i.e., the ability to jump for-
ward or backward in a single step. vector, string, and deque each
provide random access iterators. Pointers into arrays act as ran-
dom access iterators for the arrays.

■ Any class that overloads the function call operator (i.e., operator())
is a functor class. Objects created from such classes are known as
function objects or functors. Most places in the STL that work with
function objects work equally well with real functions, so I often
use the term “function objects” to mean both C++ functions as
well as true function objects.

■ The functions bind1st and bind2nd are known as binders.

A revolutionary aspect of the STL is its complexity guarantees. These
guarantees bound the amount of work any STL operation is allowed to
perform. This is wonderful, because it can help you determine the rel-
ative efficiency of different approaches to the same problem, regard-
less of the STL platform you’re using. Unfortunately, the terminology

6 Introduction Effective STL
behind the complexity guarantees can be confusing if you haven’t
been formally introduced to the jargon of computer science. Here’s a
quick primer on the complexity terms I use in this book. Each refers
to how long it takes to do something as a function of n, the number of
elements in a container or range.

■ An operation that runs in constant time has performance that is
unaffected by changes in n. For example, inserting an element into
a list is a constant-time operation. Regardless of whether the list
has one element or one million, the insertion takes about the same
amount of time.

Don’t take the term “constant time” too literally. It doesn’t mean
that the amount of time it takes to do something is literally con-
stant, it just means that it’s unaffected by n. For example, two STL
platforms might take dramatically different amounts of time to
perform the same “constant-time” operation. This could happen if
one library has a much more sophisticated implementation than
another or if one compiler performs substantially more aggressive
optimization.

A variant of constant time complexity is amortized constant time.
Operations that run in amortized constant time are usually con-
stant-time operations, but occasionally they take time that de-
pends on n. Amortized constant time operations typically run in
constant time.

■ An operation that runs in logarithmic time needs more time to run
as n gets larger, but the time it requires grows at a rate propor-
tional to the logarithm of n. For example, an operation on a million
items would be expected to take only about three times as long as
on a hundred items, because log n3 = 3 log n. Most search opera-
tions on associative containers (e.g., set::find) are logarithmic-time
operations.

■ The time needed to perform an operation that runs in linear time
increases at a rate proportional to increases in n. The standard al-
gorithm count runs in linear time, because it has to look at every
element of the range it’s given. If the range triples in size, it has to
do three times as much work, and we’d expect it to take about
three times as long to do it.

As a general rule, a constant-time operation runs faster than one re-
quiring logarithmic time, and a logarithmic-time operation runs faster
than one whose performance is linear. This is always true when n gets
big enough, but for relatively small values of n, it’s sometimes possible
for an operation with a worse theoretical complexity to outperform an
operation with a better theoretical complexity. If you’d like to know
more about STL complexity guarantees, turn to Josuttis’ The C++
Standard Library [3].

Effective STL Introduction 7
As a final note on terminology, recall that each element in a map or
multimap has two components. I generally call the first component the
key and the second component the value. Given

map<string, double> m;

for example, the string is the key and the double is the value.

Code Examples

This book is filled with example code, and I explain each example
when I introduce it. Still, it’s worth knowing a few things in advance.

You can see from the map example above that I routinely omit #in-
cludes and ignore the fact that STL components are in namespace std.
When defining the map m, I could have written this,

#include <map>
#include <string>

using std::map;
using std::string;

map<string, double> m;

but I prefer to save us both the noise.

When I declare a formal type parameter for a template, I use typename
instead of class. That is, instead of writing this,

template<class T>
class Widget { ... };

I write this:

template<typename T>
class Widget { ... };

In this context, class and typename mean exactly the same thing, but I
find that typename more clearly expresses what I usually want to say:
that any type will do; T need not be a class. If you prefer to use class to
declare type parameters, go right ahead. Whether to use typename or
class in this context is purely a matter of style.

It is not a matter of style in a different context. To avoid potential
parsing ambiguities (the details of which I’ll spare you), you are re-
quired to use typename to precede type names that are dependent on
formal type parameters. Such types are known as dependent types,
and an example will help clarify what I’m talking about. Suppose
you’d like to write a template for a function that, given an STL con-
tainer, returns whether the last element in the container is greater
than the first element. Here’s one way to do it:

8 Introduction Effective STL
template<typename C>
bool lastGreaterThanFirst(const C& container)
{

if (container.empty()) return false;

typename C::const_iterator begin(container.begin());
typename C::const_iterator end(container.end());

return *--end > *begin;
}

In this example, the local variables begin and end are of type
C::const_iterator. const_iterator is a type that is dependent on the formal
type parameter C. Because C::const_iterator is a dependent type, you
are required to precede it with the word typename. (Some compilers in-
correctly accept the code without the typenames, but such code isn’t
portable.)

