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PREFACE

Computer technology has been evolving rapidly in the last century. Although Thomas
J. Watson, the first president of IBM, once famously projected that ‘there is a world
market for maybe five computers’, we nowadays rely on computer work in nearly every
situation of life. We write emails, book journeys via the internet, and let computers fly
airplanes and conduct trains. Naturally, economics has not been unaffected by this trend.
On the one hand, the steady increase in computer performance and speed allowed us
to solve problems much faster than before. On the other hand, numerical methods that
had been invented in the first half of the twentieth century could finally be applied to
problems for which analytical solutions did not exist. Nevertheless, owing to the intensive
knowledge requirements regarding programming and numerical maths that were needed
to solve real economic problems on a computer, the field of computational economics
emerged quite slowly. Nowadays however, where a desktop computer or laptop is a high
performance machine and various tools for numerical maths are available, computational
economics has become increasingly popular.

There exist many textbooks dedicated to the field of computational economics. One
category of these books primarily describes the theory and implementation of numer-
ical methods. Judd (1998) and Press et al. (2001) are popular examples of this kind.
Other textbooks like Miranda and Fackler (2002), Adda and Cooper (2003), Kendrick,
Mercado, and Amman (2006), or Heer and Maussner (2009) show how to apply those
methods to economic problems. Most of these books, however, are dedicated to graduate
students and require an above-average knowledge of economic theory, programming,
and numerical maths. Very often these books are also specializing in a specific field such
as international trade and development, dynamic macroeconomics, or finance. They may
offer program codes but typically do not provide information on how to install and use
a suitable compiler.

This is where our book tries to step in. We offer an introduction to computational
economics to students at all levels of education, regardless of their prior programming
experience. This book is based entirely on the programming language Fortran. To facili-
tate the first steps into writing your own codes, we give an introduction to this particular
programming language and demonstrate how to download and use free compilers for
different operating systems. Our book offers various examples from economics and
finance organized in self-contained chapters that speak to the diverse backgrounds of
our readers. While early chapters are accessible for undergraduate students, the level of
complexity slowly increases, so that the later part of the book is well suited for graduate
students at the Master and Ph.D. level. For each of the topics we consider, we first explain
some theoretical background, then show how to implement the problem on the computer,
and finally discuss simulation results. Since our book serves as an introduction to using
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computational methods in various fields of economics and finance, we provide a list of
reading material for further study at the end of each chapter. In addition, readers can
work through various exercises which promote practical experience and further deepen
the economic and technical insights. Therefore, after reading and working through the
book, students should have no problem mastering more sophisticated and specialized
textbooks and courses in computational economics at the graduate level.

This textbook contains eleven chapters which are organized in three central parts: Part
I offers an introduction to programming and tools from numerical maths, Part II presents
various applications for beginners, and in Part III we discuss dynamic programming
problems for more advanced students and researchers. In order to make it easy for
beginners to familiarize themselves with the field of computational economics, Chapter 1
gives an introduction to Fortran, the programming language used throughout the book.
In Chapter 2 we discuss several numerical methods that are used frequently throughout
this book. Since we do not assume that our readers have a lot of programming experience
and only require standard mathematical knowledge, we only introduce the basic concepts
and keep the theoretical parts quite condensed. A large set of numerical methods is
provided through our toolbox. In the introductory chapters we discuss how to use this
toolbox and the methods therein. Hence, after working through the first part of the
book, you should have enough knowledge on programming and numerical tools to
manage the remaining material in the follow-up parts. Part II comprises five chapters
with easily accessible applications. Chapter 3 introduces the static general equilibrium
model typically applied to issues of labour markets or international trade. In Chapter 4 we
demonstrate different approaches to optimize a portfolio, to price options, and to manage
credit and mortality risk. This leads in to Chapter 5, in which we discuss individual
savings and investment decisions within the life-cycle framework with uncertain labour
income, asset returns, and lifespan. We extend this partial equilibrium life-cycle model
to its general equilibrium counterpart, the overlapping generations model, in Chapters
6 and 7. We use this model to investigate dynamic tax problems and optimal pension
design in stationary and ageing societies. Finally, Part III of this book consists of four
chapters with advanced applications. Chapter 8 introduces numerical solution methods
for dynamic programming problems. In Chapter 9 we apply these methods to infinite
horizon models of the macroeconomy and study growth, business cycles, and distribu-
tional issues. Chapter 10 focuses on advanced life-cycle labour-supply and investment
problems using the dynamic programming approach. In the final Chapter 11 we extend
the overlapping generations model to account for idiosyncratic earnings risk and study
the design of optimal fiscal policies that balance tax distortions and public insurance
provision.

While the different chapters somewhat build on one another regarding their economic
themes, we tried to keep them as independent and self-contained as possible. Hence,
the reader familiar with Fortran could skip Chapter 1 and directly start with Chapter 2,
whereas the reader sufficiently familiar with numerical techniques could just take a quick
look at Chapter 2 and directly start with studying Parts II and III. The chapters offering
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applications follow the same logic and therefore could be also read independently. As
already mentioned above, we encourage the reader to work through an extensive number
of exercises in each chapter in order to deepen their understanding of the methods
learned and to gain practical experience necessary to become a decent computational
economist. Note that, especially when working on the first tasks, you will suffer a lot
from programming errors and bugs. This is quite normal. Please don’t be disappointed, if
a program doesn’t work at the first or second shot. Code can be written in several minutes.
However, getting it to work can take hours or days.

This book is accompanied by a website

www.ce-fortran.com.

On this website we provide the source codes to any of the programs discussed in this
book. You will also find a link to our toolbox, an instruction on how to install and use it
as well as a description of the methods it provides. The website also contains up-to-date
information on how to set up a Fortran compiler on your operating system and therefore
to get started as quickly as possible on working through this book.

Last but not least, writing such a book is never possible without the help of others.
First of all, we want to thank Oxford University Press for deciding to become our
publisher. We are especially grateful to Katie Bishop, Susan Frampton, and Subramaniam
Vengatakrishnan for their assistance in the production of this book. Over the years we
have been working on this we have benefited from comments, suggestions, and endorse-
ments from many colleagues, especially Ben Heijdra, Leonhard Knoll, Laurie Reijnders,
Alexander Rothkopf, and Andras Simonovits. Thanks also to our former students Theresa
Grimm, Maurice Hofmann, Sarah Lenz, Franziska Schlumprecht, Lorenz Schneck, Lukas
Schwabe, Maximilian Stahl, and Patrick Wiesmann who provided excellent research
assistance and worked on computer codes that provided the basis for certain chapters.
Parts of this book were revised when Hans Fehr visited the ARC Centre of Excellence in
Population Aging Research (CEPAR) at the University of New South Wales in 2016. He
thanks the members of CEPAR for their hospitality during his stay.

Finally, we hope that you enjoy reading this book and that you have as much fun doing
computational economics as we do.

Bonn and Würzburg in June 2017

http://www.ce-fortran.com


OUP CORRECTED PROOF – FINAL, 18/1/2018, SPi



OUP CORRECTED PROOF – FINAL, 18/1/2018, SPi

CONTENTS

PART I AN INTRODUCTION TO FORTRAN 90 AND NUMERICAL METHODS

1 Fortran 90: A simple programming language 3

1.1 About Fortran in general 3
1.1.1 The history of Fortran 3
1.1.2 Why Fortran? 4
1.1.3 The workings of high-level programming languages 5
1.1.4 Fortran compilers for Windows, Mac, and Linux 6

1.2 Imperative Fortran programs 6
1.2.1 The general structure of Fortran programs 7
1.2.2 The declaration of variables 7
1.2.3 The basics of imperative programming 8
1.2.4 Control flow statements 11
1.2.5 The concept of arrays 16

1.3 Subroutines and functions 19
1.4 Modules and global variables 23

1.4.1 Storing code in a module 23
1.4.2 The concept of global variables 25

1.5 Installing the toolbox 27
1.6 Plotting graphs with the toolbox and GNUPlot 28

1.6.1 Two-dimensional plotting 28
1.6.2 Three-dimensional plotting 31

1.7 Further reading 34
1.8 Exercises 35

2 Numerical solution methods 39

2.1 Matrices, vectors, and linear equation systems 39
2.1.1 Matrices and vectors in Fortran 39
2.1.2 Solving linear equation systems 40

2.2 Nonlinear equations and equation systems 47
2.2.1 Bisection search in one dimension 48
2.2.2 Newton’s method in one dimension 51
2.2.3 Fixed-point iteration methods 54
2.2.4 Multidimensional nonlinear equation systems 56

2.3 Function minimization 60
2.3.1 The Golden-Search method 61
2.3.2 Brent’s and Powell’s algorithms 63
2.3.3 The problem of local and global minima 67



OUP CORRECTED PROOF – FINAL, 18/1/2018, SPi

x CONTENTS

2.4 Numerical integration 68
2.4.1 Summed Newton-Cotes methods 69
2.4.2 Gaussian quadrature 72

2.5 Random variables, distributions, and simulation 77
2.5.1 Random variables and their distribution 77
2.5.2 Simulating realizations of random variables 81

2.6 Function approximation and interpolation 85
2.6.1 Polynominal interpolation 88
2.6.2 Piecewise polynomial interpolation 91
2.6.3 A two-dimensional interpolation example 95

2.7 Linear programming 100
2.7.1 Graphical solution to linear programs in standard form 102
2.7.2 The simplex algorithm 103

2.8 Further reading 105
2.9 Exercises 106

PART II COMPUTATIONAL ECONOMICS FOR BEGINNERS

3 The static general equilibrium model 113

3.1 The basic economy model 113
3.1.1 The command optimum 113
3.1.2 The market solution 115
3.1.3 Variable labour supply 119
3.1.4 Public sector and tax incidence analysis 120

3.2 Extensions of the basic model 123
3.2.1 Imperfect labour markets and unemployment policy 123
3.2.2 Intermediate goods in production 126
3.2.3 Open economies and international trade 130

3.3 Further reading 134
3.4 Exercises 134

4 Topics in finance and risk management 139

4.1 Mean-variance portfolio theory 139
4.1.1 Portfolio choice with risky assets 139
4.1.2 Introducing risk-free assets 143
4.1.3 Short-selling constraints 146
4.1.4 Monte Carlo minimization 149

4.2 Option pricing theory 151
4.2.1 The binomial approach by Cox-Ross-Rubinstein 152
4.2.2 The Black-Scholes formula 155
4.2.3 Numerical implementation of both approaches 158
4.2.4 Option pricing with Monte Carlo simulation 161



OUP CORRECTED PROOF – FINAL, 18/1/2018, SPi

CONTENTS xi

4.3 Managing credit risk with corporate bonds 164
4.3.1 Modelling credit risk with a single corporate bond 164
4.3.2 Credit risk in a bond portfolio 173

