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Overview

The study of epidemiology is, to a large extent, about learning to ask good questions 
in population health. To do this we first must understand how to measure popu-
lation health, both in a single sample (Chapter 1) and when comparing aspects of 
population health between two groups (Chapter 2).

This dispensed with, we consider what makes a “good question.” In this work, 
we regard a good question, broadly, as one which is specific and well-​formed, and 
therefore which can be answered rigorously. And one which, answered rigorously, 
will lead us to better population health outcomes. We mean these as guidelines, 
not dogmatically as rules: there are excellent questions in epidemiology and pop-
ulation health generally which do not meet all of these guidelines. We do, how-
ever, believe that when questions do not meet these guidelines, it is incumbent on 
scientists to probe the nature of the question at hand to see if it can be refined to 
better meet these guidelines.

In line with this, the view of this text is that most (by no means all) of the 
questions we want to ask in epidemiology are fundamentally causal in nature 
(Chapter  3), rather than predictive or descriptive (Chapter  4). But it is worth 
calling out that the process by which causal questions emerge often flows from 
description of what’s happening (often in the form of public health surveillance 
of the world at a single time point) or prediction about what might happen: both 
these approaches can help us to develop causal hypotheses about how to improve 
health or direct us to populations in which there is the greatest need to invest re-
sources for improved health.

How do we learn to ask better questions? “Intuition accelerators” are one name 
for methods which help us to think more clearly about our research questions and 
which help us to understand the world more fully. As an example, understanding 
randomized trials (Chapter  5) can help us form good research questions even 
when we aren’t conducting a randomized trial ourselves. Specifically, it is often 
much easier to understand how to frame an observational data analysis (such 
as those discussed in Chapters 6–​8) by articulating a hypothetical randomized 
trial that would address the question of interest. I personally find that nearly all 
study designs are intuition accelerators for some other aspect of epidemiologic 
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methodology, especially around biases. This is a—​if not the—​key reason that this 
book is organized around study designs.

Finally, in considering what makes a good question, we should consider the ul-
timate impact of our scientific studies: not just in the small sample of people we are 
studying, but in the larger population as well, and under more realistic conditions 
than a small controlled study environment typically admits (Chapter 9).

A commentary by Kaufman and Hernán in the journal Epidemiology was ti-
tled (paraphrasing Picasso) “Epidemiologic Methods Are Useless: They Can Only 
Give You Answers.” This book, then, hopes to teach you not just epidemiologic 
methods, but also—​by doing so—​how to ask better questions.

We now describe in slightly more detail the three sections of the text and the 
chapters of each section.

SECTION I: INTRODUCTION AND BACKGROUND

In this first section of the book, we lay the groundwork for understanding how 
study designs work, what they estimate, and how they can fail. To do so, we give 
an overview of prevalence and incidence, measures of contrast, causal inference, 
diagnostic testing, screening, and surveillance.

In Chapter 1, we describe prevalence and incidence in single samples (a single 
population), as well as how to quantify these measures. For incidence in partic-
ular we focus on the survival curve as the central measure of incidence of disease 
over time in a population and then describe how simpler measures such as the 
incidence proportion (i.e., the risk), incidence rate, incidence odds, and measures 
such as relative time can be derived from the survival curve.

In Chapter 2, we discuss measures of contrast between two groups within our 
population; whereas in Chapter 1 we might describe the total number of cases of 
disease in a large population as a whole, here we are interested in (for example) 
contrasting risk among those exposed to a drug and those unexposed to that drug 
within our large population. In this chapter, we primarily focus on difference and 
ratio measures. This chapter introduces the 2 × 2 table, a widely used tool for 
learning epidemiologic methods.

Chapter 3 discusses basic concepts in causal inference, beginning with an in-
troduction to potential outcomes and definitions of causal contrasts (or causal 
estimates of effect). We discuss sufficient conditions for estimation of causal effects 
(which are sometimes called causal identification conditions), causal directed acy-
clic graphs (sometimes called causal diagrams), four key types of systematic error 
(confounding bias, missing data bias, selection bias, and measurement error/​in-
formation bias), and we briefly discuss alternative approaches to causal inference.

