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Preface to the Second Edition

The first edition of this book was published in September 1999. With much delight I realized that I had finally written a book that would never need revising! This was in stark contrast to my first book, which was about programming applications for Microsoft Windows. That one had already gone through five editions in just ten years. My second book on the OS/2 Presentation Manager (the what?) became obsolete much more quickly. But Code, I was certain, would last forever.

My original idea with Code was to start with very simple concepts but slowly build to a very deep understanding of the workings of digital computers. Through this steady progression up the hill of knowledge, I would employ a minimum of metaphors, analogies, and silly illustrations, and instead use the language and symbols of the actual engineers who design and build computers. I also had a very clever trick up my sleeve: I would use ancient technologies to demonstrate universal principles under the assumption that these ancient technologies were already quite old and would never get older. It was as if I were writing a book about the internal combustion engine but based on the Ford Model T.

I still think that my approach was sound, but I was wrong in some of the details. As the years went by, the book started to show its age. Some of the cultural references became stale. Phones and fingers supplemented keyboards and mice. The internet certainly existed in 1999, but it was nothing like what it eventually became. Unicode—the text encoding that allows a uniform representation of all the world’s languages as well as emojis—got less than a page in the first edition. And JavaScript, the programming language that has become pervasive on the web, wasn’t mentioned at all.

Those problems would probably have been easy to fix, but there existed another aspect of the first edition that continued to bother me. I wanted to show the workings of an actual CPU—the central processing unit that forms the brain, heart, and soul of a computer—but the first edition didn’t quite make it. I felt that I had gotten close to this crucial breakthrough but then I had given up. Readers didn’t seem to complain, but to me it was a glaring flaw.

That deficiency has been corrected in this second edition. That’s why it’s some 70 pages longer. Yes, it’s a longer journey, but if you come along with me through the pages of this second edition, we shall dive much deeper into the internals of the CPU. Whether this will be a more pleasurable experience for you or not, I do not know. If you feel like you’re going to drown, please come up for air. But if you make it through Chapter 24, you should feel quite proud, and you’ll be pleased to know that the remainder of the book is a breeze.


The Companion Website
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The first edition of Code used the color red in circuit diagrams to indicate the flow of electricity. The second edition does that as well, but the workings of these circuits are now also illustrated in a more graphically interactive way on a new website called CodeHiddenLanguage.com.

[image: Images]

You’ll be reminded of this website occasionally throughout the pages of this book, but we’re also using a special icon, which you’ll see in the margin of this paragraph. Hereafter, whenever you see that icon—usually accompanying a circuit diagram—you can explore the workings of the circuit on the website. (For those who crave the technical background, I programmed these web graphics in JavaScript using the HTML5 canvas element.)

The CodeHiddenLanguage.com website is entirely free to use. There is no paywall, and the only advertisement you’ll see is for the book itself. In a few of the examples, the website uses cookies, but only to allow you to store some information on your computer. The website doesn’t track you or do anything evil.

I will also be using the website for clarifications or corrections of material in the book.



The People Responsible

The name of one of the people responsible for this book is on the cover; some others are no less indispensable but appear on the colophon page at the very end of this book.

In particular, I want to call out Executive Editor Haze Humbert, who approached me about the possibility of a second edition uncannily at precisely the right moment that I was ready to do it. I commenced work in January 2021, and she skillfully guided us through the ordeal, even as the book went several months past its deadline and when I needed some reassurance that I hadn’t completely jumped the shark.

The project editor for the first edition was Kathleen Atkins, who also understood what I was trying to do and provided many pleasant hours of collaboration. My agent at that time was Claudette Moore, who also saw the value of such a book and convinced Microsoft Press to publish it.

The technical editor for the first edition was Jim Fuchs, who I remember catching a lot of embarrassing errors. For the second edition, technical reviewers Mark Seemann and Larry O’Brien also caught a few flubs and helped me make these pages better than they would have been otherwise.

I thought that I had figured out the difference between “compose” and “comprise” decades ago, but apparently I have not. Correcting errors like that was the invaluable contribution of copy editor Scout Festa. I have always relied on the kindness of copyeditors, who too often remain anonymous strangers but who battle indefatigably against imprecision and abuse of language.

Any errors that remain in this book are solely my responsibility.

I want to again thank my beta readers of the first edition: Sheryl Canter, Jan Eastlund, the late Peter Goldeman, Lynn Magalska, and Deirdre Sinnott (who later became my wife).

The numerous illustrations in the first edition were the work of the late Joel Panchot, who I understand was deservedly proud of his work on this book. Many of his illustrations remain, but the need for additional circuit diagrams inclined me to redo all the circuits for the sake of consistency. (More technical background: These illustrations were generated by a program I wrote in C# using the SkiaSharp graphics library to generate Scalable Vector Graphics files. Under the direction of Senior Content Producer Tracey Croom, the SVG files were converted into Encapsulated PostScript for setting up the pages using Adobe InDesign.)



And Finally

I want to dedicate this book to the two most important women in my life.

My mother battled adversities that would have destroyed a lesser person. She provided a strong direction to my life without ever holding me back. We celebrated her 95th (and final) birthday during the writing of this book.

My wife, Deirdre Sinnott, has been essential and continues to make me proud of her achievements, her support, and her love.

And to the readers of the first edition, whose kind feedback has been extraordinarily gratifying.

Charles Petzold

May 9, 2022





Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver opportunities that improve lives and enable economic mobility. As we work with authors to create content for every product and service, we acknowledge our responsibility to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their potential through learning. As the world’s leading learning company, we have a duty to help drive change and live up to our purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:


	Everyone has an equitable and lifelong opportunity to succeed through learning.


	Our educational products and services are inclusive and represent the rich diversity of learners.


	Our educational content accurately reflects the histories and experiences of the learners we serve.


	Our educational content prompts deeper discussions with learners and motivates them to expand their own learning (and worldview).




While we work hard to present unbiased content, we want to hear from you about any concerns or needs with this Pearson product so that we can investigate and address them.


	Please contact us with concerns about any potential bias at https://www.pearson.com/report-bias.html.







About the Author

Charles Petzold is also the author of The Annotated Turing: A Guided Tour through Alan Turing’s Historic Paper on Computability and the Turing Machine (Wiley, 2008). He wrote a bunch of other books too, but they’re mostly about programming applications for Microsoft Windows, and they’re all obsolete now. He lives in New York City with his wife, historian and novelist Deirdre Sinnott, and two cats named Honey and Heidi. His website is www.charlespetzold.com.


[image: Images]




code (kōd) n.


	 


	A system of signals used to represent letters or numbers in transmitting messages.


	A system of symbols, letters, or words given certain arbitrary meanings, used for transmitting messages requiring secrecy or
brevity....





	 


	The information that constitutes a specific computer program.


	A system of symbols and rules that serve as instructions for a computer....







— The American Heritage Dictionary of the English Language (online edition)




Chapter One

Best Friends

You’re 10 years old. Your best friend lives across the street. The windows of your bedrooms actually face each other. Every night, after your parents have declared bedtime at the usual indecently early hour, you still need to exchange thoughts, observations, secrets, gossip, jokes, and dreams. No one can blame you. The impulse to communicate is, after all, one of the most human of traits.

While the lights are still on in your bedrooms, you and your best friend can wave to each other from the windows and, using broad gestures and rudimentary body language, convey a thought or two. But more sophisticated exchanges seem difficult, and once the parents have decreed “Lights out!” stealthier solutions are necessary.