4.4 Mortality risk management 184
4.4.1 Modelling longevity risk 184
4.4.2 Pricing and risk analysis of insurance products 189
4.4.3 Optimization of a mortality portfolio 196

4.5 Appendix 198
4.6 Further reading 200
4.7 Exercises 201

5 The life-cycle model and intertemporal choice 205

5.1 Why do people save? 205
5.1.1 Optimal savings in a certain world 205
5.1.2 Uncertain labour income and precautionary savings 207
5.1.3 Uncertain capital and labour income 212

5.2 Where do people save and invest? 214
5.2.1 Uncertain capital income and portfolio choice 214
5.2.2 Uncertain lifespan and annuity choice 218

5.3 Further reading 221
5.4 Exercises 222

6 The overlapping generations model 225

6.1 General structure and long-run equilibrium 225
6.1.1 Demographics, behaviour and markets 225
6.1.2 Computation of the long-run equilibrium 229
6.1.3 Long-run analysis of policy reforms 232

6.2 Transitional dynamics and welfare analysis 234
6.2.1 Computation of transitional dynamics 235
6.2.2 Generational welfare and aggregate efficiency 240
6.2.3 Comprehensive analysis of policy reforms 245

6.3 Further reading 250
6.4 Exercises 250

7 Extending the OLG model 253

7.1 Accounting for variable labour supply 253
7.1.1 The household decision problem 254
7.1.2 Functional forms and numerical implementation 255
7.1.3 Simulation results and economic interpretations 258
7.1.4 A note on labour-augmenting technological progress 261

7.2 Human capital and the growth process 263
7.2.1 Education investment and externalities 264
7.2.2 Numerical implementation and simulation 266



OUP CORRECTED PROOF – FINAL, 18/1/2018, SPi

xii CONTENTS

7.2.3 Human-capital spillovers and endogenous growth 270
7.2.4 Numerical implementation and simulation 271

7.3 Longevity risk and annuitization 274
7.3.1 The households’ problem without annuity markets 274
7.3.2 Numerical implementation and simulation 277
7.3.3 Introducing private annuity markets 279

7.4 Further reading 282
7.5 Exercises 282

PART III ADVANCED COMPUTATIONAL ECONOMICS

8 Introduction to dynamic programming 289

8.1 Motivation: The cake-eating problem 289
8.1.1 The all-in-one solution 290
8.1.2 The dynamic programming approach 291
8.1.3 An analytical solution 295

8.2 Numerical solution by value function iteration 298
8.2.1 Grid search 301
8.2.2 Optimization and interpolation 306

8.3 Numerical solution by policy function iteration 313
8.3.1 Root-finding and interpolation 314
8.3.2 The method of endogenous gridpoints 316

8.4 Further reading 320
8.5 Exercises 321

9 Dynamic macro I: Infinite horizon models 323

9.1 The basic neoclassical growth model 323
9.1.1 The model economy 324
9.1.2 Numerical implementation 329
9.1.3 A model with a public sector 334

9.2 The stochastic growth model 341
9.2.1 Modelling aggregate uncertainty 341
9.2.2 A numerical implementation using discretized shocks 344
9.2.3 Simulating time paths 350
9.2.4 Speeding up the computational process 352

9.3 The real business-cycle model 354
9.3.1 A dynamic program with endogenous labour supply 354
9.3.2 Numerical implementation with policy function iteration 356
9.3.3 Comparing model results to the data 358
9.3.4 The welfare costs of business-cycle fluctuations 363
9.3.5 Procyclical vs. constant government expenditure 369



OUP CORRECTED PROOF – FINAL, 18/1/2018, SPi

CONTENTS xiii

9.4 The heterogeneous agent model 374
9.4.1 The basic setup 374
9.4.2 Solving for market-clearing prices 377
9.4.3 Determining household policy functions 380
9.4.4 Aggregation of individual decisions 385
9.4.5 Model parametrization and simulation 390
9.4.6 The optimum quantity of debt 394

9.5 Further reading 401
9.6 Exercises 401

10 Life-cycle choices and risk 406

10.1 Labour supply, savings, and risky earnings 406
10.1.1 The baseline model 407
10.1.2 The role of variable labour supply 422
10.1.3 Female labour-force participation 429

10.2 Portfolio choice and retirement savings 444
10.2.1 A model with stocks and bonds 444
10.2.2 The choice to buy annuities 469
10.2.3 Retirement savings in tax-favoured savings vehicles 478

10.3 Further reading 492
10.4 Exercises 493

11 Dynamic macro II: The stochastic OLG model 505

11.1 General structure and long-run equilibrium 505
11.1.1 Demographics, behaviour, and markets 506
11.1.2 Numerical implementation of steady-state equilibrium 512
11.1.3 Model parametrization and calibration 516
11.1.4 The initial equilibrium 521
11.1.5 Long-run analysis of policy reforms 523

11.2 Transitional dynamics and welfare analysis 525
11.2.1 Computation of transitional dynamics 525
11.2.2 Generational welfare and aggregate efficiency 527

11.3 Comprehensive analysis of policy reforms 539
11.3.1 The optimal size of the pension system 539
11.3.2 The optimal progressivity of the labour-income tax 544
11.3.3 Should capital income be taxed? 550

11.4 Further reading 556
11.5 Exercises 558

BIBLIOGRAPHY 561

INDEX 567



OUP CORRECTED PROOF – FINAL, 18/1/2018, SPi



OUP CORRECTED PROOF – FINAL, 18/1/2018, SPi

Part I
An Introduction to
Fortran 90 and Numerical
Methods



OUP CORRECTED PROOF – FINAL, 18/1/2018, SPi



OUP CORRECTED PROOF – FINAL, 18/1/2018, SPi

1 Fortran 90: A simple
programming language

Before diving into the art of solving economic problems on a computer, we want to give a
short introduction into the syntax and semantics of Fortran 90. As describing all features
of the Fortran language would probably fill some hundred pages, we concentrate on
the basic features that will be needed to follow the rest of this textbook. Nevertheless,
there are various Fortran tutorials on the Internet that can be used as complementary
literature.

1.1 About Fortran in general

1.1.1 THE HISTORY OF FORTRAN

Fortran is pretty old; it is actually considered the first known higher programming
language. Going back to a proposal made by John W. Backus, an IBM programmer, in
1953, the term Fortran is derived from The IBM Formula Translation System. Before the
release of the first Fortran compiler in April 1957, people used to use assembly languages.
The introduction of a higher programming language compiler tremendously reduced the
number of code lines needed to write a program. Therefore, the first release of the Fortran
programming language grew pretty fast in popularity. From 1957 on, several versions
followed the initial Fortran version, namely FORTRAN II and FORTRAN III in 1958,
and FORTRAN IV in 1961. In 1966, the American Standards Association (now known
as the ANSI) approved a standardized American Standard Fortran. The programming
language defined on this standard was called FORTRAN 66. Approving an updated
standard in 1977, the ANSI paved the way for a new version of Fortran known as
FORTRAN 77. This version became popular in computational economics during the
late 80s and early 90s. More than 13 years later, the Fortran 90 standard was released by
both the International Organization for Standardization (ISO) and ANSI consecutively.
With Fortran 90, the fixed format standard was exchanged by a free format standard
and, in addition, many new features like modules, recursive procedures, derived data
types, and dynamic memory allocation made the language much more flexible. From
Fortran 90 on, there has only been one major revision, in 2003, which introduced object-
oriented programming features into the Fortran language. However, as object-oriented
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programming will not be needed and Fortran 90 is by far the more popular language, we
will focus on the 1990 version in this book.

1.1.2 WHY FORTRAN?

Fortran is an imperative, procedural, high-level programming language that is designed
and optimized for numerical calculations. In detail this means that: (a) a Fortran program
consists of statements that will be executed consecutively (i.e. a Fortran program starts
with the first line and ends with the last); (b) Fortran code that will be used several times
can be stored in functions and subroutines that can be called up from other program
parts; and (c) Fortran abstracts from the details of a computer, i.e. having the right
compiler, Fortran code could be run on any computer independent of its hardware
configuration and operating system. Fortran can also be viewed as a general purpose
programming language. A general purpose language is a programming language that is
designed for software development in many different application domains. In contrast
so-called domain-specific programming languages are constructed to basically serve one
application domain, like e.g. Matlab for matrix operations and Mathematica for symbolic
mathematics.

At this point our students usually ask ‘So, why Fortran? Why not a domain-specific
language or something more "fashionable" like Java?’ Let us come up with some
justifying points. First, domain-specific languages might be relatively efficient in the
specific domain they were created for, however, they are slow in other areas. Matlab,
for example, is very good working with matrices of a regular or sparse nature, however,
if you have ever tried to run some do-loops in Matlab, you will know what we mean.
Second, when it comes to the more ‘fashionable’ languages like Java or C++, one has
to always keep in mind that those languages are usually object-oriented and abundant.
They are very good for creating software with graphical user interfaces, but not for
running numerical maths code quickly and efficiently. As computational economics
usually consists of at least 80 per cent numerical methods, we need a programming
language that is efficient in executing do-loops and if-statements, calling functions and
subroutines, and in allowing permanent storage of general codes that are frequently
used. Fortran is a language that delivers all those features and much more; the only
real alternatives we know would be C or a relatively new language called Julia. There
is no real reason why one shouldn’t use C or Julia instead of Fortran, it’s just a matter
of preference. Finally, Fortran was used a lot by engineers, numerical mathematicians,
and computational economists during the 80s and 90s when a lot of optimizers and
interpolation techniques were written. Fortunately, Fortran 90 is backward compatible
with FORTRAN 77, i.e. all codes that are out there can easily be included in our Fortran
programs.

All in all, it seems reasonable for us to have chosen a language matching all of the
features necessary without any of the unnecessary extras that would make execution
less efficient.
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1.1.3 THE WORKINGS OF HIGH-LEVEL PROGRAMMING LANGUAGES

Low-level assembly languages that are basically used to program computers, micropro-
cessors, etc. do not abstract from the computer’s instruction set architecture. Therefore,
the syntax of assembly languages depends on the specific physical or virtual computer
used. In addition, assembly languages are quite complicated and even a small program
requires many lines of computer code.

In opposition to that, high-level programming languages abstract from the system
architecture and are therefore portable between different systems. As in all other lan-
guages, one has to learn the vocabulary, grammar, and punctuation, called the syntax, of
that language. However, compared to real languages, the syntax of a high-level language
can be learned within hours. In addition, the semantics, i.e. the meaning or interpretation
of the different symbols used, usually follow principles that can be comprehended using
pure logic.