Finally, in Chapter 4, we discuss concepts in diagnostic testing, screening, and 
disease surveillance, including concepts of sensitivity, specificity, and positive and 
negative predictive value. In this chapter, we briefly touch on differences between 
clinical epidemiology and public health epidemiology.
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In Chapters 1 and 2, we assume for simplicity and conceptual clarity that all 
variables (including exposures, outcomes, and covariates) are measured correctly. 
In Chapter 3, we introduce issues related to measurement error in causal infer-
ence; in Chapter 4, we address issues of measurement in more detail. In all these 
chapters, and indeed in the book in general, we will be primarily concerned with 
dichotomous outcomes: those with two clear categories such as “alive or dead” and 
“diagnosed with cancer or not diagnosed with cancer.” However, we will give some 
space to continuous outcomes—​especially time to an event—​in Chapters 1 and 2.

SECTION II: EPIDEMIOLOGY BY DESIGN

In the second section of the book, we build on the core concepts of measuring di-
sease and assessing causality to describe the study designs that are the core tools 
of epidemiology.

In Chapter 5, we describe randomized trials. We give a broad overview of types 
of trials, steps in conducting a trial, and describe how trials meet (and fail to meet) 
core causal identification conditions. We provide a brief introduction to analysis 
of randomized trial data. We introduce factorial trials as well as subgroup anal-
ysis of trials as a way of explaining differences between causal interaction and 
effect measure modification. Finally, we describe issues in the generalizability and 
transportability of trials and quantitative approaches to these issues.

In Chapter 6, we address observational cohort studies in much the same way as 
the previous chapter addressed trials: types of cohort studies, steps in conducting 
such a study, the ways in which such studies meet or do not meet causal identifi-
cation conditions, and a brief introduction to analysis. We expand our discussion 
of interaction and effect measure modification, as well as generalizability, in this 
setting.

In Chapter  7, we echo the structure of the previous two chapters to discuss 
case-​control studies. Here, our focus will be on understanding the relationship 
between cohort studies and case-​control studies and how the interpretation of the 
odds ratio estimated from the case-​control study depends on the relationship of 
the case-​control study to a cohort study and how controls are sampled.

Chapter 8 briefly discusses several other key study designs, including system-
atic reviews, meta-​analysis, case-​crossover, case reports and series, cross-​sectional 
studies, and quasi-​experiments.

SECTION III: FROM PATIENTS TO POLICY

Chapter  9 discusses the causal impact approach to epidemiologic methods for 
moving from internally valid estimates to externally valid estimates to valid 
estimates of the effects of population interventions. Then we briefly address the 
lessons of the previous chapters for the so-​called hierarchy of evidence (hierarchy 
of study designs).
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1

Measuring Disease

Epidemiology is largely concerned with the study of the presence and occurrence 
of disease and ways to prevent disease and maintain health. Our first task, there-
fore, is to understand in some depth the concepts of prevalence and incidence, 
how to quantify them, and the key types of error that can affect measurements 
of each. Prevalence (Section 1.1) is about the presence or absence of a disease or 
other factors in a population. Incidence (Section 1.2), on the other hand, is about 
how many new cases of a disease arise over a particular time period. Both are 
measurements in data, and both can be subject to various kinds of error, both sys-
tematic error and random error (Section 1.3).

Before we go into more depth on these concepts, however, it will be useful to ex-
plain the idea of a cohort—​in which prevalence and incidence are typically measured. 
A cohort is any group of people, usually followed through time; this might be a study 
population in an observational or randomized study or another group of individuals. 
Epidemiologists speak of both closed and open cohorts. For our purposes, a closed 
cohort is a cohort where we start following everyone at the same time point. For ex-
ample, we could start following individuals on their 40th birthdays; alternatively, we 
could start following them at time of randomization in a randomized trial. Further, 
a closed cohort never adds new members after enrollment ends; for example, no one 
is added to the “start on your 40th birthday” cohort on their 43rd birthday. As such, 
over time, a closed cohort either stays the same size or gets smaller (as people drop 
out of or exit a study, or die). An open cohort for our purposes is one that may add 
more people over time and so may get larger or smaller over time. For the remainder 
of the text, if we do not specify whether we are discussing a closed or open cohort, 
the reader should assume we are discussing a closed cohort.

In the remainder of the chapter, we will discuss prevalence and ways to measure 
it, incidence and ways to measure it, and the broad categories of error, systematic 
and random, which can affect both.

1.1  PREVALENCE

Prevalence is a description of the extent to which some factor—​an exposure 
or a disease condition—​is present in a population. For example, we might ask 
about the prevalence of obesity in a population: what we are asking about is the 
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proportion or, alternately, number of people currently living in that population who 
are obese.