How to communicate? If you’re lucky enough to have a cell phone at the age of 10, perhaps a secret call or silent texting might work. But what if your parents have a habit of confiscating cell phones at bedtime, and even shutting down the Wi-Fi? A bedroom without electronic communication is a very isolated room indeed.

What you and your best friend do own, however, are flashlights. Everyone knows that flashlights were invented to let kids read books under the bed covers; flashlights also seem perfect for the job of communicating after dark. They’re certainly quiet enough, and the light is highly directional and probably won’t seep out under the bedroom door to alert your suspicious folks.

Can flashlights be made to speak? It’s certainly worth a try. You learned how to write letters and words on paper in first grade, so transferring that knowledge to the flashlight seems reasonable. All you have to do is stand at your window and draw the letters with light. For an O, you turn on the flashlight, sweep a circle in the air, and turn off the switch. For an I, you make a vertical stroke. But, as you quickly discover, this method is a disaster. As you watch your friend’s flashlight making swoops and lines in the air, you find that it’s too hard to assemble the multiple strokes together in your head. These swirls and slashes of light are just not precise enough.

Perhaps you once saw a movie in which a couple of sailors signaled to each other across the sea with blinking lights. In another movie, a spy wiggled a mirror to reflect the sunlight into a room where another spy lay captive. Maybe that’s the solution. So you first devise a simple technique: Each letter of the alphabet corresponds to a series of flashlight blinks. An A is 1 blink, a B is 2 blinks, a C is 3 blinks, and so on to 26 blinks for Z. The word BAD is 2 blinks, 1 blink, and 4 blinks with little pauses between the letters so you won’t mistake the 7 blinks for a G. You’ll pause a bit longer between words.

This seems promising. The good news is that you no longer have to wave the flashlight in the air; all you need do is point and click. The bad news is that one of the first messages you try to send (“How are you?”) turns out to require a grand total of 131 blinks of light! Moreover, you forgot about punctuation, so you don’t know how many blinks correspond to a question mark.

But you’re close. Surely, you think, somebody must have faced this problem before, and you’re absolutely right. With a trip to the library or an internet search, you discover a marvelous invention known as Morse code. It’s exactly what you’ve been looking for, even though you must now relearn how to “write” all the letters of the alphabet.

Here’s the difference: In the system you invented, every letter of the alphabet is a certain number of blinks, from 1 blink for A to 26 blinks for Z. In Morse code, you have two kinds of blinks—short blinks and long blinks. This makes Morse code more complicated, of course, but in actual use it turns out to be much more efficient. The sentence “How are you?” now requires only 32 blinks (some short, some long) rather than 131, and that’s including a code for the question mark.

When discussing how Morse code works, people don’t talk about “short blinks” and “long blinks.” Instead, they refer to “dots” and “dashes” because that’s a convenient way of showing the codes on the printed page. In Morse code, every letter of the alphabet corresponds to a short series of dots and dashes, as you can see in the following table.


[image: A table of Morse code showing the dots and dashes corresponding to the 26 letters of the alphabet.]

Although Morse code has absolutely nothing to do with computers, becoming familiar with the nature of codes is an essential preliminary to achieving a deep understanding of the hidden languages and inner structures of computer hardware and software.

In this book, the word code usually means a system for transferring information among people, between people and computers, or within computers themselves.

A code lets you communicate. Sometimes codes are secret, but most codes are not. Indeed, most codes must be well understood because they’re the basis of human communication.

The sounds we make with our mouths to form words constitute a code that is intelligible to anyone who can hear our voices and understands the language that we speak. We call this code “the spoken word” or “speech.”

Within deaf communities, various sign languages employ the hands and arms to form movements and gestures that convey individual letters of words or whole words and concepts. The two systems most common in North America are American Sign Language (ASL), which was developed in the early 19th century at the American School for the Deaf, and Langue des signes Québécoise (LSQ), which is a variation of French sign language.

We use another code for words on paper or other media, called “the written word” or “text.” Text can be written or keyed by hand and then printed in newspapers, magazines, and books or displayed digitally on a range of devices. In many languages, a strong correspondence exists between speech and text. In English, for example, letters and groups of letters correspond (more or less) to spoken sounds.

For people who are visually impaired, the written word can be replaced with Braille, which uses a system of raised dots that correspond to letters, groups of letters, and whole words. (I discuss Braille in more detail in Chapter 3.)

When spoken words must be transcribed into text very quickly, stenography or shorthand is useful. In courts of law or for generating real-time closed captioning for televised news or sports programs, stenographers use a stenotype machine with a simplified keyboard incorporating its own codes corresponding to text.

We use a variety of different codes for communicating among ourselves because some codes are more convenient than others. The code of the spoken word can’t be stored on paper, so the code of the written word is used instead. Silently exchanging information across a distance in the dark isn’t possible with speech or paper. Hence, Morse code is a convenient alternative. A code is useful if it serves a purpose that no other code can.

As we shall see, various types of codes are also used in computers to store and communicate text, numbers, sounds, music, pictures, and movies, as well as instructions within the computer itself. Computers can’t easily deal with human codes because computers can’t precisely duplicate the ways in which human beings use their eyes, ears, mouths, and fingers. Teaching computers to speak is hard, and persuading them to understand speech is even harder.

But much progress has been made. Computers have now been enabled to capture, store, manipulate, and render many types of information used in human communication, including the visual (text and pictures), the aural (spoken words, sounds, and music), or a combination of both (animations and movies). All of these types of information require their own codes.

Even the table of Morse code you just saw is itself a code of sorts. The table shows that each letter is represented by a series of dots and dashes. Yet we can’t actually send dots and dashes. When sending Morse code with a flashlight, the dots and dashes correspond to blinks.

Sending Morse code with a flashlight requires turning the flashlight switch on and off quickly for a dot, and somewhat longer for a dash. To send an A, for example, you turn the flashlight on and off quickly and then on and off not quite as quickly, followed by a pause before the next character. By convention, the length of a dash should be about three times that of a dot. The person on the receiving end sees the short blink and the long blink and knows that it’s an A.

Pauses between the dots and dashes of Morse code are crucial. When you send an A, for example, the flashlight should be off between the dot and the dash for a period of time equal to about one dot. Letters in the same word are separated by longer pauses equal to about the length of one dash. For example, here’s the Morse code for “hello,” illustrating the pauses between the letters:


[image: The Morse code for the word “hello” consists of four dots for H, a dot for E, a dot-dash-dot-dot for L, the same for another L, and three dashes for the O.]

Words are separated by an off period of about two dashes. Here’s the code for “hi there”:


[image: The Morse code for the phrase “hi there” begins with four dots for the H and two dots for the I. A pause follows to signal a new word: A dash for the T, four dots for the H, a dot for the E, a dot-dash-dot for the R, and ending with another dot for the E.]

The lengths of time that the flashlight remains on and off aren’t fixed. They’re all relative to the length of a dot, which depends on how fast the flashlight switch can be triggered and also how quickly a Morse code sender can remember the code for a particular letter. A fast sender’s dash might be the same length as a slow sender’s dot. This little problem could make reading a Morse code message tough, but after a letter or two, the person on the receiving end can usually figure out what’s a dot and what’s a dash.