I hope you’ve noticed my use of color in the examples above. It’s there
to focus your attention on parts of the code that are particularly im-
portant. Often, I highlight the differences between related examples,
such as when I showed the two possible ways to declare the parame-
ter T in the Widget example. This use of color to call out especially
noteworthy parts of examples carries over to diagrams, too. For in-
stance, this diagram from Item 5 uses color to identify the two point-
ers that are affected when a new element is inserted into a list:

I also use color for chapter numbers, but such use is purely gratu-
itous. This being my first two-color book, I hope you’ll forgive me a lit-
tle chromatic exuberance.

Two of my favorite parameter names are lhs and rhs. They stand for
“left-hand side” and “right-hand side,” respectively, and I find them
especially useful when declaring operators. Here’s an example from
Item 19:

class Widget { ... };

bool operator==(const Widget& lhs, const Widget& rhs);

next
prev

data

next
prev

data

next
prev

data

next
prev

data

next
prev

data

Node being
inserted

Additional
nodes will be
inserted here

Effective STL Introduction 9
When this function is called in a context like this,

if (x == y) ... // assume x and y are Widgets

x, which is on the left-hand side of the “==”, is known as lhs inside op-
erator==, and y is known as rhs.

As for the class name Widget, that has nothing to do with GUIs or tool-
kits. It’s just the name I use for “some class that does something.”
Sometimes, as on page 7, Widget is a class template instead of a class.
In such cases, you may find that I still refer to Widget as a class, even
though it’s really a template. Such sloppiness about the difference be-
tween classes and class templates, structs and struct templates, and
functions and function templates hurts no one as long as there is no
ambiguity about what is being discussed. In cases where it could be
confusing, I do distinguish between templates and the classes,
structs, and functions they generate.

Efficiency Items

I considered including a chapter on efficiency in Effective STL, but I
ultimately decided that the current organization was preferable. Still,
a number of Items focus on minimizing space and runtime demands.
For your performance-enhancing convenience, here is the table of
contents for the virtual chapter on efficiency:

Item 4: Call empty instead of checking size() against zero. 23
Item 5: Prefer range member functions to their single-element

counterparts. 24
Item 14: Use reserve to avoid unnecessary reallocations. 66
Item 15: Be aware of variations in string implementations. 68
Item 23: Consider replacing associative containers with

sorted vectors. 100
Item 24: Choose carefully between map::operator[] and

map::insert when efficiency is important. 106
Item 25: Familiarize yourself with the nonstandard hashed

containers. 111
Item 29: Consider istreambuf_iterators for character-by-character

input. 126
Item 31: Know your sorting options. 133
Item 44: Prefer member functions to algorithms with the

same names. 190
Item 46: Consider function objects instead of functions as

algorithm parameters. 201

10 Introduction Effective STL
The Guidelines in Effective STL

The guidelines that make up the 50 Items in this book are based on
the insights and advice of the world’s most experienced STL program-
mers. These guidelines summarize things you should almost always
do — or almost always avoid doing — to get the most out of the Stan-
dard Template Library. At the same time, they’re just guidelines. Un-
der some conditions, it makes sense to violate them. For example, the
title of Item 7 tells you to invoke delete on newed pointers in a con-
tainer before the container is destroyed, but the text of that Item
makes clear that this applies only when the objects pointed to by
those pointers should go away when the container does. This is often
the case, but it’s not universally true. Similarly, the title of Item 35 be-
seeches you to use STL algorithms to perform simple case-insensitive
string comparisons, but the text of the Item points out that in some
cases, you’ll be better off using a function that’s not only outside the
STL, it’s not even part of standard C++!

Only you know enough about the software you’re writing, the environ-
ment in which it will run, and the context in which it’s being created
to determine whether it’s reasonable to violate the guidelines I
present. Most of the time, it won’t be, and the discussions that accom-
pany each Item explain why. In a few cases, it will. Slavish devotion to
the guidelines isn’t appropriate, but neither is cavalier disregard. Be-
fore venturing off on your own, you should make sure you have a good
reason.