Broadly, prevalence is discussed as either point prevalence or period prevalence. 
Point prevalence is the prevalence of a disease at a single point in time, whereas 
period prevalence is the prevalence of a disease over a period of time. Of course, 
as the duration over which prevalence is considered shrinks, period prevalence 
will converge to point prevalence. On the other hand, point prevalence is often 
operationalized (put into practice) as “period prevalence over a reasonably short 
time window.” For example, if you want to know the prevalence of HIV infec-
tion in a cohort of 1,000 people, it is difficult to imagine getting blood samples 
to test from all those people simultaneously (e.g., if all 1,000 participants give 
blood at exactly 1:00 pm this Friday). In practice, you would obtain blood samples 
over as short a time period as possible and test them thereafter. Alternatively, 
you could also define such a prevalence as “point prevalence at time of testing” 
while acknowledging that the testing occurred at a different calendar time for 
each participant.

One key circumstance when point prevalence can and should be measured 
is at the beginning of a research study, such as the moment after participants 
are enrolled in a randomized trial (Chapter  5) or observational cohort study 
(Chapter 6). Specifically, it is often relatively straightforward to estimate the point 
prevalence of a disease such as anemia at baseline (first) study visit.1 A second cir-
cumstance when point prevalence can be measured is in a large electronic med-
ical record database: the prevalence of a particular disease or other condition (e.g., 
smoking) can be assessed in all existing records in the database today—​or on any 
other day of interest.

We measure prevalence using three main types of quantities: proportions, odds, 
and counts. A prevalence proportion is a measure of the percentage of the popu-
lation that presently has the disease or who presently has a history of the disease 
of a specified duration in the past (e.g., “history of cancer in the past 10 years”). 
Since at fewest none and at most all of the members of a population can have a 
condition or a history of that condition, the prevalence proportion ranges from 0 
to 1, much like a probability. This is the most common and perhaps clearest way 
of expressing prevalence, and we can assume this definition when “prevalence” 
is used without further explanation. It is typically what is meant by “prevalence 
rate,” as well (see Box 1.1, well below). Prevalence proportions are sometimes 
expressed using simple numbers instead of percentages for ease of communica-
tion. For example, instead of reporting that 4% of the US population is living with 

1.  However, as we noted earlier, the baseline study visit will not occur at the same calendar time 
(or at the same age!) for all study participants; thus, such a prevalence is only a point prevalence 
on the timescale of the study. At the same time, it might be a period prevalence on the timescale 
of the calendar or age. Every observation exists on multiple timescales at once—​as noted, the 
time of baseline study visit, day of the year, and age are all timescales operating simultaneously 
and are not precisely aligned with each other. You can consider how a cohort, therefore, may be 
considered closed on some timescales but open on others.
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chronic obstructive pulmonary disease (COPD), we might instead report that 40 
out of 1,000 Americans live with COPD.

A prevalence odds is a simple function of the prevalence proportion, just as the 
odds in general is a simple function of probability (see Box 1.2), and are typically 
reported out of convenience or for their desirable statistical properties. The prev-
alence odds, then, is simply the prevalence proportion divided by 1 minus the prev-
alence proportion. Prevalence odds will approximate the prevalence proportion 
when the prevalence proportion is low but may otherwise overstate prevalence 
proportion. As shown in Figure 1.1, as the prevalence proportion (the probability, 
on the x-​axis) ranges from 0 to 1, the prevalence odds (y-​axis) ranges from 0 to 
infinity (not shown, because space in this book is finite).

A prevalence count is exactly what it sounds like:  a count of the number of 
cases of disease present in a population at a point in time or over a short period. 

Box 1.1

What Are Odds, and Why?