As high-level languages abstract from the computer’s instruction set architecture, one
needs a compiler, sometimes also called interpreter that interprets the statements given in
the program and translates them into a computer’s native language, i.e. binary code. The
way high-level programming works can be seen from Figure 1.1. First, the programmer
has to write the source code in the respective high-level language and feed it to the
compiler. The compiler then proceeds in two steps. In the compilation step it interprets
the source code and creates a so-called object code file which consists of binary code.
Binary code files usually have the suffix .obj. During this step, the compiler usually
performs a syntax validation scan. If there are any syntactical errors, it produces error
messages and stops the compilation process. In order to create an executable file, which
has the suffix .exe in Microsoft Windows, the compiler now links the object code with all
other libraries that are needed to run the program, e.g. external numerical routines. The
resulting execution can now be sent to the operating system which advises the hardware
to do exactly what the programmer wants.

Programmer

Compiler

Operating
System/
Hardware

Compilation

Linkage

Source Code

Object CodeOther Libraries

Executable (binary)

Figure 1.1 The way high-level compilers work
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Program 1.1 Hello World

program HelloWorld

write(*,*)’Hello World’

end program

1.1.4 FORTRAN COMPILERS FOR WINDOWS, MAC, AND LINUX

The website that accompanies this book

www.ce-fortran.com

suggests a freely available Fortran compiler that you can use for running the programs
in this book. Just click on the menu item “Compiler” and choose your operating system.
The website will guide you through the installation process. Finally, you will be advised
how to run a program with your compiler. We therefore use the simplest programming
example given in any computational textbook, namely the Hello World program shown
in Program 1.1. A Fortran program always begins with the word program indicating that
the program starts here. After that, one has to declare the program’s name, which must
follow the Fortran naming conventions, i.e.

1. the name can’t have more than 31 characters
2. it must start with a letter
3. the other characters may be of any kind including symbols
4. capital letters may be used but the compiler is case insensitive
5. the name must not be a valid Fortran command.

Finally, the program ends with end program. In between these two statements, we can
write the general program code which will be executed in an imperative way, i.e. the
program starts with the first line and ends with the last. In the case of Program 1.1 there
is only one statement that makes the program write Hello World in an unformatted
way to the console.

1.2 Imperative Fortran programs

By knowing the basics of running a program in Fortran we can now proceed by
writing the first imperative Fortran code. In order to describe the general structure of
Fortran programs and give an overview of the basic features, we will restrict ourselves to
imperative Fortran programs and leave the procedural component (i.e. subroutines and
functions) to Section 1.3.

http://www.ce-fortran.com
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Program 1.2 Hello

program Hello

! declaration of variables
implicit none
character(len=50) :: input

! executable code
write(*,*)’Please type your name:’
read(*,*)input
write(*,*)’Hello ’,input

end program

1.2.1 THE GENERAL STRUCTURE OF FORTRAN PROGRAMS

In general, a Fortran program consists of a declarative part in which all variables needed
for the execution are declared1 and an executable part which gives instructions on what
to do with all those variables. The executable part therefore consists of several statements,
where each statement is usually given on one line. This is what the concept of imperative
programming is basically about. The structure can easily be seen from Program 1.2, the
interpretation of which is straightforward. Note, that after having written the first piece
of executable code, we cannot declare a variable anymore. The statements in italic font in
Program 1.2 starting with an exclamation point are comments. Those can be used to make
it easier for the user to read the program, however, the compiler completely ignores them.

1.2.2 THE DECLARATION OF VARIABLES

Variables are used to store data during the execution of the program. Table 1.1 sum-
marizes the five data types Fortran knows. Declaring the type of variable at the begin-
ning of a program is not compulsory per se. Nevertheless, Fortan implicitly declares
all variables that are used in the executable code as integer. This can cause severe
problems when we run our program and forget to declare one variable that, for example,
should be of real*8 type. To prevent Fortran from implicit variable declaration by
making declaration statements compulsory for any variable, we suggest always using
the statement implicit none at the beginning of the declarative program part, see
Program 1.2. Having specified implicit none, the compiler will tell us which variables
are not yet declared and show an error message during the compilation step.2 Program 1.3
shows some examples of variable declarations. The interpretation of the first declaration

1 Technically speaking, the declaration of a variable induces the compiler to reserve some space in the
memory that can be used to store data.

2 Verify this by running Program 1.2 and deleting the line where input is declared. In the console
window an error message will now appear when you try to execute the program.
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Table 1.1 Different variable types in Fortran

Type Explanation

logical can only take the values .true. or .false.

integer can store integer data in between −231 + 1 and 231 − 1 (4-byte integer data).

real*8 stores real data according to the 8-byte data standard, i.e. in between ∼ −10308 and ∼ 10308.
We suggest declaring all variables as real*8, not real, as the former usually produces more
accurate results.

character stores character data. If not stated otherwise, such a variable can just store one character. The
declaration statement character(len=n) produces a variable that can store a whole
string of characters of length n, where n has to be a positive integer number. Strings of
characters will in the following just be called string.

complex are used to store complex numbers. However, this will not be important in this book.

Program 1.3 Variable declarations

program VarDec

! declaration of variables
implicit none
logical :: logic
integer :: a, b
real*8 :: x, y1
character :: one_char
character(len=20) :: long_char

real*8, parameter :: pi = 3.14d0
integer, parameter :: n = 56

end program

statements should be clear from the above explanations. In addition to specifying the
type of variable, we can also make it a parameter like in the last two statements of the
program. This basically tells the compiler that the value of a variable should be fixed at a
certain level and not be changed anymore. Specifying a parameter, we immediately have
to declare the variables value, e.g. pi = 3.14d0.3

1.2.3 THE BASICS OF IMPERATIVE PROGRAMMING

After having declared the necessary variables, the first thing we would like to do is give
values to those variables deemed necessary and then display these values on the console.

Reading and writing One way of assigning values to variables is making the user of the
program type a value to the console. Program 1.4 explains how to do that. In this program,

3 The d0 after 3.14 tells the compiler that we are using double-precision variables. Always use d0 when
declaring the value of real*8 variables. Try to find out what happens if you don’t use it.
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Program 1.4 Reading and writing

program ReadWrite

! declaration of variables
implicit none
integer :: a
real*8 :: x

! executable code
write(*,*)’Type an integer number:’
read(*,*)a

write(*,*)’Type a real number:’
read(*,*)x

write(*,*)a, x

end program

we do the following: we first declare an integer variable a and a real variable x. This is our
declarative program part. In the executable part, we first ask the user to type an integer
number. The command write(*,*) makes Fortran write something to the console
without having a specific format, where the phrase ’Type an integer number:’ in
apostrophes declares a text that should be displayed. The read(*,*)a statement induces
the compiler to read a number from the console and assign it to the variable a. The first
of the two stars in parentheses therefore tells the compiler from which location it should
read. A * denotes the console as reading location. Reading from a file is also possible,
however that will be explained later. The second star defines the format in which the
number or text will be given. On the console, we always use *, which means there is no
specific format. The compiler will then automatically check whether the number typed
by the user is in the range of the variable we want to assign a value to, e.g. a.4 The same
explanation applies to the statements concerning the real variable. Finally, we write the
values of a and x to the console. Note that we can write several variables at once by just
separating them with a comma. The same applies to the read statement.

Formatters In order to display variables in a formatted way, we use formatters. An
example of how to use formatters is given in Program 1.5. This program does basically
the same thing as Program 1.4, however it also prints the variables a and x in a formatted
way on the console. The formatter, which is shown in apostrophes and parentheses,
replaces the second star in the write statement, and states that we want to write an
integer of maximum length three digits, two blank spaces and a real number with a
maximum of 10 digits (including the decimal point), where six digits are reserved for
the decimal places. Run the program and verify that this is true. There is a formatter

4 Verify this by running Program 1.4 and typing 12.5 when you are asked to type an integer number. The
compiler will then throw up an error message.
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Program 1.5 Formatters

program Formatter

! declaration of variables
implicit none
integer :: a
real*8 :: x

! executable code
write(*,*)’Type an integer number:’
read(*,*)a

write(*,*)’Type a real number:’
read(*,*)x

write(*,’(i3, 2x, f10.6)’)a, x

end program

Table 1.2 Formatters for different variable types

Formatter Explanation

l2 value of a logical (T or F) with a total width of 2
i4 integer of a maximum of 4 digits
f12.4 real of a maximum of 12 digits (including the decimal point)

4 digits are reserved for decimal places
a string of arbitrary length
x a blank space

for each type of variable usually consisting of a letter indicating the type of variable
that should be written and a number that defines the width of the output. For real
variables, there is a second number specifying the number of decimal places. Table 1.2
summarizes common formatters. Putting a number in front of a formatter means that
we want the compiler to write the same type of data several times. Multiplying a whole
set of formatters can be realized by using brackets. Consider for example the following
statement:

write(*,’(a,2x,2(f4.2,2x),a,i2)’)’hello’,123.456,1.544,’heLLO’,12

The formatter tells the compiler to first write a string, then two blank spaces, twice a real
number of a total of four digits with two decimal places followed by two blank spaces,
again a string, and finally an integer with two digits. Note that there is one problem that
arises with this statement. If we take a look at the data that should be written, not given
through variables however directly typed into the written statement, we see that the first
real number will be too big for its formatter. Fortran will therefore just display four star
symbols indicating this overflow. Hence, the console output will be

hello **** 1.54 hELLO12.

You can verify this by writing a program that just consists of the statement above. Then
change the formatting code and verify the results.
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Program 1.6 Value assignment through arithmetics

program Arithmetics

! declaration of variables
implicit none
real*8 :: a, b, c, d

! executable code
a = 6d0
b = 2.5d0
c = exp(b) + a**2*sqrt(b)
d = max(a,b)*sign(b, a)/mod(9d0,5d0) + abs(c)

write(*, ’(4f10.4)’)a,b,c,d

end program

Value assignments and calculations We can assign values to variables by stating
<variable> = <value> as shown above. However, <value> does not necessarily have
to be typed directly as a number, but can also be the result of some arithmetic operations.
Program 1.6 illustrates how to use arithmetic to define variable values. Beneath the
standard math operators +, -, *, /, and ** (meaning to the power of), Fortran comes
with several intrinsic functions like exp, log, etc. a summary of which can be found on
our website. In Program 1.6, we first define four variables a, b, c, and d as of type real*8.
In the first two lines, we assign the values 6 and 2.5 to variables a and b, respectively. Up
to that point, c and d are still undefined. We then calculate:

c = exp(b) + a2 · √
b and d = max(a, b) · |b| · sgn(a)/(9 mod 5) + |c|.

Note that Fortran uses the standard PEMDAS precedence rule. In the last line of
executable code we then let the compiler print the values of a, b, c, and d on the console,
where every variable should have four decimal places. Run the program and compare the
results to the ones you obtain by calculating the values of c and d by hand.