At first, the definition of Morse code—and by definition I mean the correspondence of various sequences of dots and dashes to the letters of the alphabet—appears as random as the layout of a computer keyboard. On closer inspection, however, this is not entirely so. The simpler and shorter codes are assigned to the more frequently used letters of the alphabet, such as E and T. Scrabble players and Wheel of Fortune fans might notice this right away. The less common letters, such as Q and Z (which get you 10 points in Scrabble and rarely appear in Wheel of Fortune puzzles), have longer codes.

Almost everyone knows a little Morse code. Three dots, three dashes, and three dots represent SOS, the international distress signal. SOS isn’t an abbreviation for anything—it’s simply an easy-to-remember Morse code sequence. During the Second World War, the British Broadcasting Corporation prefaced some radio broadcasts with the beginning of Beethoven’s Fifth Symphony—BAH, BAH, BAH, BAHMMMMM—which Beethoven didn’t know at the time he composed the music would someday be the Morse code for V, for Victory.

One drawback of Morse code is that it doesn’t differentiate between uppercase and lowercase letters. But in addition to representing letters, Morse code also includes codes for numbers by using a series of five dots and dashes:


[image: A table of Morse code for the numbers 1 through 9 and zero. For the numbers 1, 2, 3, 4, and 5, the code begins with 1, 2, 3, 4, or 5 dots respectively, followed by 4, 3, 2, 1, and zero dashes. For the numbers 6, 7, 8, 9, and zero, the code begins with 1, 2, 3, 4, or 5 dashes, respectively, followed by 4, 3, 2, 1, or zero dots.]

These number codes, at least, are a little more orderly than the letter codes. Most punctuation marks use five, six, or seven dots and dashes:


[image: A table of Morse code for 16 punctuation marks.]

Additional codes are defined for accented letters of some European languages and as shorthand sequences for special purposes. The SOS code is one such shorthand sequence: It’s supposed to be sent continuously with only a one-dot pause between the three letters.

You’ll find that it’s much easier for you and your friend to send Morse code if you have a flashlight made specially for this purpose. In addition to the normal on-off slider switch, these flashlights also include a pushbutton switch that you simply press and release to turn the flashlight on and off. With some practice, you might be able to achieve a sending and receiving speed of 5 or 10 words per minute—still much slower than speech (which is somewhere in the 100-words-per-minute range), but surely adequate.

When finally you and your best friend memorize Morse code (for that’s the only way you can become proficient at sending and receiving it), you can also use it vocally as a substitute for normal speech. For maximum speed, you pronounce a dot as dih (or dit for the last dot of a letter) and a dash as dah, for example dih-dih-dih-dah for V. In the same way that Morse code reduces written language to dots and dashes, the spoken version of the code reduces speech to just two vowel sounds.

The key word here is two. Two types of blinks, two vowel sounds, two different anything, really, can with suitable combinations convey all types of information.




Chapter Two

Codes and Combinations

Morse code was invented around 1837 by Samuel Finley Breese Morse (1791–1872), whom we shall meet more properly later in this book. It was further developed by others, most notably Alfred Vail (1807–1859), and it evolved into a couple of different versions. The system described in this book is more formally known as International Morse code.

The invention of Morse code goes hand in hand with the invention of the telegraph, which I’ll also examine in more detail later in this book. Just as Morse code provides a good introduction to the nature of codes, the telegraph includes hardware that can mimic the workings of a computer.

Most people find Morse code easier to send than to receive. Even if you don’t have Morse code memorized, you can simply use this table, which you saw in the previous chapter, conveniently arranged in alphabetical order:


[image: A table of Morse code showing the dots and dashes corresponding to the 26 letters of the alphabet.]

Receiving Morse code and translating it back into words is considerably harder and more time consuming than sending because you must work backward to figure out the letter that corresponds to a particular coded sequence of dots and dashes. If you don’t have the codes memorized and you receive a dash-dot-dash-dash, you have to scan through the table letter by letter before you finally discover that it’s the letter Y.

The problem is that we have a table that provides this translation:

Alphabetical letter → Morse code dots and dashes

But we don’t have a table that lets us go backward:

Morse code dots and dashes → Letter of the alphabet

In the early stages of learning Morse code, such a table would certainly be convenient. But it’s not at all obvious how we could construct it. There’s nothing in those dots and dashes that we can put into alphabetical order.

So let’s forget about alphabetical order. Perhaps a better approach to organizing the codes might be to group them based on how many dots and dashes they have. For example, a Morse code sequence that contains just one dot or one dash can represent only two letters, which are E and T:


[image: A table showing that the Morse code of one dot is an E and one dash is a T.]

A combination of exactly two dots or dashes provides four more letters—I, A, N, and M:


[image: A table showing that Morse code of two dots is an I, a dot-dash is an A, a dash-dot is an N, and two dashes is an M.]

A pattern of three dots or dashes gives us eight more letters:


[image: A table showing the eight letters corresponding to Morse code combinations of three dots and dashes.]

And finally (if we want to stop this exercise before dealing with numbers and punctuation marks), sequences of four dots and dashes allow 16 more characters:


[image: A table showing the 16 letters corresponding to Morse code combinations of four dots and dashes.]

Taken together, these four tables contain 2 plus 4 plus 8 plus 16 codes for a total of 30 letters, 4 more than are needed for the 26 letters of the Latin alphabet. For this reason, you’ll notice that 4 of the codes in the last table are for accented letters: three with umlauts and one with a cedilla.

These four tables can certainly help when someone is sending you Morse code. After you receive a code for a particular letter, you know how many dots and dashes it has, and you can at least go to the right table to look it up. Each table is organized methodically starting with the all-dots code in the upper left and ending with the all-dashes code in the lower right.

Can you see a pattern in the size of the four tables? Each table has twice as many codes as the table before it. This makes sense: Each table has all the codes in the previous table followed by a dot, and all the codes in the previous table followed by a dash.

We can summarize this interesting trend this way:


[image: A table showing that combinations of 1, 2, 3, and 4 dots and dashes result in 2, 4, 8, and 16 codes, respectively.]

Each of the four tables has twice as many codes as the table before it, so if the first table has 2 codes, the second table has 2 × 2 codes, and the third table has 2 × 2 × 2 codes. Here’s another way to show that:


[image: A table showing that the number of codes resulting from 1, 2, 3, and 4 dots and dashes can be expressed as 2, 2 times 2, 2 times 2 times 2, and 2 times 2 times 2 times 2.]

Once we’re dealing with a number multiplied by itself, we can start using exponents to show powers. For example, 2 × 2 × 2 × 2 can be written as 24 (2 to the 4th power). The numbers 2, 4, 8, and 16 are all powers of 2 because you can calculate them by multiplying 2 by itself. The summary can also be shown like this:


[image: A table showing that the number of codes resulting from 1, 2, 3, and 4 dots and dashes can be expressed as 2 to the first power, 2 to the second power, 2 to the third power, and 2 to the fourth power.]

This table has become very simple. The number of codes is simply 2 to the power of the number of dots and dashes:

[image: images]

Powers of 2 tend to show up a lot in codes, and particularly in this book. You’ll see another example in the next chapter.

To make the process of decoding Morse code even easier, you might want to draw something like this big treelike diagram shown here.


[image: A diagram starting with one dot and dash at the left for the Morse codes for E and T. Each of these two letters is then connected to a pair of branches showing the four letters that result from a dot and dash in the second position. The branches continue for sequences of three dots and dashes, and sequences of four dots and dashes.]

This diagram shows the letters that result from each particular consecutive sequence of dots and dashes. To decode a particular sequence, follow the arrows from left to right. For example, suppose you want to know which letter corresponds to the code dot-dash-dot. Begin at the left and choose the dot; then continue moving right along the arrows and choose the dash and then another dot. The letter is R, shown next to the third dot.

