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Foreword

In April of 2019, OpenAI’s Five bots played in a Dota 2 competition match against 2018
human world champions, OG. Dota 2 is a complex, multiplayer battle arena game where
players can choose different characters. Winning a game requires strategy, teamwork, and
quick decisions. Building an artificial intelligence to compete in this game, with so
many variables and a seemingly infinite search space for optimization, seems like an
insurmountable challenge. Yet OpenAI’s bots won handily and, soon after, went on to win
over 99% of their matches against public players. The innovation underlying this
achievement was deep reinforcement learning.

Although this development is recent, reinforcement learning and deep learning have
both been around for decades. However, a significant amount of new research combined
with the increasing power of GPUs have pushed the state of the art forward. This book
gives the reader an introduction to deep reinforcement learning and distills the work done
over the last six years into a cohesive whole.

While training a computer to beat a video game may not be the most practical thing to
do, it’s only a starting point. Reinforcement learning is an area of machine learning that is
useful for solving sequential decision-making problems—that is, problems that are solved
over time. This applies to almost any endeavor—be it playing a video game, walking down
the street, or driving a car.

Laura Graesser and Wah Loon Keng have put together an approachable introduction to
a complicated topic that is at the forefront of what is new in machine learning. Not only
have they brought to bear their research into many papers on the topic; they created an
open source library, SLM Lab, to help others get up and running quickly with deep
reinforcement learning. SLM Lab is written in Python on top of PyTorch, but readers only
need familiarity with Python. Readers intending to use TensorFlow or some other library
as their deep learning framework of choice will still get value from this book as it
introduces the concepts and problem formulations for deep reinforcement learning
solutions.

This book brings together the most recent research in deep reinforcement learning
along with examples and code that the readers can work with. Their library also works
with OpenAI’s Gym, Roboschool, and the Unity ML-Agents toolkit, which makes this
book a perfect jumping-off point for readers looking to work with those systems.

—Paul Dix, Series Editor
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Preface

We first discovered deep reinforcement learning (deep RL) when DeepMind achieved
breakthrough performance in the Atari arcade games. Using only images and no prior
knowledge, artificial agents reached human-level performance for the first time.

The idea of an artificial agent learning by itself, through trial and error, without
supervision, sparked something in our imaginations. It was a new and exciting approach to
machine learning, and it was quite different from the more familiar field of supervised
learning.

We decided to work together to learn about this topic. We read books and papers,
followed online courses, studied code, and tried to implement the core algorithms. We
realized that not only is deep RL conceptually challenging, but that implementation
requires as much effort as a large software engineering project.

As we progressed, we learned more about the landscape of deep RL—how algorithms
relate to each other and what their different characteristics are. Forming a mental model of
this was hard because deep RL is a new area of research and the theoretical knowledge had
not yet been distilled into a book. We had to learn directly from research papers and online
lectures.

Another challenge was the large gap between theory and implementation. Often, a deep
RL algorithm has many components and tunable hyperparameters that make it sensitive
and fragile. For it to succeed, all the components need to work together correctly and with
appropriate hyperparameter values. The implementation details required to get this right
are not immediately clear from the theory, but are just as important. A resource that
integrated theory and implementation would have been invaluable when we were learning.

We felt that the journey from theory to implementation could have been simpler than
we found it, and we wanted to contribute to making deep RL easier to learn. This book is
our attempt to do that. It takes an end-to-end approach to introducing deep RL—starting
with intuition, then explaining the theory and algorithms, and finishing with
implementations and practical tips. This is also why the book comes with a companion
software library, SLM Lab, which contains implementations of all the algorithms discussed
in it. In short, this is the book we wished existed when we were starting to learn about this
topic.

Deep RL belongs to the larger field of reinforcement learning. At the core of
reinforcement learning is function approximation; in deep RL, functions are learned using
deep neural networks. Reinforcement learning, along with supervised and unsupervised
learning, make up the three core machine learning techniques, and each technique differs
in how problems are formulated and how algorithms learn from data.