1.2.4 CONTROL FLOW STATEMENTS

In Section 1.2.3 we showed how to declare variables and write simple imperative codes in
order to assign values. However, writing line after line of value assignments isn’t the only
thing we can do in Fortran. Control flow statements allow for the execution of conditional
statements, i.e. the statement will only be executed, if a certain condition is true, and
repeated statements, i.e. the same statement will be executed several times. The concept
of control flow statements can easily be represented in a control flow diagram. Figure 1.2
shows such a diagram for a simple program. It’s interpretation is quite intuitive. The
program starts where the large black dot is: We first should read an integer number
from the console. Then, we should check whether i > 0. There now are two conditional
statements. If i ≤ 0, we write an error message that says “i should be greater 0” and the
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read an integer
number i

check whether i > 0

yes

no

write error message:
"i should be greater 0"

set j = 1
and sum = 0

set sum = sum + j
and j = j + 1

check whether j > i
no

yes

write sum to
console

Figure 1.2 A control flow diagram

program stops afterwards, indicated by the circle. If i > 0 there is a series of conditional
statements which basically sum up all integer numbers from 1 to i. The three statements
after the first condition form what we call a do-loop. Using a do-loop, we can repeat the
same statements, namely sum=sum+j and j=j+1 several times.

If-statements and logical expressions An if-statement is needed to check whether some
condition is true or false. The general syntax of an if-statement is

if(<condition1>)then
<executable statements>

elseif(<condition2>)then
<executable statements>
[......]

else
<executable statements>

endif
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The word if indicates that we want to check a certain condition. The condition has
to be given in parentheses followed by the word then. The compiler will now check
whether the condition holds and executes the code that stands within the then and
the next control flow statement. This next statement can be of three different types. If
an if-statement is followed by an elseif and <condition1> is false, the compiler will
automatically check whether <condition2> is true. You can line up elseif as much as
you want. The compiler will then check in hierarchical order, i.e. if the first condition
is true, the statements within the first if and the first elseif will be executed and
the compiler jumps to the point where endif ends the whole control flow structure. If
the first condition is false and the second condition holds, the second set of executable
statements will be executed and the compiler again jumps to the endif statement etc.
An else without an if indicates which code fragment should be used if none of the
above conditions holds, an endif tells the compiler where the whole if-construct ends.
Of course, elseif and else statements are optional whereas the endif is compulsory.
Program 1.7 illustrates the behaviour of if-statements. The program should be self-
explanatory. Guess which condition will be true in this case. Run the program and verify
it. Then change the value given to a and see what happens.

Conditions in the if-statement can be any kind of logical expression. A logical expres-
sion is an expression that is either true or false. Logical expressions can be created by
using relational operators like ‘is equal to’, ‘is not equal to’, ‘is greater than’, etc. Table 1.3
gives an overview of relational operators in Fortran. Beneath the Fortran 90 relational
operators, the table also shows the respective FORTRAN 77 operators which are still valid
in Fortran 90. In the following, we will only use the Fortran 90 commands. Nevertheless,
you can find the old operators in a lot of codes especially in older textbooks. An example
for a logical expression is a + b <= c. Note that relational operators bind less than
mathematical ones, i.e. the compiler will first evaluate all mathematical parts of logical

Program 1.7 If-statements

program IfStatements

implicit none
integer :: a

! initialize a
a = 1

! check for the size of a
if(a < 1)then

write(*,’(a)’)’condition 1 is true’
elseif(a < 2)then

write(*,’(a)’)’condition 2 is true’
elseif(a < 3)then

write(*,’(a)’)’condition 3 is true’
else

write(*,’(a)’)’no condition is true’
endif

end program
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Table 1.3 Relational operators in Fortran

Fortran 90 FORTRAN 77 Explanation

== .EQ. is equal to
/= .NE. is not equal to
> .GT. is strictly greater than
>= .GE. is greater than or equal to
< .LT. is strictly lower than
<= .LE. is lower than or equal to

Table 1.4 Logical operators in Fortran

Operator Explanation

.and. true if both expressions are true

.or. true if at least one expression is true

.eqv. true if both expressions have the same value

.neqv. true if both expressions have different values

Table 1.5 Results of logical connections

a b a.and.b a.or.b a.eqv.b a.neqv.b

.true. .true. .true. .true. .true. .false.

.true. .false. .false. .true. .false. .true.

.false. .true. .false. .true. .false. .true.

.false. .false. .false. .false. .true. .false.

statements and then the relational ones. Let, e.g. a = 3, b = 5, and c = 6. The logical
expression will therefore be evaluated in the following way:

a + b <= c ⇒ 3 + 5 <= 6 ⇒ 8 <= 6 ⇒ .false.

The value of the logical expression is therefore false for the above values of a, b, and c.
Logical expressions can be linked by means of logical operators, a summary of which is
given in Table 1.4. In this table, the operators are listed by importance for the compiler.
Hence, .and. is the most binding operation among the logical expressions and will always
be executed first. On the other hand, .neqv. is the less binding constraint. Note that you
can make, e.g. an .or. more binding than an .and. by putting the respective expression
in parentheses. The pattern therefore is the same as with adding and multiplying. The
result of logical connections can be seen from Table 1.5. In addition to connecting logical
expressions, we can also negate an expression by simply typing .not.<expression>with
any kind of logical expression. Consider for example the expression

x <= 2 .and. (y <= 3 .or. z < 5) .or. .not. (y <= 3 .and. z < 5)
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x <= 2 .and. (y <= 3 .or. z < 5) .or. .not. (y <= 3 .and. z < 5)

4 <= 2 .and. (6 <= 3 .or. 8 < 5) .or. .not. (6 <= 3 .and. 8 < 5)

.false. .and. (.false. .or. .false.) .or. .not. (.false. .and. .false.)

.false. .and. .false. .or. .not. .false.

.false. .or. .true.

.true.

x = 4 y = 6 z = 8 y = 6 z = 8

Figure 1.3 Evaluation process of logical expression

with x = 4, y = 6, and z = 8. The evaluation process of this expression can be seen from
Figure 1.3. Verify this result by writing a program that defines the three variables x, y, and
z and writes the result of the logical expression given above to the console.

Do-loops A do-loop is a construct that allows you to repeat a set of statements several
times. An example of how to use do-loops is given in Program 1.8. This program shows
three examples of do-loops. The first loop increments the integer variable j from 1 to 10
and writes its value to the console in every iteration. The general syntax for a do-loop that
directly increments a variable is

do <variable> = <beginning>, <ending>, <stepsize>
<executable statements>

enddo

The word do indicates that we want to start a loop. We then have to state which variable
we want to increment or decrement during the loop. <beginning> and <ending> then
tell the compiler what the starting value is and at which value to stop. <stepsize>
is optional and specifies which step size to use. Finally, we write down the code that
should be executed for every iteration of the loop. The enddo tells the compiler where
the executable code of the loop ends. An example for a different step size is given in the
second loop. We hereby let j take the values from 10 to 1 downwards. The last do-loop
shows an alternative formulation. We hereby first initialize j at value 1. We then write
a general loop without a specification statement for a variable. Within the loop we let
the compiler write the value of j to the console and add 1 to j. Note that the command
j = j + 1 simply takes the current value of j, adds one to this value and directly stores
the result in j again. The if-statement in the loop checks, whether j has exceeded a value
of 10. If this is the case, the exit command makes the compiler leave the current do-loop.
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Program 1.8 Do-loops

program DoLoops

implicit none
integer :: j

! perform a do-loop for j = 1 to 10
do j = 1, 10

write(*,’(i3)’)j
enddo

! write a blank line
write(*,*)

! perform a do-loop for j = 10 to 1
do j = 10, 1, -1

write(*,’(i3)’)j
enddo

! write a blank line
write(*,*)

! alternative do-loop
j = 1
do

write(*,’(i3)’)j
j = j + 1

! exit the do-loop
if(j > 10)exit

enddo

end program

The statement if(j > 10)exit is thereby just a shortcut for that can be used if there is
just one executable statement associated with the if-statement.

if(j > 10)then
exit

endif

Knowing the concepts of if-statements and do-loops, we can now implement the
program specified by the control flow diagram in Figure 1.2. Program 1.9 shows how to
do that.

1.2.5 THE CONCEPT OF ARRAYS

An array is a construct that allows storage of a whole set of data under one variable name.
Arrays, like variables, are defined in the declarative part of a program. Typical examples
of array declarations are
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Program 1.9 Summing up in do-loops

program SummingUp

implicit none
integer :: i, j, sum

! read the variable
write(*,’(a)’)’Type an integer variable that is > 0’
read(*,*)i

! check whether i > 0
if(i > 0)then

! initialize sum at 0
sum = 0

! do the summing up
do j = 1, i

sum = sum + j
enddo

! write the result to the console
write(*,’(a,i3,a,i10)’)’The sum of 1 to ’,i,’ is ’,sum

else

! write the error message
write(*,’(a)’)’Error: i should be greater than 0’

endif

end program

real*8 :: a(10)
integer :: b(12, 5, 16)
real*8 :: c(0:12, -3:5)

The numbers in parentheses, after the array’s name, indicate its dimension. a, e.g., is an
array of dimension 1 with 10 entries in the only dimension. b is of dimension 3 with
12, 5, and 16 elements in the three dimensions, respectively. Last but not least, c is an
array of dimension 2 with 13 and 9 elements in the two directions. However, the index of
dimension 1 starts at 0 and that of dimension 2 at −3. The single elements of an array can
be accessed in the executable code by just saying, e.g., a(5), b(1, 3, 16), or c(0, -2).
The statement b(1, 3, 16) then returns the value of the array at positions 1, 3, and 16
in the three dimensions, respectively. Note, that if not defined otherwise, an array’s index
always starts with 1. In the case of c, however, we made the array index start with 0 and
go up to 12 in the first dimension, meaning a total size of 13.

An example of how to deal with arrays is given in Program 1.10. In the declarative
part of the program, we first define two arrays of same size, the indices of which start at
0 and go up to 10, as well as an integer variable that serves as counter for our do-loops.
In the first step of our executable program part we initialize the values of x. We do this
by running a do-loop over j from the first to the last array element, where we let x be
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Program 1.10 Handling arrays

program Arrays

implicit none
real*8 :: x(0:10), y(0:10)
integer :: j

! initialize x and calculate y
do j = 0, 10

x(j) = 1d0/10d0*dble(j)
y(j) = exp(x(j))

enddo

! output table of values
write(*,’(a)’)’ X Y’
do j = 0, 10

write(*,’(2f10.3)’)x(j), y(j)
enddo

end program

equidistant points on the interval [0, 1].5 Having set x, we can go over to calculating y.
We want y to be the exponential function evaluated at the different values of the array x.
This again is done by means of do-looping. Finally, we let Fortran print the values of
x and y to the screen.