If you think about it, constructing such a table was probably necessary for defining Morse code in the first place. First, it ensures that you don’t make the silly mistake of using the same code for two different letters! Second, you’re assured of using all the possible codes without making the sequences of dots and dashes unnecessarily long.

At the risk of extending this table beyond the limits of the printed page, we could continue it for codes of five dots and dashes. A sequence of exactly five dots and dashes gives us 32 (2 × 2 × 2 × 2 × 2, or 25) additional codes. Normally that would be enough for the ten numbers and 16 punctuation symbols defined in Morse code, and indeed, the numbers are encoded with five dots and dashes. But many of the other codes that use a sequence of five dots and dashes represent accented letters rather than punctuation marks.

To include all the punctuation marks, the system must be expanded to six dots and dashes, which gives us 64 (2 × 2 × 2 × 2 × 2 × 2, or 26) additional codes for a grand total of 2 + 4 + 8 + 16 + 32 + 64, or 126, characters. That’s overkill for Morse code, which leaves many of these longer codes undefined, which used in this context refers to a code that doesn’t stand for anything. If you were receiving Morse code and you got an undefined code, you could be pretty sure that somebody made a mistake.

Because we were clever enough to develop this little formula,

[image: images]

we could continue figuring out how many codes we get from using longer sequences:


[image: A table showing that a combination of 1 dot and dash can result in 2 to the 1st power or 2 codes, then continuing incrementally up to 10 dots and dashes, which results in 2 to the 10th power or 1,024 codes.]

Fortunately, we don’t have to actually write out all the possible codes to determine how many there would be. All we have to do is multiply 2 by itself over and over again.

Morse code is said to be binary (literally meaning two by two) because the components of the code consist of only two things—a dot and a dash. That’s similar to a coin, which can land only on the head side or the tail side. Coins that are flipped ten times can have 1024 different sequences of heads and tails.

Combinations of binary objects (such as coins) and binary codes (such as Morse code) are always described by powers of two. Two is a very important number in this book.




Chapter Three

Braille and Binary Codes

Samuel Morse wasn’t the first person to successfully translate the letters of written language into an interpretable code. Nor was he the first person to be remembered more for the name of his code than for himself. That honor must go to a blind French teenager born some 18 years after Morse but who made his mark much more precociously. Little is known of his life, but what is known makes a compelling story.

Louis Braille was born in 1809 in Coupvray, France, just 25 miles east of Paris. His father was a harness maker. At the age of three—an age when young boys shouldn’t be playing in their fathers’ workshops—he accidentally stuck a pointed tool in his eye. The wound became infected, and the infection spread to his other eye, leaving him totally blind. Most people suffering such a fate in those days would have been doomed to a life of ignorance and poverty, but young Louis’s intelligence and desire to learn were soon recognized. Through the intervention of the village priest and a schoolteacher, he first attended school in the village with the other children and then at the age of 10 was sent to the Royal Institution for Blind Youth in Paris.


[image: An image of Louis Braille.]
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The major obstacle in the education of blind children is lack of access to accessible reading materials. Valentin Haüy (1745–1822), the founder of the Paris school, had invented a system of embossing letters on paper in a large rounded font that could be read by touch. But this system was very difficult to use, and only a few books had been produced using this method.

The sighted Haüy was stuck in a paradigm. To him, an A was an A was an A, and the letter A must look (or feel) like an A. (If given a flashlight to communicate, he might have tried drawing letters in the air, as we did before we discovered it didn’t work very well.) Haüy probably didn’t realize that a type of code quite different from embossed letters might be more appropriate for sightless people.

The origins of an alternative type of code came from an unexpected source. Charles Barbier, a captain of the French army, had by 1815 devised a system of writing later called écriture nocturne, or “night writing.” This system used a pattern of raised dots on heavy paper and was intended for use by soldiers in passing notes to each other in the dark when quiet was necessary. The soldiers could poke these dots into the back of the paper using an awl-like stylus. The raised dots could then be read with the fingers.

Louis Braille became familiar with Barbier’s system at the age of 12. He liked the use of raised dots, not only for the ease in reading with the fingers but also because it was easy to write. A student in the classroom equipped with paper and a stylus could actually take notes and read them back. Braille diligently worked to improve the system and within three years (at the age of 15) had come up with his own, the basics of which are still used today. For many years, the system was known only within the school, but it gradually made its way to the rest of the world. In 1835, Louis Braille contracted tuberculosis, which would eventually kill him shortly after his 43rd birthday, in 1852.

Today, various versions of the Braille system compete with audiobooks for providing blind people with access to the written word, but Braille remains an invaluable system and the only way to read for people who are both blind and deaf. In recent decades, Braille has become more familiar to the general public as elevators and automatic teller machines have used Braille to become more accessible.

What I’ll do in this chapter is dissect the Braille code and show you how it works. You don’t have to actually learn Braille or memorize anything. The sole purpose of this exercise is to get some additional insight into the nature of codes.

In Braille, every symbol used in normal written language—specifically, letters, numbers, and punctuation marks—is encoded as one or more raised dots within a two-by-three cell. The dots of the cell are commonly numbered 1 through 6:


[image: The six cells of a Braille letter code, numbered 1, 2, and 3 down the left, and 4, 5, and 6 down the right.]

Special typewriters were developed to emboss the Braille dots into the paper, and these days, computer-driven embossers do the job.

Because embossing in Braille just a couple of pages of this book would be prohibitively expensive, I’ve used a notation common for showing Braille on the printed page. In this notation, all six dots in the cell are shown. Large dots indicate the parts of the cell where the paper is raised. Small dots indicate the parts of the cell that are flat. For example, in the Braille character


[image: A Braille character with raised dots 1, 3, and 5.]

dots 1, 3, and 5 are raised and dots 2, 4, and 6 are not.

What should be interesting to us at this point is that the dots are binary. A particular dot is either flat or raised. That means we can apply what we’ve learned about Morse code and binary combinations to Braille. We know that there are six dots and that each dot can be either flat or raised, so the total number of combinations of six flat and raised dots is 2 × 2 × 2 × 2 × 2 × 2, or 26, or 64.

Thus, the system of Braille is capable of representing 64 unique codes. Here they are—all 64 of them:


[image: All 64 possible Braille codes in an 8-by-8 grid.]

It’s not necessary for all 64 codes to be used in Braille, but 64 is definitely the upper limit imposed by the six-dot pattern.

To begin dissecting the code of Braille, let’s look at the basic lowercase alphabet:


[image: The 25 Braille codes for the letters of the alphabet except for W, which isn’t used in classical French.]

For example, the phrase “you and me” in Braille looks like this:


[image: The eight Braille characters spelling out the letters of the phrase “you and me” with a space between the words.]

Notice that the cells for each letter within a word are separated by a little bit of space; a larger space (essentially a cell with no raised dots) is used between words.

This is the basis of Braille as Louis Braille devised it, or at least as it applies to the letters of the Latin alphabet. Louis Braille also devised codes for letters with accent marks, common in French. Notice that there’s no code for w, which isn’t used in classical French. (Don’t worry. The letter will show up eventually.) At this point, only 25 of the 64 possible codes have been accounted for.

Upon close examination, you’ll discover a pattern in the Braille codes for the 25 lowercase letters. The first row (letters a through j) uses only the top four spots in the cell—dots 1, 2, 4, and 5. The second row (letters k through t) duplicates the first row except that dot 3 is also raised. The third row (u through z) is the same except that dots 3 and 6 are raised.