In this book we focus exclusively on deep RL because the challenges we experienced
are specific to this subfield of reinforcement learning. This bounds the scope of the book
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in two ways. First, it excludes all other techniques that can be used to learn functions
in reinforcement learning. Second, it emphasizes developments between 2013 and
2019 even though reinforcement learning has existed since the 1950s. Many of the
recent developments build from older research, so we felt it was important to trace the
development of the main ideas. However, we do not intend to give a comprehensive
history of the field.

This book is aimed at undergraduate computer science students and software engineers.
It is intended to be an introduction to deep RL and no prior knowledge of the subject is
required. However, we do assume that readers have a basic familiarity with machine
learning and deep learning as well as an intermediate level of Python programming. Some
experience with PyTorch is also useful but not necessary.

The book is organized as follows. Chapter 1 introduces the different aspects of a deep
reinforcement learning problem and gives an overview of deep reinforcement learning
algorithms.

Part I is concerned with policy-based and value-based algorithms. Chapter 2 introduces
the first Policy Gradient method known as REINFORCE. Chapter 3 introduces the first
value-based method known as SARSA. Chapter 4 discusses the Deep Q-Networks
(DQN) algorithm and Chapter 5 focuses on techniques for improving it—target
networks, the Double DQN algorithm, and Prioritized Experience Replay.

Part II focuses on algorithms which combine policy-based and value-based methods.
Chapter 6 introduces the Actor-Critic algorithm which extends REINFORCE.
Chapter 7 introduces Proximal Policy Optimization (PPO) which can extend
Actor-Critic. Chapter 8 discusses synchronous and asynchronous parallelization techniques
that are applicable to any of the algorithms in this book. Finally, all the algorithms are
summarized in Chapter 9.

Each algorithm chapter is structured in the same way. First, we introduce the main
concepts and work through the relevant mathematical formulations. Then we describe
the algorithm and discuss an implementation in Python. Finally, we provide a configured
algorithm with tuned hyperparameters which can be run in SLM Lab, and illustrate the
main characteristics of the algorithm with graphs.

Part III focuses on the practical details of implementing deep RL algorithms.
Chapter 10 covers engineering and debugging practices and includes an almanac of
hyperparameters and results. Chapter 11 provides a usage reference for the companion
library, SLM Lab. Chapter 12 looks at neural network design and Chapter 13 discusses
hardware.

The final part of book, Part IV, is about environment design. It consists of Chapters 14,
15, 16, and 17 which treat the design of states, actions, rewards, and transition functions
respectively.

The book is intended to be read linearly from Chapter 1 to Chapter 10. These chapters
introduce all of the algorithms in the book and provide practical tips for getting them to
work. The next three chapters, 11 to 13, focus on more specialized topics and can be read
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in any order. For readers that do not wish to go into as much depth, Chapters 1, 2, 3, 4, 6,
and 10 are a coherent subset of the book that focuses on a few of the algorithms. Finally,
Part IV contains a standalone set of chapters intended for readers with a particular interest
in understanding environments in more depth or building their own.

SLM Lab [67], this book’s companion software library, is a modular deep RL
framework built using PyTorch [114]. SLM stands for Strange Loop Machine, in homage
to Hofstadter’s iconic book Gödel, Escher, Bach: An Eternal Golden Braid [53]. The specific
examples from SLM Lab that we include use PyTorch’s syntax and features for training
neural networks. However, the underlying principles for implementing deep RL
algorithms are applicable to other deep learning frameworks such as TensorFlow [1].

The design of SLM Lab is intended to help new students learn deep RL by organizing
its components into conceptually clear pieces. These components also align with how deep
RL is discussed in the academic literature to make it easier to translate from theory to code.

Another important aspect of learning deep RL is experimentation. To facilitate this,
SLM Lab also provides an experimentation framework to help new students design and
test their own hypotheses.