Nevertheless, do-looping is not the only way to work with arrays. Let’s consider the
example given in Program 1.11. This example contains several new features. We start
with introducing a parameter n that defines the size of any array in this program. Note
that n must have the parameter property. If not, the declaration of arrays will not work.
Next, we define three different arrays, two of dimension 1 and one of dimension 2. We
initialize the array x as in Program 1.10. Next, we want the array y to have the entries of
x and add 1 to each entry. We can do this again with a do-loop as seen in the program
before, however there is a shortcut to that. If we use the notation y(:) = x(:) + 1d0, it
has the same effect. This statement basically tells the compiler to take all entries of x, add
1 to each of them and store the results in y. The (:) therefore indicates that we want to
do something with each entry of an array. We can also perform an action with only part
of an array. If we for example stated y(1:6) = x(0:5) + 1d0, the compiler would take
the elements of x at the indices from 0 to 5, add 1 to each of them, and store them in y at
the positions 1 to 6. Next we calculate the values of z by means of a separate do-loop for
each of the dimensions of z. Last, we output a two-dimensional table of values for z. We
therefore let the compiler print a headline that consists of the string ’ X/Y | ’ and all
the values of y followed by a blank line. We then output one line for each set of numbers

5 In the initialization statement for x, the term dble(j) converts the integer value of j to a real*8
value. This should always be done when using integers in calculatingreal*8 values. See the exercise section
for an explanation.
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Program 1.11 Alternative array handling

program AlternativeArrays

implicit none
integer, parameter :: n = 8
real*8 :: x(0:n), y(0:n), z(0:n, 0:n)
integer :: j, k

! initialize x
do j = 0, n

x(j) = 1d0/dble(n)*dble(j)
enddo

! give y the values of x plus 1
y(:) = x(:) + 1d0

! calculate z
do j = 0, n

do k = 0,n
z(j, k) = x(j)**2 + y(k)

enddo
enddo

! output table of values
write(*,’(a,9f7.2)’)’ X/Y | ’, y(:)
write(*,’(a)’)’ | ’
do j = 0, n

write(*,’(f7.2,a,9f7.2)’)x(j),’ | ’, z(j, :)
enddo

end program

in z that has the same index in the first dimension. Unfortunately, we can’t write n into
the formatter, as the formatter is a string. Hence, we have to manually type the number
9 (which corresponds to the length of the array y), as creating a general formatter with
parameter n would be far beyond the scope of this introduction.

1.3 Subroutines and functions

Subroutines and functions can be used to store codes that are frequently used within one
program. While a subroutine just executes an imperative code, a function is a construct
that, like a function in maths, receives some input value and calculates a return value.

Subroutines Program 1.12 demonstrates how to use subroutines in a Fortran program.
Subroutines, as well as functions, are defined after the main program code. The part of
the program which contains subroutines and functions is separated from the main code
by means of the contains statement. We declare a subroutine by typing the keyword
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Program 1.12 Subroutines

program Subroutines

implicit none
real*8 :: a, b, c, d

a = 3d0
b = 5d0

! call subroutine
call addIt(a, b)

! redefine values
c = 10d0
d = 2d0

! call subroutine again
call addIt(c, d)

! separates main program code from subroutine and functions
contains

subroutine addIt(a, b)

implicit none

! input arguments
real*8, intent(in) :: a, b

! other variables
real*8 :: c

! executable code
c = a + b
write(*,’(2(f8.2,a),f8.2)’)a,’ + ’,b,’ = ’,c

end subroutine

end program

subroutine and a name afterwards. The name, addIt in the case of Program 1.12, must
follow the Fortran naming conventions as described in Section 1.1.4 and must neither
correspond to the program name nor any name of a variable declared in the main
program. After having specified the name, we can tell Fortran which communication
variables the subroutine receives from the main program.6 In our case, we specified two
input variables, a and b, the sum of which will be calculated and written to the console.
Note that communication variables do not have to be simple input arguments per se, they
can also be arrays or, as we will see later, functions or subroutines. If we pass on a variable
from the main program and change its value within the subroutine, the change will also
be adopted by the main program.7 The structure of a subroutine is now pretty much the

6 You do not need to specify any communication variable. Just type empty parentheses in this case.
7 We recommend always using communication variables to pass data on to a subroutine or function. Yet, it

would generally be possible to use variables that are declared in the main program within a subroutine. Verify
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same as that of a main program. We first have a declarative part in which we define all
variables used in the subroutine, including communication variables. In addition, we can
regulate whether our communication variables should be of input or output type. This is
done via an intent statement. If a variable’s intent is in, we are not allowed to change its
value throughout the subroutine.8 If the intent is out, the variable must be given a value
within the subroutine. Specifying inout has the same effect as not declaring any intent.
After having declared all variables, the executable part of our subroutine specifies what
to do with them. We can use any kind of executable statements we know from our main
programs.

When it comes to using a subroutine in a main program, we use the keyword
call followed by the name of the subroutine that should be called.9 In addition, we
have to specify which variables of the main program to pass on to the subroutine,
where the number and type of variables must be exactly the same as those speci-
fied in the subroutine’s declaration. In our case, we use the subroutine with different
variables twice.

Functions Functions are equally easy to use. Program 1.13 shows an example. Declaring
a function is very similar to declaring a subroutine. However, in addition to specifying
the type and intent of communications variables, we also have to state the function’s
return value. This is done using a type declaration with the function’s name. The name
will therefore serve as a regular variable throughout the executable part of the function.
The value given to this variable finally is the return value of the function, which in our
example corresponds to the sum of a and b. Having specified the function we now can
use it in our main program. Since the function has a return value, we do not call it via a
call statement like a subroutine, but instead assign the return value directly to a variable,
res in our case. res now contains our function value, i.e. the sum of a and b. Finally, we
write the result to the console.

Passing arrays to functions or subroutines Sometimes one would like to pass an array
to a function or subroutine. This can be done in two ways, see Program 1.14. If we take
a look at the function declaration, we see that communication variable a is specified
like we would specify a regular array in a main program. The declaration statement
therefore tells the compiler that it should expect an array of dimension 1 and length 2 to be
passed to the function. In the case of b, we used the so-called assumed-shape statement.

this by deleting the input variables a and b from the subroutine and calling up the subroutine without input
variables. How does the output change compared to Program 1.12? Note that when a variable is declared in
a subroutine that has the same name as a variable in the main program, the subroutine will always use the
‘local’ variable, not the ‘global’ one from the main program.

8 Verify this by trying to change the value ofa in the above subroutine. When compiling, there now should
be an error in the output window saying that this is not allowed.

9 Subroutines do not necessarily have to be called up by a main program, but can also be used by other
subroutines.



OUP CORRECTED PROOF – FINAL, 18/1/2018, SPi

22 FORTRAN 90: A SIMPLE PROGRAMMING LANGUAGE

Program 1.13 Functions

program Functions

implicit none
real*8 :: a, b, res

a = 3d0
b = 5d0

! call function
res = addIt(a,b)

! output
write(*,’(2(f8.2,a),f8.2)’)a,’ + ’,b,’ = ’,res

contains

function addIt(a, b)

implicit none

! input arguments
real*8, intent(in) :: a, b

! function value
real*8 :: addIt

! executable code
addIt = a + b

end function

end program

Typing a: instead of a valid integer number, we allow the length of b to be anything.
The compiler therefore will just expect an array of dimension 1, but with an arbitrary
length. However, we can refer to b’s length, which will be calculated on-the-fly during
runtime, by typing size(b).10 We consequently define our return value as an array of
two dimensions, the first of which is of size 2 and the second of the same size as b. The
executable code of our function should then be straightforward.

In the main program, we now specify three arrays. The two input arrays of dimension 1
and the array that should store the result of our function. This array must have dimension
2 with the size of a in dimension 1 and that of b in dimension 2. We then initialize
the arrays a and b. There is a shortcut to do this by saying a(:) = (/<values>/),
where <values> is just a list of initialization values separated by commas. Finally,
we can call our function, assign the return value to res, and write the result to the
console.

10 If you declare a multidimensional array, you can refer to the length into any dimension by stating
size(b, <dim>) where <dim> is just an integer number declaring the dimension.
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Program 1.14 Passing arrays to functions

program ArrayFunc

implicit none
real*8 :: a(2), b(5), res(2,5)

a(:) = (/3d0, 4d0/)
b(:) = (/1d0, 2d0, 3d0, 4d0, 5d0/)

! call function
res = addIt(a,b)

! output
write(*,’(5f8.2/5f8.2)’)res(1,:),res(2,:)

contains

function addIt(a, b)

implicit none

! input arguments
real*8, intent(in) :: a(2), b(:)

! function value
real*8 :: addIt(2, size(b))

! local variables
integer :: j, k

! executable code
do j = 1, 2

do k = 1, size(b)
addIt(j,k) = a(j) + b(k)

enddo
enddo

end function

end program

1.4 Modules and global variables

A module is a construct that allows storage of frequently used codes and variables in a
separate location. The codes and variables can then be used by different programs.

1.4.1 STORING CODE IN A MODULE

Module 1.15m gives an example of a simple module which contains a function to calculate
the volume of a sphere.11 The structure of a module is similar to that of a regular program,

11 The respective program is called prog1_15m.f90 in our program database.
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Module 1.15m Storing code in modules

module Volume

implicit none

! module parameter
real*8, parameter :: pi = 3.14159265358d0

! separates variable declarations from subroutine and functions
contains

! for calculating volume of a sphere
function vol(r)

implicit none

! input and output variables

real*8, intent(in) :: r
real*8 :: vol

! calculation
vol = 4d0/3d0*r**3*pi

end function

end module

however, a module begins with the keyword module and ends with end module. The
variable declaration part again starts with an implicit none statement followed by any
variable declaration. In our case, we defined a parameter of type real*8 that gives us
the value of π . In contrast to a main program, a module does not contain any directly
executable codes. Nevertheless, we can store functions and subroutines within a module.
The statement contains again indicates that we want to start the part of the module
where those are declared. Functions or subroutines are declared in the same way we have
seen before, see Programs 1.12 and 1.13. In the case of Module 1.15m we declared a
function vol that calculates the volume of a sphere with radius r. The radius is given
as an input argument to the function via the real*8 variable r.

We can now write a very simple program that uses the module Volume. There are
multiple ways of doing so. The easiest is to include the module code into the main
program. This is done through an include statement, see Program 1.15. The include
statement tells the compiler that we want to use the main program together with the
module that is stored in the file prog1_15m.f90.12 When we run the program, the
compiler will automatically compile the module prior to compiling the program and
therefore make it ready for usage. Including a module this way ensures that any change we

12 We can also store several modules in the file prog1_15m.f90, see next example.
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Program 1.15 Calling module code from Module 1.15m

include "prog01_15m.f90"

program Sphere

! import variables and subroutines from module Volume
use Volume

implicit none

write(*,’(f12.4)’)vol(1d0)

end program

make in the module file will immediately be recognized by the compiler.13 The include
statement, however, only tells our compiler that it should compile the code we have stored
within our module file. In the program Sphere itself we then still have to indicate that we
want to use the module Volume by typing use Volume before any variable declaration
statement. We can now access any declared variable, function, or subroutine of that
module. Hence, we can write vol(1d0), i.e. the volume of a sphere with radius 1, to the
console.