Louis Braille originally designed his system to be punched by hand. He knew this would likely not be very precise, so he cleverly defined the 25 lowercase letters in a way that reduces ambiguity. For example, of the 64 possible Braille codes, six have one raised dot. But only one of these is used for lowercase letters, specifically for the letter a. Four of the 64 codes have two adjacent vertical dots, but again only one is used, for the letter b. Three codes have two adjacent horizontal dots, but only one is used, for c.

What Louis Braille really defined is a collection of unique shapes that could be shifted a little on the page and still mean the same thing. An a is one raised dot, a b is two vertically adjacent dots, a c is two horizontally adjacent dots, and so on.

Codes are often susceptible to errors. An error that occurs as a code is written (for example, when a student of Braille marks dots in paper) is called an encoding error. An error made reading the code is called a decoding error. In addition, there can also be transmission errors—for example, when a page containing Braille is damaged in some way.

More sophisticated codes often incorporate various types of built-in error correction. In this sense, Braille as originally defined by Louis Braille is a sophisticated coding system: It uses redundancy to allow a little imprecision in the punching and reading of the dots.

Since the days of Louis Braille, the Braille code has been expanded in various ways, including systems to notate mathematics and music. Currently the system used most often in published English text is called Grade 2 Braille. Grade 2 Braille uses many contractions in order to use less paper and to speed reading. For example, if letter codes appear by themselves, they stand for common words. The following three rows (including a “completed” third row) show these word codes:


[image: Thirty Braille codes (25 of which correspond to the letter code) that are also used for short words.]

Thus, the phrase “you and me” can be written in Grade 2 Braille as this:


[image: The phrase “you and me” in Braille with the words “you” and “me” represented with just one code each.]

So far, I’ve described 31 codes—the no-raised-dots space between words and the three rows of ten codes for letters and words. We’re still not close to the 64 codes that are theoretically available. In Grade 2 Braille, as we shall see, nothing is wasted.

The codes for letters a through j can be combined with a raised dot 6. These are used mostly for contractions of letters within words and also include w and another word abbreviation:


[image: Ten Braille codes based on the letters A through J but with a raised dot 6.]

For example, the word “about” can be written in Grade 2 Braille this way:


[image: The Braille rendition of the word “about” using a single code to represent the letters O-U.]

The next step introduces some potential ambiguity absent in Louis Braille’s original formulation. The codes for letters a through j can also be effectively lowered to use only dots 2, 3, 5, and 6. These codes represent some punctuation marks and contractions, depending on context:


[image: Ten Braille code created by lowing the codes for A through J. These represent some common letter combinations and punctuation.]

The first four of these codes are the comma, semicolon, colon, and period. Notice that the same code is used for both left and right parentheses but that two different codes are used for open and closed quotation marks. Because these codes might be mistaken for the letters a through j, they only make sense in a larger context amidst other letters.

We’re up to 51 codes so far. The following six codes use various unused combinations of dots 3, 4, 5, and 6 to represent contractions and some additional punctuation:


[image: Six Braille codes created from some otherwise unused patterns for more letter combinations, and a code to indicate a number.]

The code for “ble” is very important because when it’s not part of a word, it means that the codes that follow should be interpreted as numbers. These number codes are the same as those for letters a through j:


[image: Ten Braille codes for the number 1 through 9 and zero. These are identical to the Braille codes for the letters A through J and must be preceded by a number code (the code for the letter combination B-L-E) to be interpreted as numbers.]

Thus, this sequence of codes


[image: The Braille number code followed by codes for the numbers 2, 5, and 6.]

means the number 256.

If you’ve been keeping track, we need seven more codes to reach the maximum of 64. Here they are:


[image: The remaining seven Braille codes.]

The first (a raised dot 4) is used as an accent indicator. The others are used as prefixes for some contractions and also for some other purposes: When dots 4 and 6 are raised (the fifth code in this row), the code is a numeric decimal point or an emphasis indicator, depending on context. When dots 5 and 6 are raised (the sixth code), it’s a letter indicator that counterbalances a number indicator.

And finally (if you’ve been wondering how Braille encodes capital letters) we have dot 6—the capital indicator. This indicates that the letter that follows is uppercase. For example, we can write the name of the original creator of this system as


[image: The Braille codes for the name “Louis Braille” using capital indicators and a Braille contraction for the letters O-U.]

This sequence begins with a capital indicator, followed by the letter l, the contraction ou, the letters i and s, a space, another capital indicator, and the letters b, r, a, i, l, l, and e. (In actual use, the name might be abbreviated even more by eliminating the last two letters, which aren’t pronounced, or by spelling it “brl.”)

In summary, we’ve seen how six binary elements (the dots) yield 64 possible codes and no more. It just so happens that many of these 64 codes perform double duty depending on their context. Of particular interest is the number indicator along with the letter indicator that undoes the number indicator. These codes alter the meaning of the codes that follow them—from letters to numbers and from numbers back to letters. Codes such as these are often called precedence, or shift, codes. They alter the meaning of all subsequent codes until the shift is undone.

A shift code is similar to holding down the Shift key on a computer keyboard, and it’s so named because the equivalent key on old typewriters mechanically shifted the mechanism to type uppercase letters.

The Braille capital indicator means that the following letter (and only the following letter) should be uppercase rather than lowercase. A code such as this is known as an escape code. Escape codes let you “escape” from the normal interpretation of a code and interpret it differently. Shift codes and escape codes are common when written languages are represented by binary codes, but they can introduce complexities because individual codes can’t be interpreted on their own without knowing what codes came before.

As early as 1855, some advocates of Braille began expanding the system with another row of two dots. Eight-dot Braille has been used for some special purposes, such as music, stenography, and Japanese kanji characters. Because it increases the number of unique codes to 28, or 256, it’s also been convenient in some computer applications, allowing lowercase and uppercase letters, numbers, and punctuation to all have their own unique codes without the annoyances of shift and escape codes.




Chapter Four

Anatomy of a Flashlight

Flashlights are useful for numerous tasks, of which reading under the covers and sending coded messages are only the two most obvious. The common household flashlight can also take center stage in an educational show-and-tell of the ubiquitous stuff known as electricity.

Electricity is an amazing phenomenon, managing to be pervasively useful while remaining largely mysterious, even to people who pretend to know how it works. Fortunately, we need to understand only a few basic concepts to comprehend how electricity is used inside computers.

The flashlight is certainly one of the simpler electrical appliances found in most homes. Disassemble a typical flashlight and you’ll find that it consists of one or more batteries, a lightbulb, a switch, some metal pieces, and a case to hold everything together.

These days, most flashlights use light-emitting diodes (LEDs), but one advantage of more retro lightbulbs is that you can see inside the glass bulb:


[image: An incandescent lightbulb showing the glass globe with a filament inside and a metal base.]

This is known as an incandescent lightbulb. Most Americans believe that the incandescent lightbulb was invented by Thomas Edison, while the British are quite certain that Joseph Swan was responsible. In truth, many other scientists and inventors made crucial strides before either Edison or Swan got involved.

Inside the bulb is a filament made of tungsten, which glows when electricity is applied. The bulb is filled with an inert gas to prevent the tungsten from burning up when it gets hot. The two ends of that filament are connected to thin wires that are attached to the tubular base of the lightbulb and to the tip at the bottom.