The SLM Lab library is released as an open source project on Github. We encourage
readers to install it (on a Linux or MacOS machine) and run the first demo by following
the instructions on the repository website https://github.com/kengz/SLM-Lab. A
dedicated git branch “book” has been created with a version of code compatible with this
book. A short installation instruction copied from the repository website is shown in
Code 0.1.

Code 0.1 Installing SLM-Lab from the book git branch

1 # clone the repository

2 git clone https://github.com/kengz/SLM-Lab.git

3 cd SLM-Lab

4 # checkout the dedicated branch for this book

5 git checkout book

6 # install dependencies

7 ./bin/setup

8 # next, follow the demo instructions on the repository website

We recommend you set this up first so you can train agents with algorithms as they are
introduced in this book. Beyond installation and running the demo, it is not necessary to
be familiar with SLM Lab before reading the algorithm chapters (Parts I and II)—we give
all the commands to train agents where needed. We also discuss SLM Lab more extensively
in Chapter 11 after shifting focus from algorithms to more practical aspects of deep
reinforcement learning.

https://github.com/kengz/SLM-Lab
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Register your copy of Foundations of Deep Reinforcement Learning on the InformIT site for
convenient access to updates and/or corrections as they become available. To start the reg-
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1

Introduction to Reinforcement
Learning

In this chapter we introduce the main concepts in reinforcement learning. We start by
looking at some simple examples to build intuitions about the core components of a
reinforcement learning problem—namely, an agent and an environment.

In particular, we will look at how an agent interacts with an environment to optimize
an objective. We will then define these more formally and define reinforcement learning as
a Markov Decision Process. This is the theoretical foundation of reinforcement learning.

Next, we introduce the three primary functions an agent can learn—a policy, value
functions, and a model. We then see how learning these functions gives rise to different
families of deep reinforcement learning algorithms.

Finally, we give a brief overview of deep learning, which is the function approximation
technique used throughout this book, and discuss the main differences between
reinforcement learning and supervised learning.

1.1 Reinforcement Learning
Reinforcement learning (RL) is concerned with solving sequential decision-making
problems. Many real-world problems—playing video games, sports, driving, optimizing
inventory, robotic control—can be framed in this way. These are things that humans and
machines do.

When solving these problems, we have an objective or goal—such as winning the
game, arriving safely at our destination, or minimizing the cost of building products. We
take actions and get feedback from the world about how close we are to achieving the
objective—the current score, distance to our destination, or price per unit. Reaching our
goal typically involves taking many actions in sequence, each action changing the world
around us. We observe these changes in the world as well as the feedback we receive before
deciding on the next action to take as a response.

Imagine the following scenario: you are at a party where a friend brings out a flag pole
and challenges you to balance it on your hand for as long as possible. If you have never
held a flag pole before, your initial attempts will not be very successful. You may spend the
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first few moments trying to get a feel of the flag pole via trial and error—as it keeps
falling over.

These mistakes allow you to collect valuable information and gain some intuition about
how to balance the flag pole—where its center of gravity is, how fast it tilts over, how
quickly you should adjust, at what angle it falls over, etc. You use this information to make
corrections in your next attempts, improve, make further adjustments—and, before you
know it, you can start balancing it for 5 seconds, 10 seconds, 30 seconds, 1 minute,
and so on.

This process illustrates how reinforcement learning works. In reinforcement learning,
you are what is called the “agent,” and the flag pole and your surroundings are called an
“environment.” In fact, the first environment we will learn to solve with reinforcement
learning is a toy version of this scenario called CartPole, shown in Figure 1.1. An agent
controls a cart sliding along an axis in order to balance a pole upright for a given time. In
reality, a human does much more—for example, you may apply your existing intuition
about physics, or transfer skills from similar tasks such as balancing a tray full of
drinks—but the problems are essentially the same in formulation.

Figure 1.1 CartPole-v0 is a simple toy environment. The objective is to balance a pole

for 200 time steps by controlling the left-right motion of a cart.