1.4.2 THE CONCEPT OF GLOBAL VARIABLES

A global variable is a variable that is present in any part of a program, i.e. in the main
program as well as any subroutine and function. Typical examples of global variables are
model parameters. One way to realize this concept is to pass a variable we want to be
global to a subroutine and function of our main program. However, if we have larger
programs this can become messy. Therefore, we can use modules to make life easier.

Consider for example Module 1.16m, which actually consists of two separate modules.
The first module Globals is pretty simple, as it contains no subroutines or functions. It
just declares two variables, beta and eta denoting time preference and risk aversion in a
simple two-period life-cycle model, where households’ utility function is given by

u(c1, c2) = 1
1 − η

· c1−η
1 + β

1 − η
· c1−η

2 . (1.1)

This utility function is specified in the second module UtilFunc. The module only
contains a function utility that takes as input variables values for c1 and c2 and just

13 An alternative way of handling the module file would be to precompile it using the Compile button in the
Build Toolbar. However this way the compiler sometimes does not recognize changes that have been made
within the module file.
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Module 1.16m A module to store global variables

module Globals

implicit none

! time preference
real*8 :: beta

! risk aversion
real*8 :: eta

end module

module UtilFunc

implicit none

contains

! a utility function
function utility(c1, c2)

use Globals

implicit none
real*8, intent(in) :: c1, c2
real*8 :: utility

utility = 1d0/(1d0-eta)*c1**(1d0-eta) &
+ beta/(1d0-eta)*c2**(1d0-eta)

end function

end module

calculates the value of lifetime utility. Note that this function uses the module Globals

and especially the parameters defined therein.14

Suppose now, we want to write a program with which we can calculate the utility
function for different combinations of c1 and c2 that satisfy the budget constraint

c1 + c2 = 1,

where we assumed the present value of income and the interest rate to be 1 and 0,
respectively. An example of such a program could be Program 1.16. Again we have to
tell the compiler in which file we have stored our modules by means of the include

statement. In the main program, before declaring any program specific variables, we tell
the program to use the Globals module that contains our global variables beta and eta

as well as the UtilFunc module that contains the utility function. We then define some

14 It is important that the module Globals is defined prior to the module UtilFunc, since the latter
uses the former. If the modules were arranged in reverse order, an error statement would tell us that
UtilFunc can not find the module Globals.
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Program 1.16 A program that uses global variables

include "prog 01_16m.f90"

program CalcUtil

use Globals
use UtilFunc

implicit none
real*8 :: c1, c2, util
integer :: j

! initialize parameters
beta = 0.9d0
eta = 2d0

! calculate utility for different consumption pairs
! between 0.3 and 0.7
do j = 0, 20

c1 = 0.3d0 + (0.7d0-0.3d0)/20*dble(j)
c2 = 1d0-c1
util = utility(c1, c2)
write(*,’(3f10.4)’)c1, c2, util

enddo

end program

variables that are used later on. Afterwards, we can initialize our global model parameters
beta and eta. Those parameter values will consequently be stored in the module Globals
and then be used by the function utility. Finally, we calculate the utility function
resulting from different combinations of c1 and c2 that satisfy the household budget
constraint by means of the function utility.

1.5 Installing the toolbox

This textbook comes with a toolbox, i.e. a collection of subroutines and functions,
that will frequently be used in this book mostly to solve numerical problems. These
subroutines and functions will be discussed in detail in the next chapters. The toolbox
and the necessary programs should automatically have been installed together with the
compiler. However, you can also download and install the toolbox directly from our
website

www.ce-fortran.com

Just click on the menu item Toolbox and the website will guide you through the installa-
tion process. This menu item is also the place to look for updates. The toolbox requires
the installation of the program GNUPlot. GNUPlot is a drawing program that can be
used to draw graphs on Windows, Mac, and Linux machines. The toolbox contains some

http://www.ce-fortran.com
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interface routines that help you with that. Two things to note on the toolbox: First, we
provide the toolbox in plain text format. So if you want to take a deeper look at the
subroutines provided therein feel free to do so. Second, when you install the toolbox
it will be compiled with the compiler you installed on your computer. By doing so it
is ensured that the compiler will always be able to access the toolbox routines without
problems.

1.6 Plotting graphs with the toolbox and GNUPlot

We use program GNUPlot for plotting graphs in Fortran as Fortran itself does not provide
any plotting routines. Plotting graphs is, however, very simple, as the toolbox provides
respective interface routines that transfer your data into GNUPlot graphs. In this section,
we demonstrate how to plot both two- and three-dimensional data.

1.6.1 TWO-DIMENSIONAL PLOTTING

Program 1.17 shows how to plot graphs with GNUPlot using the toolbox. Of course,
GNUPlot has to be installed on your computer. In order to use any subroutine or function
located in the toolbox, we have to include the toolbox by stating use toolbox. We then
declare two arrays, one for our x-axis data and one for the y-axis data, respectively. We
initialize x at equidistant points on the interval [0, 1] via the first do-loop. Afterwards, we
calculate the y-data we want to plot, which in the first case is equal to x2. Note that we used
the shortcut method discussed in Section 1.2.5. In order to tell the toolbox to include our
x and y data in a plot, we call the subroutine plot. The minimum requirement for using
plot is to provide two equal size arrays of type real*8, the first containing the x-axis
data and the second the y-axis data. The subroutine plot can be called with many more
arguments which we will discuss later. Having used the subroutine plot, our x and y data
is included in the plot we want to make. In order to actually draw the data with GNUPlot
we have to call the subroutine execplot. When we call this subroutine, a window will
appear on the screen displaying our x and y data as in Figure 1.4. The execution of our
main program will pause. In order to close the plot window and let the program continue,
you have to click on the console window and press RETURN.

We can also plot several graphs into one window. This is done in the second part of
the program. We therefore first calculate the y data as

√
x and write it to our next plot

by calling the subroutine plot. This time we include one of the optional arguments of the
subroutine plot. These optional arguments are used by stating their name, in our case
legend, and by specifying a value, in our case the name of the graph that should appear
in the legend of the plot, namely ’square root’. All the optional arguments of plot and
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Program 1.17 Plotting graphs with the toolbox

program Plotgraphs

use toolbox

implicit none
real*8 :: x(0:100), y(0:100)
integer :: i1

! Initialize x values
do i1 = 0, 100

x(i1) = 1d0/100d0*dble(i1)
enddo

! Calculate plot data
y = x**2
call plot(x, y)

! execute plot program
call execplot()

! Calculate data for roots
y = x**(1d0/2d0)

! you can specify a legend entry in the plot as follows
call plot(x, y, legend=’square root’)

! the same for a cubic root
y = x**(1d0/3d0)
call plot(x, y, legend=’cubic root’)

! execute plot program and give the plot a title
call execplot(title=’Roots’)

! plot has many more options that are specified here
y = x**(1d0/2d0)
call plot(x, y, color=’green’, linewidth=3d0, marker=2, &

markersize=0.7d0, noline=.false., legend=’square root’)

y = x**(1d0/3d0)
call plot(x, y, color=’#5519D6’, marker=5, markersize=1.2d0, &

noline=.true., legend=’cubic root’)

call execplot(xlim=(/0d0, 1.1d0/), xticks=0.1d0, &
xlabel=’x-Axis’, ylim=(/0d0, 1.4d0/), yticks=0.2d0, &
ylabel=’y-Axis’, title=’Roots’, legend=’rs’, &
filename=’testplot’, filetype=’eps’, output=’testdata’)

end program

execplot are discussed in detail below. Having included the x and y data for the square
root we can proceed and calculate the data for a cubic root. We can include this data into
the graph by just calling the plot statement again. In total the toolbox would allow you to
place up to 1,000 graphs in one plot. Having added all the relevant plot data to our graph,
we can again make GNUPlot draw our required lines by calling execplot. This time we
specify the optional argument title which will define the title of our plot. The resulting
plot will look like the one in Figure 1.5.



OUP CORRECTED PROOF – FINAL, 18/1/2018, SPi

30 FORTRAN 90: A SIMPLE PROGRAMMING LANGUAGE

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

Figure 1.4 Plotting a graph with GNUPlot
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Figure 1.5 Plotting a graph with GNUPlot (2)

Note: The top line drawn in the graph is the cubic root, the bottom line is the square root

The last part of the program repeats the plot of square and cubit root, but this time it
applies all optional arguments to the subroutines plot and execplot. In the subroutine
plot you can specify which colour should be used for the graph, how thick the line should
be, whether the data points you supplied should be marked with a marker and how this
marked should look like. The noline statement tells GNUPlot whether it should use
a connection line between the supplied data points or only show the markers. Finally
the legend statement specifies the legend entry for the graph. The subroutine execplot
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Figure 1.6 Plotting a graph with GNUPlot (3)

receives a whole lot of arguments related to the format of the plot. In addition, we can
make GNUPlot export the graph in .eps or .png format. On our website we provide
detailed information about all the optional arguments of plot and execplot, what kinds
of values need to be supplied and what they actually do. We also show how to use
GNUPlot to create histograms. The graph resulting from the last statement is shown in
Figure 1.6.

1.6.2 THREE-DIMENSIONAL PLOTTING

The conventions for plotting three-dimensional data are very similar to those of two-
dimensional plotting. However, in the 3D case we allow only one curve or surface per
graph. Hence, we do not have to separately call a plotting routine and the subroutine
that execute GNUPlot. Instead, all of this is packed together in the subroutine plot3d.
Program 1.18 gives an example of how three-dimensional plotting works in practice with
our toolbox.