You can make your own no-frills flashlight by disposing of everything except the batteries and the lightbulb. You’ll also need some short pieces of insulated wire (with the insulation stripped from the ends) and enough hands to hold everything together:


[image: A simple electrical circuit with a lightbulb, two batteries, and wires, but the ends of the two wires are not touching.]

Notice the two loose ends of the wires at the right of the diagram. That’s our switch. Assuming that the batteries are good and the bulb isn’t burned out, touching these loose ends together will turn on the light:


[image: A simple electrical circuit with a lightbulb, two batteries, and wires, but now the wires are touching, and the lightbulb lights up.]

This book uses the color red to indicate that electricity is flowing through the wires and lighting up the lightbulb.

What we’ve constructed here is a simple electrical circuit, and the first thing to notice is that a circuit is a circle. The lightbulb will light up only if the path from the batteries to the wire to the bulb to the switch and back to the batteries is continuous. Any break in this circuit will cause the bulb to go out. The purpose of the switch is to control this process.

The circular nature of the electrical circuit suggests that something is moving around the circuit, perhaps like water flowing through pipes. The “water and pipes” analogy is quite common in explanations of how electricity works, but eventually it breaks down, as all analogies must. Electricity is like nothing else in this universe, and we must confront it on its own terms.

One approach to understanding the workings of electricity is called the electron theory, which explains electricity as the movement of electrons.

As we know, all matter—the stuff that we can see and feel (usually)—is made up of extremely small things called atoms. Every atom is composed of three types of particles; these are called neutrons, protons, and electrons. Sometimes an atom is depicted as a little solar system, with the neutrons and protons bound into a nucleus and the electrons spinning around the nucleus like planets around a sun, but that’s an obsolete model.

The number of electrons in an atom is usually the same as the number of protons. But in certain circumstances, electrons can be dislodged from atoms. That’s how electricity happens.

The words electron and electricity both derive from the ancient Greek word ηλεκτρον (elektron), which oddly is the Greek word for “amber,” the glasslike hardened sap of trees. The reason for this unlikely derivation is that the ancient Greeks experimented with rubbing amber with wool, which produces something we now call static electricity. Rubbing wool on amber causes the wool to pick up electrons from the amber. The wool winds up with more electrons than protons, and the amber ends up with fewer electrons than protons. In more modern experiments, carpeting picks up electrons from the soles of our shoes.

Protons and electrons have a characteristic called charge. Protons are said to have a positive (+) charge and electrons are said to have a negative (−) charge, but the symbols don’t mean plus and minus in the arithmetical sense, or that protons have something that electrons don’t. The + and − symbols indicate simply that protons and electrons are opposite in some way. This opposite characteristic manifests itself in how protons and electrons relate to each other.

Protons and electrons are happiest and most stable when they exist together in equal numbers. An imbalance of protons and electrons will attempt to correct itself. When the carpet picks up electrons from your shoes, eventually everything gets evened out when you touch something and feel a spark. That spark of static electricity is the movement of electrons by a rather circuitous route from the carpet through your body and back to your shoes.

Static electricity isn’t limited to the little sparks produced by fingers touching doorknobs. During storms, the bottoms of clouds accumulate electrons while the tops of clouds lose electrons; eventually, the imbalance is evened out with a bolt of lightning. Lightning is a lot of electrons moving very quickly from one spot to another.

The electricity in the flashlight circuit is obviously much better mannered than a spark or a lightning bolt. The light burns steadily and continuously because the electrons aren’t just jumping from one place to another. As one atom in the circuit loses an electron to another atom nearby, it grabs another electron from an adjacent atom, which grabs an electron from another adjacent atom, and so on. The electricity in the circuit is the passage of electrons from atom to atom.

This doesn’t happen all by itself. We can’t just wire up any old bunch of stuff and expect some electricity to happen. We need something to precipitate the movement of electrons around the circuit. Looking back at our diagram of the no-frills flashlight, we can safely assume that the thing that begins the movement of electricity is not the wires and not the lightbulb, so it’s probably the batteries.

The batteries used in flashlights are usually cylindrical and labeled D, C, A, AA, or AAA depending on the size. The flat end of the battery is labeled with a minus sign (−); the other end has a little protrusion labeled with a plus sign (+).

Batteries generate electricity through a chemical reaction. The chemicals in batteries are chosen so that the reactions between them generate spare electrons on the side of the battery marked with a minus sign (called the negative terminal, or anode) and demand extra electrons on the other side of the battery (the positive terminal, or cathode). In this way, chemical energy is converted to electrical energy.

The batteries used in flashlights generate about 1.5 volts of electricity. I’ll discuss what this means shortly.

The chemical reaction can’t proceed unless there’s some way that the extra electrons can be taken away from the negative terminal of the battery and delivered back to the positive terminal. This occurs with an electrical circuit that connects the two terminals. The electrons travel around this circuit in a counterclockwise direction:



[image: A simple electrical circuit with a lightbulb, two batteries, and wires, but now the wires are touching, and the lightbulb lights up.]

Electrons from the chemicals in the batteries might not so freely mingle with the electrons in the copper wires if not for a simple fact: All electrons, wherever they’re found, are identical. There’s nothing that distinguishes a copper electron from any other electron.

Notice that both batteries are facing the same direction. The positive end of the bottom battery takes electrons from the negative end of the top battery. It’s as if the two batteries have been combined into one larger battery with a positive terminal at one end and a negative terminal at the other end. The combined battery is 3 volts rather than 1.5 volts.

If we turn one of the batteries upside down, the circuit won’t work:


[image: A simple electrical circuit with a lightbulb, two batteries, and wires, but one of the batteries is upside down so it doesn’t work.]

The two positive ends of the battery need electrons for the chemical reactions, but there’s no way electrons can get to them because they’re attached to each other. If the two positive ends of the battery are connected, the two negative ends should be also:


[image: A simple electrical circuit with a lightbulb, two batteries, and wires, but the batteries are connected in parallel rather than end to end.]

This works. The batteries are said to be connected in parallel rather than in series as shown earlier. The combined voltage is 1.5 volts, which is the same as the voltage of each of the batteries. The light will probably still glow, but not as brightly as with two batteries in series. But the batteries will last twice as long.

We normally like to think of a battery as providing electricity to a circuit. But we’ve seen that we can also think of a circuit as providing a way for a battery’s chemical reactions to take place. The circuit takes electrons away from the negative end of the battery and delivers them to the positive end of the battery. The reactions in the battery proceed until all the chemicals are exhausted, at which time you properly dispose of the battery or recharge it.

From the negative end of the battery to the positive end of the battery, the electrons flow through the wires and the lightbulb. But why do we need the wires? Can’t the electricity just flow through the air? Well, yes and no. Yes, electricity can flow through air (particularly wet air), or else we wouldn’t see lightning. But electricity doesn’t flow through air very readily.

Some substances are significantly better than others for carrying electricity. The ability of an element to carry electricity is related to its subatomic structure. Electrons surround the nucleus in various levels, called shells. An atom that has just one electron in its outer shell can readily give up that electron, which is what’s necessary to carry electricity. These substances are conducive to carrying electricity and thus are said to be conductors. The best conductors are copper, silver, and gold. It’s no coincidence that these three elements are found in the same column of the periodic table. Copper is the most common substance for making wires.