In mathematical terms, an odds is defined as a function of a probability P such 
that odds = P/​(1 − P). Thus, if the probability is 5% or 0.05, then the equivalent 
odds is 0.05/​(1 − 0.05) = 0.05/​0.95 = 0.053. If probability is 10% or 0.10, then the 
equivalent odds is 0.10/​(1 − 0.10) = 0.1/​0.9 = 0.11. If probability is 0.25, odds is 
0.25/​0.75 = 0.33 (sometimes expressed as 1:3). If probability is 0.50, then odds is 
0.5/​0.5 = 1 (sometimes 1:1 or “even odds”), and a probability of 0.75 is equiva-
lent to an odds of 0.75/​0.25 = 3 (3:1). Where probability is constrained to [0, 1], 
odds can range from 0 to infinity. Figure 1.1 illustrates the relationship between a 
probability (x-​axis) and the odds (y-​axis), which likewise applies to both the rela-
tionship between prevalence proportion and prevalence odds and the relationship 
between incidence proportion and incidence odds (see Section 1.2 for more on 
incidence).
You may observe that at low probability (e.g., 0.05), the odds are quite similar to 
the probability (0.053), but as probability increases (e.g., 0.80), the odds looks 
increasingly dissimilar (0.80/​0.20  =  4). The usual guideline is that when P ≤ 
0.10 in all strata of all relevant variables (not just overall!), odds is a reasonable 
proxy for probability; when P > 0.10, more caution is needed. This is evident on 
the right-​most panel of Figure 1.1, in which both axes are shown log-​scale: this 
rule of thumb is shown as the (nearly) straight line between (0.01, 0.01) and 
(0.1, 0.1).

Why do people report odds instead of probabilities? They are convenient in 
gambling, of course, but the more likely reason is that they are often easier to es-
timate and have some convenient statistical properties. While we omit discussion 
of those properties here, we encourage you to seek out some of the many works 
on this subject to supplement this book, including Bland and Altman (2000) and 
Greenland (1987).
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Prevalence counts are sometimes useful in communicating the public health 
importance of a disease condition or in contexts where incidence is difficult to 
define and so you want to have a sense of numbers of events for surveillance 
purposes. Unfortunately, prevalence counts are just as often used to overhype that 
importance by reporting large-​sounding numbers without appropriate context. 
Prevalence counts are therefore of most use when their context is well-​understood 
by the audience: for example, since most residents of the United States have a ge-
neral sense of the total population of that country, a report to a US audience of the 
prevalence count of US residents living with COPD (at this writing, about 13 mil-
lion) might be adequately contextualized.

As with all counts, the prevalence count is an integer between 0 however 
many possible cases exist in the population being examined. For a recurrent 
event measured over a sufficiently long period of time (e.g., upper respiratory 
infections), the prevalence count might exceed the number of individuals in the 
population:  however, in such a case, calculating an incidence might be more 
straightforward.

1.2  INCIDENCE

Where prevalence is a measure of how many cases of disease or condition are 
present at a given moment or over a period, incidence is a measure of how many 
new cases of a disease arise over a specified period of time. A critical difference be-
tween prevalence and incidence is that, unlike prevalence, incidence is a measure 
of occurrences, or events: incidence counts the number of transitions from a con-
dition being absent in an individual to that condition being present.

We can measure the incidence of both one-​time events (incidence of Parkinson’s 
disease or incidence of first cancer diagnosis) and recurrent events (number of 
respiratory infections in a calendar year). Thus, to measure incidence, we must 
start from a population at risk of the disease outcome: for example, to measure the 

Box 1.2

Incidence Proportion, Risks, and “Risk Factors”

Incidence proportion and “risk” are sometimes used interchangeably in epide-
miology, and we use risk as a synonym for incidence proportion here (although 
incidence proportion is less ambiguous). It is worth, however, parsing out “risk 
factor” as another term that is frequently used in epidemiologic investigations 
but which is far less clear. Sometimes “risk factor” means “a cause of disease,” 
and sometimes it merely means “something whose presence is associated with an 
increased risk (or rate, or prevalence, or odds, or hazard) of disease, but which 
may or may not be a cause.” The difference between these two usages will become 
clearer in the next chapters.
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incidence of Parkinson’s disease in our cohort, we must not include people who 
already have Parkinson’s disease at cohort inception. It is important to note that 
we can turn a recurrent event into a one-​time event by restricting our study to the 
first occurrence of that event: for example, first respiratory infection for each in-
dividual in the calendar year.

We measure incidence in many of the same ways as we measure prevalence: as 
incidence proportions, incidence odds, and incidence counts (i.e., counts of new 
cases of disease in a population). In addition, we use incidence rates and measures 
of elapsed time to an event. All of these measures, however, can be productively 
viewed as derivations, or simplifications, of a survival curve or cumulative inci-
dence curve. Thus, we discuss the survival curve.

1.2.1  Survival and the Survival Curve

Survival, it has been argued, is the core measure of public health because health 
outcomes in a population typically occur over time.2 The most unambiguous 
health outcome is death (the one incident outcome which—​by convention—​we 
never describe as prevalent). Here we consider timing of death for any reason, an 
example termed “all-​cause mortality” and chosen for its simplicity. Date of death 
can often be measured without appreciable error (due to death records—​although 
cause of death is a different story); death is a one-​time event; death ultimately will 
affect everyone.