Reinforcement learning studies problems of this form and methods by which artificial
agents learn to solve them. It is a subfield of artificial intelligence that dates back to the
optimal control theory and Markov decision processes (MDPs). It was first worked on by
Richard Bellman in the 1950s in the context of dynamic programming and quasilinear
equations [15]. We will see this name again when we study a famous equation in
reinforcement learning—the Bellman equation.

RL problems can be expressed as a system consisting of an agent and an environment.
An environment produces information which describes the state of the system. This is
known as a state. An agent interacts with an environment by observing the state and using
this information to select an action. The environment accepts the action and transitions
into the next state. It then returns the next state and a reward to the agent. When the cycle
of (state → action→ reward) completes, we say that one time step has passed. The cycle
repeats until the environment terminates, for example when the problem is solved. This
entire process is described by the control loop diagram in Figure 1.2.
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Figure 1.2 The reinforcement learning control loop

We call an agent’s action-producing function a policy. Formally, a policy is a function
which maps states to actions. An action will change the environment and affect what an
agent observes and does next. The exchange between an agent and an environment
unfolds in time—therefore it can be thought of as a sequential decision-making process.

RL problems have an objective, which is the sum of rewards received by an agent. An
agent’s goal is to maximize the objective by selecting good actions. It learns to do this by
interacting with the environment in a process of trial and error, and uses the reward signals
it receives to reinforce good actions.

Agent and environment are defined to be mutually exclusive, so that the boundaries
between the exchange of the state, action, and reward are unambiguous. We can consider
the environment to be anything that is not the agent. For example, when riding a bike, we
can have multiple but equally valid definitions of an agent and an environment. If we
consider our entire body to be the agent that observes our surroundings and produces
muscle movements as actions, then the environment is the bicycle and the road. If we
consider our mental processes to be the agent, then the environment is our physical body,
the bicycle, and the road, with actions being the neural signals sent from our brain to the
muscles and states being the sensory inputs sent back to our brain.

Essentially, a reinforcement learning system is a feedback control loop where an agent
and an environment interact and exchange signals, while the agent tries to maximize the
objective. The signals exchanged are (st, at, rt), which stand for state, action, and reward,
respectively, and t denotes the time step in which these signals occurred. The (st, at, rt)
tuple is called an experience. The control loop can repeat forever1 or terminate by reaching
either a terminal state or a maximum time step t = T . The time horizon from t = 0 to
when the environment terminates is called an episode. A trajectory is a sequence of
experiences over an episode, τ = (s0, a0, r0), (s1, a1, r1), . . .. An agent typically needs
many episodes to learn a good policy, ranging from hundreds to millions depending on the
complexity of the problem.

Let’s look at the three example reinforcement learning environments, shown in
Figure 1.3, and how the states, actions, and rewards are defined. All the environments are

1. Infinite control loops exist in theory but not in practice. Typically, we assign a maximum time step T to an
environment.
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available through the OpenAI Gym [18] which is an open source library that provides a
standardized set of environments.

(a) CartPole (b) Atari Breakout (c) BipedalWalker

Figure 1.3 Three example environments with different states, actions, and rewards. These

environments are available in OpenAI Gym.

CartPole (Figure 1.3a) is one of the simplest reinforcement learning environments, first
described by Barto, Sutton, and Anderson [11] in 1983. In this environment, a pole is
attached to a cart that can be moved along a frictionless track. The main features of the
environment are summarized below:

1. Objective: Keep the pole upright for 200 time steps.

2. State: An array of length 4 which represents: [cart position, cart velocity, pole angle,
pole angular velocity]. For example, [−0.034, 0.032, −0.031, 0.036].

3. Action: An integer, either 0 to move the cart a fixed distance to the left, or 1 to
move the cart a fixed distance to the right.

4. Reward: +1 for every time step the pole remains upright.

5. Termination: When the pole falls over (greater than 12 degrees from vertical), or
when the cart moves out of the screen, or when the maximum time step of 200 is
reached.