The opposite of conductance is resistance. Some substances are more resistant to the passage of electricity than others, and these are known as resistors. If a substance has a very high resistance—meaning that it doesn’t conduct electricity much at all—it’s known as an insulator. Rubber and plastic are good insulators, which is why these substances are often used to coat wires. Cloth and wood are also good insulators, as is dry air. Just about anything will conduct electricity, however, if the voltage is high enough.

Copper has a very low resistance, but it still has some resistance. The longer a wire, the higher its resistance. If you tried wiring a flashlight with wires that were miles long, the resistance in the wires would be so high that the flashlight wouldn’t work.

The thicker a wire, the lower its resistance. This may be somewhat counterintuitive. You might imagine that a thick wire requires much more electricity to “fill it up.” But actually the thickness of the wire makes available many more electrons to move through the wire.

I’ve mentioned voltage but haven’t defined it. What does it mean when a battery has 1.5 volts? Actually, voltage—named after Count Alessandro Volta (1745–1827), who invented the first battery in 1800—is one of the more difficult concepts of elementary electricity. Voltage refers to a potential for doing work. Voltage exists whether or not something is hooked up to a battery.

Consider a brick. Sitting on the floor, the brick has very little potential. Held in your hand four feet above the floor, the brick has more potential. All you need do to realize this potential is drop the brick. Held in your hand at the top of a tall building, the brick has much more potential. In all three cases, you’re holding the brick and it’s not doing anything, but the potential is different.

A much easier concept in electricity is the notion of current. Current is related to the number of electrons actually zipping around the circuit. Current is measured in amperes, named after André-Marie Ampère (1775–1836), but often called just amps, as in “a 10-amp fuse.” To get one amp of current, you need over 6 quintillion electrons flowing past a particular point per second. That’s 6 followed by 18 zeros, or 6 billion billions.

The water-and-pipes analogy helps out here: Current is similar to the amount of water flowing through a pipe. Voltage is similar to the water pressure. Resistance is similar to the width of a pipe—the smaller the pipe, the greater the resistance. So the more water pressure you have, the more water that flows through the pipe. The smaller the pipe, the less water that flows through it. The amount of water flowing through a pipe (the current) is directly proportional to the water pressure (the voltage) and inversely proportional to the skinniness of the pipe (the resistance).

In electricity, you can calculate how much current is flowing through a circuit if you know the voltage and the resistance. Resistance—the tendency of a substance to impede the flow of electrons—is measured in ohms, named after Georg Simon Ohm (1789–1854), who also proposed the famous Ohm’s law. The law states

[image: images]

where I is traditionally used to represent current in amperes, E is used to represent voltage (it stands for electromotive force), and R is resistance.

For example, let’s look at a battery that’s just sitting around not connected to anything:


[image: A battery.]

The voltage, E, is 1.5. That’s a potential for doing work. But because the positive and negative terminals are connected solely by air, the resistance (the symbol R) is very, very, very high, which means the current (I) equals 1.5 volts divided by a large number. This means that the current is just about zero.

Now let’s connect the positive and negative terminals with a short piece of copper wire (and from here on, the insulation on the wires won’t be shown):


[image: A battery with the positive and negative terminals connected with a wire.]

This is known as a short circuit. The voltage is still 1.5, but the resistance is now very, very low. The current is 1.5 volts divided by a very small number. This means that the current will be very, very high. Lots and lots of electrons will be flowing through the wire. In reality, the actual current will be limited by the physical size of the battery. The battery will probably not be able to deliver such a high current, and the voltage will drop below 1.5 volts. If the battery is big enough, the wire will get hot because the electrical energy is being converted to heat. If the wire gets very hot, it will actually glow and might even melt.

Most circuits are somewhere between these two extremes. We can symbolize them like so:


[image: A battery with a resistor symbol between the positive and negative terminals.]

The squiggly line is recognizable to electrical engineers as the symbol for a resistor. Here it means that the circuit has a resistance that is neither very low nor very high.

If a wire has a low resistance, it can get hot and start to glow. This is how an incandescent lightbulb works.

The filament commonly found in the incandescent bulbs in flashlights has a resistance of about 4 ohms. If the flashlight requires two batteries connected end to end, the current is 3 volts divided by 4 ohms, or 0.75 ampere, which can also be expressed as 750 milliamperes. This means that over 4.5 quintillion electrons are flowing through the lightbulb every second. The resistance of the filament causes the electrical energy to be converted into light and heat.

Another common measurement of electricity is the watt, named after James Watt (1736–1819), who is best known for his work on the steam engine. The watt is a measurement of power (P) and can be calculated as

[image: images]

The 3 volts and 0.75 amp of our flashlight indicate that we’re dealing with a 2.25-watt lightbulb. LEDs are generally replacing incandescent bulbs because they can deliver the same quantity of light with less heat and lower wattage. Electricity bills are based on watts, so lowering the wattage of lightbulbs saves both money and the environment.

We have now seemingly analyzed everything about the flashlight—the batteries, the wires, and the lightbulb. But we’ve forgotten the most important part!

Yes, the switch. The switch controls whether electricity is flowing in the circuit or not. When a switch allows electricity to flow, it is said to be on, or closed. An off, or open, switch doesn’t allow electricity to flow. (The way we use the words closed and open for switches is opposite to the way we use them for a door. A closed door prevents anything from passing through it; a closed switch allows electricity to flow.)

Either the switch is closed or it’s open. Either current flows or it doesn’t. Either the lightbulb lights up or it doesn’t.

Like the binary codes invented by Morse and Braille, this simple flashlight is either on or off. There’s no in-between. This similarity between binary codes and simple electrical circuits is going to prove very useful in the chapters ahead.




Chapter Five

Communicating Around Corners

You’re 12 years old. One horrible day your best friend’s family moves to another town. You email and text your friend now and then, but it’s just not quite as thrilling as those late-night sessions with the flashlights blinking out Morse code. Your second-best friend, who lives in the house next door to yours, eventually becomes your new best friend. It’s time to teach your new best friend some Morse code and get the late-night flashlights blinking again.

The problem is, your new best friend’s bedroom window doesn’t face your bedroom window. The houses are side by side, but the bedroom windows face the same direction. Unless you figure out a way to rig up a few mirrors outside, the flashlights are now inadequate for after-dark communication.

Or are they?

Maybe you have learned something about electricity by this time, so you decide to make your own flashlights out of batteries, lightbulbs, switches, and wires. In the first experiment, you wire up the batteries and switch in your bedroom. Two wires go out your window, hop across a fence, and go into your friend’s bedroom, where they’re connected to a lightbulb:



[image: A battery and switch at your house, with two wires running to a lightbulb in your friend’s house.]

From here on, the circuits will be portrayed more symbolically than realistically. Although I’m showing only one battery, you might actually be using two. In this and future diagrams, this will be an off (or open) switch:


[image: A symbolic switch in the off or open position not allowing electricity to flow.]

And this will be the switch when it’s on (or closed):


[image: A symbolic switch in the on or closed position allowing electricity to flow.]

The flashlight in this chapter works the same way as the one illustrated in the previous chapter, except that the wires connecting the components are now a bit longer. When you close the switch at your end, the light goes on at your friend’s house:


[image: A battery and switch at your house, with two wires running to a lightbulb at your friend’s house. The switch is closed so the lightbulb at your friend’s house lights up.]

Now you can send messages using Morse code.

Once you have one flashlight working, you can wire another long-distance flashlight so that your friend can send messages to you:


[image: A battery and switch at your house is connected by two wires to a lightbulb at your friend’s house, and a battery and switch at your friend’s house is connected by two wires to a lightbulb at your house.]