We start with 1,000 30-​year-​olds in the imaginary city of Calvino: at the mo-
ment they turn 30, all 1,000 are alive. By age 35, 30 of those individuals have died; 
by age 40, another 40 have died, leaving 930 Calvinians alive. By age 90, all 1,000 
of these 30-​year-​olds have died.

How would we collect such data? Suppose we begin studying 1,000 individuals 
who are 30 years old: all these participants are living, and our study continues 
until they have all died. We collect numbers of those individuals who have died 
every 5 years, generating data as shown in Table 1.1.

How would we depict the data in Table 1.1 visually? Two methods are widely 
used:  the Kaplan-​Meier method and the life table method, both of which are 
described in detail in Chapter  5, when we apply these methods to analysis of 
randomized trial data. Here we show a modified Kaplan-​Meier approach for 
tabled data.

We can draw a survival curve, or cumulative incidence curve, for these data by 
placing points for each number surviving (Figure 1.2, left) and then connecting 
these with a step function (Figure 1.2, right). We use a step function to indicate 
that we only know what happens every 5 years: for example, at age 35 there were 
970 participants still alive, and the next piece of information we have is that at 

2.  Although time is irrelevant, or nearly so, in counting deaths from certain natural disasters 
such as earthquakes.
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age 40 there were only 930 participants still alive. In between those times we do 
not know what happened, and thus we only update our curve when we acquire 
new information. Note that we could also draw a cumulative incidence curve here 
in which a curve starts at 0 and rises toward 100% as cases accumulate (Cole & 
Hudgens, 2010; Pocock, Clayton, & Altman, 2002).

What we have described is a (very) special case of the Kaplan-​Meier curve. 
The Kaplan-​Meier curve is formally defined for data collected in continuous time 
(i.e., exactly how old was each individual when they died?) and such a curve can 
account for individuals who go missing during follow-​up (and are “censored”). 
Again, we give more detail on the Kaplan-​Meier curve (and the alternative life 
table method, which does not assume a step function) in Chapter 5.

Table 1.1  Sample data of 1,000 30-​
year-​olds followed until death

Age Number surviving
30 1,000
35 970
40 930
45 880
50 820
55 750
60 670
65 560
70 460
75 350
80 230
85 100
90 0
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Figure 1.2  Graphical displays of data shown in Table 1.1.
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1.2.2  Incidence Proportion (Risk)

Incidence proportion, a phrase we use interchangeably with “risk” in this work, 
is defined as the proportion of those at study inception who are capable of 
experiencing the outcome (sometimes called the population “at risk”) and who 
experience an outcome in a fixed period of time. Incidence proportion is bounded 
between 0 (no one experiences the outcome) and 1 (all those at risk experience 
the outcome). Assuming outcomes are measured correctly (including accurately 
in time), incidence proportion can be estimated without further assumptions 
when all those at risk are followed for the full time period of follow-​up.

Here, we indeed assume that all participants are followed for the full study period 
and we have outcome information on all of them (complete follow-​up). In the con-
text of the Kaplan-​Meier estimator in Chapter 5, we will discuss how to calculate 
risks when we lose track of some study participants (e.g., they are lost to follow-​up) 
or do not record their study outcomes for some reason (they have missing data).

Under these assumptions, however, incidence proportion can be derived directly 
from the survival curve—​well, these assumptions and one more. The additional as-
sumption is that all events shown happen at the last possible moment in each time 
interval. There are 1,000 people alive from age 30 up until the moment before age 35, 
and, at that last possible moment, all 30 people die at once. Similarly, until one instant 
before age 40, all 970 people are alive; then 40 people die, leading to 930 people alive 
at age 40. This is obviously not realistic!3 But it helps us illustrate our points.

In Figure 1.3, we redraw the survival curve from Figure 1.2 in terms of 
percentages rather than participants, and then we draw a dashed line through 
that curve at 40 years of age. The dotted line intersects the survival curve at 93% 
on the y-​axis, indicating that 93% of those participants present at baseline remain 
alive. We can then calculate the 40-​year risk of death as 1 − 93% = 7%.