Atari Breakout (Figure 1.3b) is a retro arcade game that consists of a ball, a bottom
paddle controlled by an agent, and bricks. The goal is to hit and destroy all the bricks by
bouncing the ball off the paddle. A player starts with five game lives, and a life is lost every
time the ball falls off the screen from the bottom.

1. Objective: Maximize the game score.

2. State: An RGB digital image with resolution 160 × 210 pixels—that is, what we
see on the game screen.

3. Action: An integer from the set {0, 1, 2, 3} which maps to the game controller
actions {no-action, launch the ball, move right, move left}.
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4. Reward: The game score difference between consecutive states.

5. Termination: When all game lives are lost.

BipedalWalker (Figure 1.3c) is a continuous control problem where an agent uses a
robot’s lidar sensor to sense its surroundings and walk to the right without falling.

1. Objective: Walk to the right without falling.

2. State: An array of length 24 which represents: [hull angle, hull angular velocity,
x-velocity, y-velocity, hip 1 joint angle, hip 1 joint speed, knee 1 joint angle, knee 1
joint speed, leg 1 ground contact, hip 2 joint angle, hip 2 joint speed, knee 2 joint
angle, knee 2 joint speed, leg 2 ground contact, . . ., 10 lidar readings]. For example,
[2.745e−03, 1.180e−05, −1.539e−03, −1.600e−02, . . ., 7.091e−01, 8.859e−01,
1.000e+00, 1.000e+00].

3. Action: A vector of four floating point numbers in the interval [−1.0, 1.0] which
represents: [hip 1 torque and velocity, knee 1 torque and velocity, hip 2 torque and
velocity, knee 2 torque and velocity]. For example, [0.097, 0.430, 0.205, 0.089].

4. Reward: Reward for moving forward to the right, up to a maximum of +300.
−100 if the robot falls. Additionally, there is a small negative reward (movement cost)
at every time step, proportional to the absolute torque applied.

5. Termination: When the robot body touches the ground or reaches the goal on the
right side, or after the maximum time step of 1600.

These environments demonstrate some of the different forms that states and actions
can take. In CartPole and BipedalWalker, the states are vectors describing properties such
as positions and velocities. In Atari Breakout, the state is an image from the game
screen. In CartPole and Atari Breakout, actions are single, discrete integers, whereas in
BipedalWalker, an action is a continuous vector of four floating-point numbers. Rewards
are always a scalar, but the range varies from task to task.

Having seen some examples, let’s now formally describe states, actions, and rewards.

st ∈ S is the state, S is the state space. (1.1)

at ∈ A is the action, A is the action space. (1.2)

rt = R(st, at, st+1) is the reward, R is the reward function. (1.3)

The state space S is the set of all possible states in an environment. Depending on the
environment, it can be defined in many different ways—as integers, real numbers, vectors,
matrices, structured or unstructured data. Similarly, the action space A is the set of all
possible actions defined by an environment. It can also take many forms, but is commonly
defined as either a scalar or a vector. The reward function R(st, at, st+1) assigns a positive,
negative, or zero scalar to each transition (st, at, st+1). The state space, action space, and
reward function are specified by the environment. Together, they define the (s, a, r) tuples
which are the basic unit of information describing a reinforcement learning system.
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1.2 Reinforcement Learning as MDP
Now, consider how an environment transitions from one state to the next using what is
known as the transition function. In reinforcement learning, a transition function is
formulated as a Markov decision process (MDP) which is a mathematical framework that
models sequential decision making.

To understand why transition functions are represented as MDPs, consider a general
formulation shown in Equation 1.4.

st+1 ∼ P
(
st+1 | (s0, a0), (s1, a1), . . . , (st, at)

)
(1.4)

Equation 1.4 says that at time step t, the next state st+1 is sampled from a probability
distribution P conditioned on the entire history. The probability of an environment
transitioning from state st to st+1 depends on all of the preceding states s and actions a
that have occurred so far in an episode. It is challenging to model a transition function in
this form, particularly if episodes last for many time steps. Any transition function that we
design would need to be able to account for a vast combination of effects that occurred at
any point in the past. Additionally, this formulation makes an agent’s action-producing
function—its policy—significantly more complex. Since the entire history of states and
actions is relevant for understanding how an action might change the future state of the
world, an agent would need to take into account all of this information when deciding
how to act.