Congratulations! You have just rigged up a bidirectional telegraph system. You’ll notice that these are two identical circuits that are entirely independent of each other. In theory, you can be sending a message to your friend while your friend is sending a message to you, although it might be hard for your brain to read and send messages at the same time.

You also might be clever enough to discover that you don’t need as many wires spanning the distance between the two houses. You can eliminate one of the four wires by wiring the configuration this way:


[image: A battery and switch at your house is connected to a lightbulb in your friend’s house, and a battery and switch at your friend’s house is connected to a lightbulb at your house, but only three wires are used between the houses.]

In this book, wires that are connected to each other are symbolized by a little dot at the connection. This diagram has two such connections, one below the battery at your house and the other below the lightbulb at your friend’s house.

Notice that the negative terminals of the two batteries are now connected. The two circular circuits (battery to switch to bulb to battery) still operate independently, even though they’re now conjoined.

This connection between the two circuits is called a common. In this circuit the common extends between the two wire-connection dots, from the point where the leftmost lightbulb and battery are connected to the point where the rightmost lightbulb and battery are connected.

Let’s take a closer look to assure ourselves that nothing funny is going on. First, when you close the switch on your side, the bulb in your friend’s house lights up. The red wires show the flow of electricity in the circuit:


[image: The three-wire bidirectional telegraph system showing the closed switch at your house causing the lightbulb to light at your friend’s house.]

No electricity flows in the other part of the circuit because there’s no place for the electrons to go to complete a circuit.

When you’re not sending but your friend is sending, the switch in your friend’s house controls the lightbulb in your house. Once again, the red wires show how electricity flows in the circuit:


[image: The three-wire bidirectional telegraph system showing the closed switch at your friend’s house causing the lightbulb to light at your house.]

When you and your friend both try to send at the same time, sometimes both switches are open, sometimes one switch is closed but the other is open, and sometimes both switches are closed. When both switches are closed, the flow of electricity in the circuit looks like this:


[image: The three-wire bidirectional telegraph system showing closed switches at both your house and your friend’s house causing both lightbulbs to light.]

Interestingly, no current flows through the common part of the circuit when both lightbulbs are lit.

By using a common to join two separate circuits into one circuit, we’ve reduced the electrical connection between the two houses from four wires to three wires and reduced our wire expenses by 25 percent.

If we had to string the wires for a very long distance, we might be tempted to reduce our wiring expenses even more by eliminating another wire. Unfortunately, this isn’t feasible with 1.5-volt D cells and small lightbulbs. But if we were dealing with 100-volt batteries and much larger lightbulbs, it could certainly be done.

Here’s the trick: Once you have established a common part of the circuit, you don’t have to use wire for it. You can replace the wire with something else. And what you can replace it with is a giant sphere approximately 7900 miles in diameter made up of metal, rock, water, and organic material, most of which is dead. This giant sphere is known to us as Earth.

When I described good conductors in the previous chapter, I mentioned silver, copper, and gold, but not gravel and mulch. In truth, the earth isn’t such a great conductor, although some kinds of earth (damp soil, for example) are better than others (such as dry sand). But one thing we learned about conductors is this: the larger the better. A very thick wire conducts much better than a very thin wire. That’s where the earth excels. It’s really, really, really big.

To use the earth as a conductor, you can’t merely stick a little wire into the ground next to the tomato plants. You have to use something that maintains a substantial contact with the earth, and by that I mean a conductor with a large surface area. One good solution is a copper pole at least 8 feet long and ½ inch in diameter. That provides 150 square inches of contact with the earth. You can bury the pole into the ground with a sledgehammer and then connect a wire to it. Or, if the cold-water pipes in your home are made of copper and originate in the ground outside the house, you can connect a wire to the pipe.

An electrical contact with the earth is called an earth in England and a ground in America. A bit of confusion surrounds the word ground because it’s also often used to refer to a part of a circuit we’ve been calling the common. In this chapter, and until I indicate otherwise, a ground is a physical connection with the earth.

When people draw electrical circuits, they use this symbol to represent a ground:


[image: The electrical symbol for a ground consists of horizontal lines of progressively decreasing width.]

Electricians use this symbol because they don’t like to take the time to draw an 8-foot copper pole buried in the ground. A circuit connected to this is said to be “connected to ground” or “grounded” rather than the more verbose “connected to the ground.”

Let’s see how this works. We began this chapter by looking at a one-way configuration like this:


[image: The original one-way telegraph circuit showing a battery and switch in your house connected by two wires to a lightbulb in your friend’s house.]

If you were using high-voltage batteries and lightbulbs, you would need only one wire between your house and your friend’s house because you could use the earth as one of the connectors:


[image: The one-way telegraph circuit with the negative terminal of the battery at your house connected to ground, and one wire of the lightbulb at your friend’s house connected to ground. Only one wire needs to extend from your house to your friend’s house.]

When you turn the switch on, electricity flows like this:


[image: The one-way telegraph circuit with a single wire connection and the switch closed, showing the flow of electricity from the battery through the earth to the lightbulb.]

The electrons come out of the earth at your friend’s house, go through the lightbulb and wire, pass through the switch at your house, and then go into the positive terminal of the battery. Electrons from the negative terminal of the battery go into the earth.

You might also want to visualize electrons leaping from the 8-foot copper pole buried in the backyard of your house into the earth and then scurrying through the earth to get to the 8-foot copper pole buried in the backyard of your friend’s house. But if you consider that the earth is performing this same function for many thousands of electrical circuits around the world, you might ask: How do the electrons know where to go? Well, obviously they don’t. A different image of the earth seems much more appropriate.

Yes, the earth is a massive conductor of electricity, but it can also be viewed as both a source of electrons and a repository for electrons. The earth is to electrons as an ocean is to drops of water. The earth is a virtually limitless source of electrons and also a giant sea of electrons.

The earth, however, does have some resistance. That’s why we can’t use the earth ground to reduce our wiring needs if we’re playing around with 1.5-volt D cells and flashlight bulbs. The earth simply has too much resistance for low-voltage batteries.

You’ll notice that the previous two diagrams include a battery with the negative terminal connected to the ground:


[image: A battery with the negative end connected to ground.]

I’m not going to draw this battery connected to the ground anymore. Instead, I’m going to use a shape like a capital letter V, which stands for voltage. A wire extending from a capital V is the same as a wire connected to the positive terminal of a battery whose negative terminal is connected to ground. The one-way lightbulb telegraph now looks like this:


[image: The one-way telegraph circuit now simplified, showing a capital V connected to the switch at your house, with a wire going to the lightbulb at your friend’s house, with the other wire of the lightbulb connected to ground.]

The V stands for voltage, but in a sense, it could also stand for vacuum. You can think of the V as an electron vacuum cleaner and think of the ground as an ocean of electrons. The electron vacuum pulls the electrons from the earth through the circuit, doing work along the way (such as lighting a lightbulb).

The ground is sometimes also known as the point of zero potential. This means that no voltage is present. A voltage—as I explained earlier—is a potential for doing work, much as a brick suspended in the air is a potential source of energy. Zero potential is like a brick sitting on the ground—there’s no place left for it to fall.

In Chapter 4, one of the first things we noticed was that circuits are circles. Our new circuit doesn’t look like a circle at all. It still is one, however. You could replace the V with a battery with the negative terminal connected to ground, and then you could draw a wire connecting all the places you see a ground symbol. You’d end up with the same diagram that we started with in this chapter.

So
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