In general, an incidence proportion is exactly what its name implies: the pro-
portion of the at-​risk population who experienced an outcome within a given 
time period. The incidence proportion can be estimated without reference to the 
survival curve: you could obtain the same estimate of risk as from Figure 1.2 (or 
the data in Table 1.1) directly, simply by observing that 930 individuals were alive 
at age 40, noting that this means 70 had died, and dividing 70 by the original 
number in the study (1,000) to get 7%.

Incidence proportions are not commonly thought of in terms of the underlying 
survival curves: in this case, as we have illustrated, no knowledge of the intervening 
survival curve is necessary to estimate the 40-​year risk. But it is still the under-
lying survival curve which is the better description of the shape of survival in these 
participants. In Figure 1.4, for example, the new data shown are all consistent with 
a 20% incidence proportion (80% survival) at age 40 but all three are different. On 

3.  In reality, the 30 people who have died between ages 30 and 35 all died at some intermediate 
point in that interval—​probably at a rate increasing with age—​so more died at 34 than at 31. 
If this is true—​but we only see the deaths at the end of the interval—​we consider the deaths 
to be interval censored. That is, we know they happened between ages 30 and 35, but we don’t 
know when.
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the left, the deaths occur equally before and after age 35; in the center, the deaths 
occur mostly after age 35; and, on the right, the deaths occur mostly before age 35. If 
you were a 30-​year-​old to whom these figures applied (if, for example, these figures 
estimated risk of death among individuals with a deadly but treatable condition), it 
would likely matter a great deal to you which of these three figures represented the 
truth: an incidence proportion of 20% doesn’t give you this information.

It is critical to reiterate that incidence proportions are only meaningful when 
paired with a fixed period of time. This may be illustrated most clearly with the 
outcome of death: the “risk of death” in humans is universally 1, in that all humans 
will eventually die. Thus, telling someone that, in your study, the “risk of death 
was 10%” is unhelpful; more helpful would be to tell them that, for example, the 
“1-​year risk of death was 10%.” It is more difficult to state such a risk clearly when 
length of follow-​up is reasonably well-​defined and yet differs by time scale:  for 
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Figure 1.3  Figure 1.2 redrawn using percentages instead of counts.
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Figure 1.4  Three curves, all showing the same cumulative incidence of death by age 40.
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example, people discuss the “lifetime risk” of cancer or depression, but such risks 
strongly depend on how long you live. Likewise, risk of infection during a hospital 
stay may not be well-​defined when length of stay varies, but may nonetheless be a 
useful measure to discuss.

1.2.3  Incidence Odds

The relationship of incidence odds to incidence proportion is precisely the same 
mathematical relationship as that of prevalence odds to prevalence proportion 
(though incidence odds seem to be estimated less often in practice than preva-
lence odds). If the 30-​day incidence proportion of hospital readmission following 
a first myocardial infarction was 20%, then the 30-​day incidence odds would 
be 0.20/​(1.00 − 0.20) = 0.25. You can easily generalize further details from the 
preceding section on prevalence odds however like incidence proportions, inci-
dence odds require a set period of time. But, as with prevalence odds, for example, 
the incidence odds ranges from 0 to infinity (and Figure 1.1 may again be useful).

The derivation of the incidence odds from the survival curve is likewise 
straightforward. Consider Figure 1.3 again and death at age 40 among those who 
started follow-​up. Rather than taking 1.00 − 0.93 to get an incidence proportion 
of 0.07 at age 40, we would now take the ratio of distance above the curve (0.07) 
to distance below the curve (0.93) and get 0.07/​0.93 = 0.0753. Note that, in line 
with the “10% rule of thumb” given in Box 1.1, the odds here is not too far from 
the risk of 0.07. See also Box 1.3.

1.2.4  Incidence Rate

As noted earlier (Figure 1.4), incidence proportions can obscure differences 
between two groups over time. Look at the two survival curves in Figure 1.5, 

Box 1.3

Slim to None

“The odds are slim to none” is a phrase in occasional usage and is meant to in-
dicate a small probability. But it is misleading if taken literally. Suppose we take 
a “slim” probability to be 1 in 100; then “the odds are slim to none” (slim:none) 
literally means that the odds is calculated by dividing the probability of slim by 
the probability of none, or (1/​100)/​0. We calculate, of course, an infinite odds 
(or perhaps one which is undefined). Thus, the cliché, taken literally, yields pre-
cisely the opposite of its intended meaning, wherein “the odds are slim to none” 
means in fact that the odds are extremely (infinitely!) high. “The chances are slim 
to none,” on the other hand, conveys the intended meaning without sacrificing 
accuracy.

 

 