There are two ways to represent three-dimensional data, depending on how the plot
should look. In the first part of the program, we want to plot the function

z = f (x, y) = sin(x) · cos(y)

on the interval (x, y) ∈ [−5, 5] × [−3, 3]. In order to create a plot of this function,
we generate some plotting data like in the previous Program 1.17. For the plotting to
work correctly, we have to represent the function on a rectilinear grid. This means that
we generate x-axis and y-axis data separately and evaluate the function f (x, y) at each



OUP CORRECTED PROOF – FINAL, 18/1/2018, SPi

32 FORTRAN 90: A SIMPLE PROGRAMMING LANGUAGE

Program 1.18 Plotting graphs with the toolbox

program Plotgraphs3D
[......]
! Initialize x values
do i1 = 0, nplot1

x(i1) = -5d0 + 10d0/dble(nplot1)*dble(i1)
enddo

! initialize y values
do i2 = 0, nplot2

y(i2) = -3d0 + 6d0/dble(nplot2)*dble(i2)
enddo

! get z values
do i1 = 0, nplot1

do i2 = 0, nplot2
z(i1, i2) = sin(x(i1))*cos(y(i2))

enddo
enddo

! call 3D plotting routine
call plot3d(x, y, z)

! call 3D plotting routine with complete configuration
call plot3d(x, y, z, color=’black’, linewidth=0.5d0, marker=2, &

markersize=0.3d0, noline=.false., &
xlim=(/-6d0, 6d0/), xticks=1.0d0, xlabel=’x-Axis’, &
ylim=(/-3d0, 3d0/), yticks=0.5d0, ylabel=’y-Axis’, &
zlim=(/-1d0, 1d0/), zticks=0.2d0, zlabel=’z-Axis’, &
zlevel=0d0, surf=.true., surf_color=2, &
transparent=.true., view=(/70d0, 50d0/), &
title=’sin(x)*cos(y)’, filename=’testplot’, &
filetype=’eps’, output=’testdata’)

! initialize spiral data
do i1 = 0, nplot1

c(i1) = 20d0*dble(i1)/dble(nplot1)
a(i1) = sin(c(i1))
b(i1) = cos(c(i1))

enddo

! plot spiral
call plot3d(a, b, c, linewidth=2d0)

end program

combination of data points x and y. We chose to partition the intervals [−5, 5] and [−3, 3]
into 81 and 51 equidistant points, respectively. The x and y data are stored in arrays
x(0:nplot1) and y(0:nplot2).15 From evaluating the function at each data-point
combination, we get a two-dimensional array z(0:nplot1, 0:nplot2) that contains the
function values of f . We can now simply plot our function by feeding our data into the
subroutine plot3d. This subroutine again calls GNUPlot and produces a surface plot of

15 Note that we are not required to chose an equidistant partition. Instead, any arbitrary partition of the
intervals would be allowed.
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Figure 1.7 Plotting a surface with GNUPlot
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Figure 1.8 Plotting a surface with GNUPlot (2)

the function as can be seen in Figure 1.7. The next statement calls the subroutine plot3d
again, but this time we provide all possible input arguments by which we can alter the
appearance of the plot, see again the website for details on all these input arguments. The
corresponding output is shown in Figure 1.8.

Finally, GNUPlot can not only plot the surfaces of functions, but is also able to
represent simple lines in the three-dimensional space. One example of such a line is a
spiral. A spiral can be represented by the data points (a, b, c) = (sin(c), cos(c), c). We
generate these data points in the last part of Program 1.18. The corresponding plot data
are three arrays, a, b, and c, of the same length. When we feed these arrays into the
subroutine plot3d, it generates a three-dimensional spiral as can be seen from Figure 1.9.
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Figure 1.9 Plotting a line in 3D with GNUPlot

Note that this feature of three-dimensional plotting could also be used to generate a three-
dimensional scatter plot of some data. To achieve this, we should set the noline option
to .true. to avoid that GNUPlot connects data points with a line and specify a marker

that generates a mark for each of the data-point combinations.

1.7 Further reading

The best way to learn a programming language is to read, write, and run programs
immediately. Kendrick and Amman (1999) provide some guidance through the most
widely used programming languages of economists. Aruoba and Fernandez-Villaverde
(2015) compare some modern programming languages (including Fortran 2008) with
respect to their speed and coding requirements. As it turns out, Fortran has a considerable
speed advantage and the coding is fairly simple and compact. There are many good
books on Fortran programming. Chivers and Sleightholme (2012) provide a very gentle
introduction for complete beginners with little or no programming background, but also
offer a lot of advanced material for experienced Fortran programmers who want to update
their skills. Each chapter contains many example programs and a list of problems to solve.
While Chapman (2004) covers almost the same material, the main advantage is the very
student friendly design. Throughout the book various boxes highlight good program-
ming practices and programming pitfalls and specific sidebars provide additional infor-
mation of potential interest to the student. Students are especially motivated by various
quizzes that are answered in the appendix and many exercises at the end of each chapter.



OUP CORRECTED PROOF – FINAL, 18/1/2018, SPi

EXERCISES 35

1.8 Exercises

1.1. (a) Write a program that reads two scalars, say x and y of type real*8 from the
console. Print an error message when the numbers are not readable. Otherwise
the program should compute x+y, x-y, x*y and x/y and print the answers in a
readable fashion. Test your program with the numbers x=2 and y=4.

(b) Change your program so that the two scalars x and y are of type integer. Test
the program again with x=2 and y=4 and explain the difference.

1.2. Write a program that adds the numbers 55,555,553 and 10,000,001 and stores the
result in variables sum1 and sum2 which are of type real and real*8, respectively.
Print the values of sum1 and sum2 to the console, compare the two results and
explain the difference.

1.3. (a) Store the value of 109 in a variable of type real*8 in three ways: 10**9, 10d0**9,
and 10**9d0. Then repeat the same for the value 1010. Print out the variable
values to the console and check the result.

(b) Extend the program and define two real*8 variables of value
0.000000000003. The first definition ends with d0while in the second definition
the d0 is omitted. Print the values of the two variables with format f30.25 and
explain the difference.

(c) Finally define two real*8 variables of value 3.1415926535. Again, the first
definition ends with d0 while in the second definition the d0 is omitted. Print
the values of the two variables with format f15.12 and explain the difference.

1.4. Write a program that evaluates the logical expression

x >= 3.and.y <= 4.and.z == 5.or.x <= y.and.y < z

for x = 4, y = 6, and z = 8. Explain the result. Evaluate again for x = 4, y = 6,
and z = 2 and explain.

1.5. The German income tax function has four brackets:

If taxable income y is

but not
more than more than then income tax T(y) is (in e)

0 e 8130 e 0
8131 e 13469 e (933.70x + 1400)x

13470 e 52881 e (228.74z + 2397)z + 1014
52882 e 250730 e 0.42y − 8196

250731 e 0.45y − 15718

x = (y − 8130)/10000, z = (y − 13469)/10000.
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Write a program that reads some taxable income y of type real*8 from the console
and then computes the resulting tax burden T(y), the average tax rate T(y)

y , and the

marginal tax rate ∂T(y)
∂y and prints it to the console.

1.6. The Fibonacci-series is defined as follows: The first two elements of the series are
a1 = 1 and a2 = 1. Each of the following elements is computed as the sum of
the two previous elements, i.e. an = an−1 + an−2. The first ten elements of the
Fibonacci-series are therefore

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

(a) Write a program that computes the n-th element of the Fibonacci-series.
The main program should first read the value of an integer scalar n which
determines the requested element an of the series. Then the main program
should print out the result to the console using a function fib(n). This function
calculates an using a do-loop.

(b) In the second step add to this program a function binform(n) which uses
Binet’s formula

Fn = φn − (1 − φ)n
√

5
with φ = 1 + √

5
2

to compute the n-th Fibonacci number, where φ is the golden ratio.
(c) Define a maximum number plotmax and compute the relative difference

between the two approaches for each element up to plotmax. Plot this difference
to the console.

1.7. Write a program that simulates rolling a pair of six-sided dice. The outcome we
are interested in is the sum of the values the two dice show. We know that with
probability 1/36 this sum equals 2, with probability 2/36 it equals 3, and so on. The
goal of this task is to simulate this probability distribution using random number
generation. Therefore define a number iter of times for which you simulate rolling
the dice. In each iteration, use the intrinsic random number generator subroutine
random_number(x), which sets the argument x to a pseudo random real number x
with 0 ≤ x ≤ 1. Use this number to simulate the outcome of one roll of one dice.
Do this twice and sum up the result to a variable d. To store the results, create an
array Dsum(2:12) and add a value of 1 to the entry d of this array. The simulated
probability distribution is then dble(Dsum)/dble(iter). Print this probability
distribution to the console.

Then generalize your program to rolling n dice, each with k sides. Again, plot the
results for the sums between n and nk to the console.
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Hint: Use the intrinsic subroutine random_seed() at the beginning of the
program. What is the effect of this subroutine?

1.8. Two six-sided dices are rolled until their sum equals a value x > 2 or until their sum
is equal to a value y >2. Write a simulation program to determine the percentage of
how often the game will be stopped by the first condition instead of the second
condition. To generalize the simulation procedure of rolling the dice, create a
subroutine random_int(res, intl, inth). This subroutine should generate a
random number of type integer between the values intl and inth. Thereby
assume that each of the potential integer values {intl, intl+1, …, inth } occurs
with equal probability. The simulated random number should be stored in the
value res.

Plot the percentages and the largest number of rolls before the game stops to the
console. Set x = 4 and y = 10 and test the program. Then set x = 4 and y = 7.
Explain your results!

Now use three dice to simulate the game. First set x = 4 and y = 17 and then set
x = 4 and y = 5. Again explain your results.

1.9. (a) Write a function utility(c, gamma) that computes for an input variable
c and an intertemporal substitution elasticity gamma the value of the utility
function

u(c) = c1− 1
γ

1 − 1
γ

.

Function utility(c, gamma) should first check whether c is positive. In case
c<0 an error message should be written to the console and the program should
stop (use the stop command).

(b) Now write a program that tests the function utility(c, gamma) with alter-
native values for c and gamma. Then plot the function using the toolbox for
alternative parameter values γ ∈ [0.25, 0.5, 0.75, 1.25].

1.10. Write a subroutine utility_int(a, b, u) where the input values a and b

define the endpoints of an interval [a, b]. Within this interval the subroutine
should compute the values of the function u(c) from the previous exercise
at n nodes. The function values should be stored in the array u(:) which is
of assumed size and will be given back to the main program. The value of
n can be calculated from size of u(:). Therefore proceed via the following
steps:
(a) At the beginning of the subroutine check whether 0 < a < b. If this is not the

case, write an error message and stop the program.
(b) If 0<a<b holds then determine n by setting n = size(u).
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(c) Compute the array entries in u(:) as u(cj) using the function utility(c) with
a specific value for γ . Define

cj = a + (j − 1)

n − 1
(b − a) for j = 1, . . . , n.

Don’t forget the dble command.
Now set γ = 0.5 and write a program that tests the subroutine using a = 1 and
b = 2, and an array length of 11. Write your results to the console.
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2 Numerical solution methods

In this chapter we develop simple methods for solving numerical problems. We start
with linear equation systems, continue with nonlinear equations and finally talk about
optimization, interpolation, and integration methods. Each section starts with a motivat-
ing example from economics before we discuss some of the theory and intuition behind
the numerical solution method. Finally, we present some Fortran code that applies the
solution technique to the economic problem.

2.1 Matrices, vectors, and linear equation systems

This section mainly addresses the issue of solving linear equation systems. As a linear
equation system is usually defined by a matrix equation, we first have to talk about how
to work with matrices and vectors in Fortran. After that, we will present some linear
equation system solving techniques.

2.1.1 MATRICES AND VECTORS IN FORTRAN

The general structure of a matrix A and a vector b in mathematics is given by

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn

⎤
⎥⎥⎥⎦ and b =

⎡
⎢⎢⎢⎣

b1
b2
...

bn

⎤
⎥⎥⎥⎦ .

A matrix consists of several columns, where a vector only has one. We call A a m × n
matrix, and b a n-dimensional vector. A natural way to store matrices and vectors in
Fortran is via the concept of arrays. We thereby store matrices in a two-dimensional
array of lengths m and n and a vector in a one-dimensional array of length n. There
are a number of intrinsic Fortran functions that were especially written for operation
with matrices and vectors. A summary of these is given in Program 2.1. Most of these
functions should be self-explanatory, however they are also described on our website.
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Program 2.1 Matrix and vector operations

program matrices

implicit none
integer :: i, j
real*8 :: a(4), b(4)
real*8 :: x(2, 4), y(4, 2), z(2, 2)

! initialize vectors and matrices
a = (/(dble(5-i), i=1, 4)/)
b = a+4d0
x(1, :) = (/1d0, 2d0, 3d0, 4d0/)
x(2, :) = (/5d0, 6d0, 7d0, 8d0/)
y = transpose(x)
z = matmul(x, y)

! show results of different functions
write(*,’(a,4f7.1/)’)’ vector a = ’,(a(i),i=1,4)
write(*,’(a,f7.1)’) ’ sum(a) = ’,sum(a)
write(*,’(a,f7.1/)’) ’ product(a) = ’,product(a)
write(*,’(a,f7.1)’) ’ maxval(a) = ’,maxval(a)
write(*,’(a,i7)’) ’ maxloc(a) = ’,maxloc(a)
write(*,’(a,f7.1)’) ’ minval(a) = ’,minval(a)
write(*,’(a,i7/)’) ’ minloc(a) = ’,minloc(a)
write(*,’(a,4f7.1)’) ’ cshift(a, -1) = ’,cshift(a,-1)
write(*,’(a,4f7.1/)’)’ eoshift(a, -1) = ’,eoshift(a,-1)
write(*,’(a,l7)’) ’ all(a<3d0) = ’,all(a<3d0)
write(*,’(a,l7)’) ’ any(a<3d0) = ’,any(a<3d0)
write(*,’(a,i7/)’) ’ count(a<3d0) = ’,count(a<3d0)
write(*,’(a,4f7.1/)’)’ vector b = ’,(b(i),i=1,4)
write(*,’(a,f7.1/)’) ’ dot_product(a,b) = ’,dot_product(a,b)
write(*,’(a,4f7.1/,20x,4f7.1/)’) &

’ matrix x = ’,((x(i,j),j=1,4),i=1,2)
write(*,’(a,2f7.1,3(/20x,2f7.1)/)’)&

’ transpose(x) = ’,((y(i,j),j=1,2),i=1,4)
write(*,’(a,2f7.1/,20x,2f7.1/)’) &

’ matmul(x,y) = ’,((z(i,j),j=1,2),i=1,2)

end program

2.1.2 SOLVING LINEAR EQUATION SYSTEMS

In this section we would like to show how to solve linear equation systems. There are two
ways to solve these systems: by factorization or iterative methods. Both methods will be
discussed in the following.

Example Consider the supply and demand functions for three goods given by

qs
1 = −10 + p1 qd

1 = 20 − p1 − p3
qs

2 = 2p2 qd
2 = 40 − 2p2 − p3

qs
3 = −5 + p3 qd

3 = 25 − p1 − p2 − p3
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As one can see, the supply of the three goods only depends on their own price, while the
demand side shows strong price interdependencies. In order to solve for the equilibrium
prices of the system we set supply equal to demand qs

i = qd
i in each market which after

rearranging yields the linear equation system

2p1 + p3 = 30
4p2 + p3 = 40

p1 + p2 + 2p3 = 30.

We can express a linear equation system in matrix notation as

Ax = b (2.1)

where x defines an n-dimensional (unknown) vector and A and b define a n × n matrix
and a n-dimensional vector of exogenous parameters of the system. In the above example,
we obviously have n = 3 and

A =
⎡
⎣

2 0 1
0 4 1
1 1 2

⎤
⎦ , x =

⎡
⎣

x1
x2
x3

⎤
⎦ and b =

⎡
⎣

30
40
30

⎤
⎦ .

Gaussian elimination and factorization We now want to solve for the solution x of a
linear equation system. Of course, if A were a lower triangular matrix of the form

A =

⎡
⎢⎢⎢⎣

a11 0 . . . 0
a21 a22 . . . 0

...
... . . . ...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦ ,

the elements of x could be easily derived by simple forward substitution, i.e.

x1 = b1/a11

x2 = (b2 − a21x1)/a22

...
xn = (bn − an1x1 − an2x2 − · · · − ann−1xnn−1)/ann.

Similarly, the problem can be solved by backward substitution, if A was an upper
triangular matrix. However, in most cases A is not triangular. Nevertheless, if a solution
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to the equation system existed, we could break up A into the product of a lower and upper
triangular matrix, meaning there is a lower triangular matrix L and an upper triangular
matrix U, so that A can be written as

A = LU.

If we knew these two matrices, equation (2.1) could be rearranged as follows:

Ax = (LU)x = L(Ux) = Ly = b.

Consequently, we first would determine the vector y from the lower triangular system
Ly = b by forward substitution and then x via Ux = y using backward substitution.

Matrix decomposition In order to factorize a matrix A into the components L and U
we apply the Gaussian elimination method. In our example we can rewrite the problem as

Ax =
⎡
⎣

2 0 1
0 4 1
1 1 2

⎤
⎦ ×

⎡
⎣

x1
x2
x3

⎤
⎦

=
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦

︸ ︷︷ ︸
L

×
⎡
⎣

2 0 1
0 4 1
1 1 2

⎤
⎦

︸ ︷︷ ︸
U

×
⎡
⎣

x1
x2
x3

⎤
⎦ =

⎡
⎣

30
40
30

⎤
⎦

︸ ︷︷ ︸
b

.

We now want to transform L and U in order to make them lower and upper triangular
matrices. However, these transformations must not change the result x of the equation
system LUx = b. It can be shown that subtracting the multiple of one row from another
satisfies this condition. Note that when we subtract a multiple of row i from row j in matrix
U, we have to add the same multiple to the same cell in matrix L which is eliminated in
matrix U.

In the above example, the first step is to eliminate the cells below the diagonal in the
first column of U. In order to get a zero in the first column of the last row, one has to
multiply the first row of U by 0.5 and subtract it from the third. Consequently, we have
to add 0.5 to the first column of the third row of L. After this step matrices L and U are
transformed to

L =
⎡
⎣

1 0 0
0 1 0

0.5 0 1

⎤
⎦ and U =

⎡
⎣

2 0 1
0 4 1
0 1 1.5

⎤
⎦ .
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In order to get a zero in the second column of the last row of U, we have to multiply the
second row by 0.25 and subtract it from the third line. The entry in the last line and the
second column of L then turns into 0.25. After this second step the matrices are

L =
⎡
⎣

1 0 0
0 1 0

0.5 0.25 1

⎤
⎦ and U =

⎡
⎣

2 0 1
0 4 1
0 0 1.25

⎤
⎦ .

Now L and U have the intended triangular shape. It is easy to check that A = LU still
holds. Hence, the result of the equation systems LUx = b and Ax = b are identical.
The above approach can be applied to any invertible matrix A in order to decompose it
into the L and U factors. We can now solve the system Ly = b for y by using forward
substitution. The solution to this system is given by

y1 = 30/1 = 30,
y2 = (40 − 0 · 30)/1 = 40 and
y3 = (30 − 0.5 · 30 − 0.25 · 40)/1 = 5.

Given the solution y = [30 40 5]T , the linear system Ux = y can then be solved using
backward substitution, yielding the solution of the original linear equation, i.e.

x3 = 5/1.25 = 4,
x2 = (40 − 1 · 4) /4 = 9 and
x1 = (30 − 0 · 9 − 1 · 4) /2 = 13.

The solution of a linear equation system via LU-decomposition is implemented in the
toolbox that accompanies this book. Program 2.2 demonstrates its use. In this program,
we first include the toolbox module and specify the matrices A, L, U and the vector b.
We then initialize A and b with the respective values given in the above example. The
subroutine lu_solve that comes with the toolbox can now solve the equation system
Ax = b. The solution is stored in the vector b at the end of the subroutine. Alternatively
we could solely factorize A. This can be done with the subroutine lu_dec. This routine
receives a matrix A and stores the L and U factors in the respective variables. The output
shows the same solution and factors as computed above.

The so-called L-U factorization algorithm is faster than other linear solution methods
such as computing the inverse of A with determinants and then computing A−1b or
using Cramer’s rule. Although L-U factorization is one of the best general methods for
solving a linear equation system, situations may arise in which alternative methods may
be preferable. For example, when one has to solve a series of linear equation systems
which all have the same A matrix but different b vectors, b1, b2, . . . , bm it is often
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Program 2.2 Linear equation-solving using the toolbox

program lineqsys

use toolbox

implicit none
integer :: i, j
real*8 :: A(3, 3), b(3)
real*8 :: L(3, 3), U(3, 3)

! set up matrix and vector
A(1, :) = (/ 2d0, 0d0, 1d0/)
A(2, :) = (/ 0d0, 4d0, 1d0/)
A(3, :) = (/ 1d0, 1d0, 2d0/)
b = (/30d0, 40d0, 30d0/)

! solve the system
call lu_solve(A, b)

! decompose matrix
call lu_dec(A, L, U)

! output
write(*,’(a,3f7.2/)’)’ x = ’, (b(j),j=1,3)
write(*,’(a,3f7.2/,2(5x,3f7.2/))’) &

’ L = ’,((L(i,j),j=1,3),i=1,3)
write(*,’(a,3f7.2/,2(5x,3f7.2/))’) &

’ U = ’,((U(i,j),j=1,3),i=1,3)

end program

computationally more efficient to compute and store the inverse of A and then compute
the solutions x = A−1bj by performing direct matrix vector multiplications.

Gaussian elimination can be accelerated for matrices possessing special structures. If A
was symmetric positive definite, A could be expressed as the product

A = LLT

of a lower triangular matrix L and its transpose. In this situation one can apply a special
form of Gaussian elimination, the so-called Cholesky factorization algorithm, which
requires about half of the operations of the Gaussian approach. L is called the Cholesky
factor or square root of A. Given the Cholesky factor of A, the linear equation

Ax = LLTx = L(LTx) = b

may be solved efficiently by using forward substitution to solve Ly = b and then backward
substitution to solve LTx = y.

Another factorization method decomposes A = QR, where Q is an orthogonal matrix
and R an upper triangular matrix. An orthogonal matrix has the property Q−1 = QT .
Hence, the solution of the equation system can easily be computed by solving the system