To make the environment transition function more practical, we turn it into an MDP
by adding the assumption that the transition to the next state st+1 only depends on
the previous state st and action at. This is known as the Markov property. With this
assumption, the new transition function becomes the following:

st+1 ∼ P (st+1 | st, at) (1.5)

Equation 1.5 says that the next state st+1 is sampled from a probability distribution
P (st+1 | st, at). This is a simpler form of the original transition function. The Markov
property implies that the current state and action at time step t contain sufficient
information to fully determine the transition probability for the next state at t+ 1.

Despite the simplicity of this formulation, it is still quite powerful. A lot of processes
can be expressed in this form, including games, robotic control, and planning. This is
because a state can be defined to include any necessary information required to make the
transition function Markov.

For example, consider the Fibonacci sequence described by the formula st+1 =
st + st−1, where each term st is considered a state. To make the function Markov, we
redefine the state as s′t = [st, st−1]. Now the state contains sufficient information to
compute the next element in the sequence. This strategy can be applied more generally to
any system in which a finite set of k consecutive states contains sufficient information to
transition to the next state. Box 1.1 contains more details on how states are defined in an
MDP and in its generalization, an POMDP. Note that throughout this book, Boxes serve
to provide in-depth details that may be skipped on first reading without a loss of
understanding of the main subject.
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Box 1.1 MDP and POMDP

So far, the concept of state has appeared in two places. First, the state is what is
produced by an environment and observed by an agent. Let’s call this the observed
state st. Second, the state is what is used by transition function. Let’s call this the
environment’s internal state sint

t .
In an MDP, st = sint

t , that is, the observed state is identical to the environment’s
internal state. The same state information that is used to transition an environment
into the next state is also made available to an agent.

This is not always the case. The observed state may differ from the
environment’s internal state, st 6= sint

t . In this case, the environment is described as
a partially observable MDP (POMDP) because the state st exposed to the agent only
contains partial information about the state of the environment.

In this book, for the most part, we forget about this distinction and assume that
st = sint

t . However, it is important to be aware of POMDPs for two reasons. First,
some of the example environments we consider are not perfect MDPs. For
example, in the Atari environment, the observed state st is a single RGB image
which conveys information about object positions, lives, etc., but not object
velocities. Velocities would be included in the environment’s internal state since
they are required to determine the next state given an action. In these cases, to
achieve good performance, we will have to modify st to include more
information. This is discussed in Chapter 5.

Second, many interesting real-world problems are POMDPs for many reasons,
including sensor or data limitations, model error, and environment noise. A
detailed discussion of POMDPs is beyond the scope of this book, but we will
touch on them briefly when discussing network architecture in Chapter 12.

Finally, when discussing state design in Chapter 14, the distinction between st
and sint

t will be important because an agent learns from st. The information that is
included in st and the extent to which it differs from sint

t contributes to making a
problem harder or easier to solve.

We are now in a position to present the MDP formulation of a reinforcement learning
problem. An MDP is defined by a 4-tuple S,A, P (.),R(.), where

. S is the set of states.

. A is the set of actions.

. P (st+1 | st, at) is the state transition function of the environment.

. R(st, at, st+1) is the reward function of the environment.

One important assumption underlying the reinforcement learning problems discussed
in this book is that agents do not have access to the transition function, P (st+1 | st, at), or
the reward function, R(st, at, st+1). The only way an agent can get information about
these functions is through the states, actions, and rewards it actually experiences in the
environment—that is, the tuples (st, at, rt).
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To complete the formulation of the problem, we also need to formalize the concept of
an objective which an agent maximizes. First, let’s define the return2 R(τ) using a
trajectory from an episode, τ = (s0, a0, r0), . . . , (sT , aT , rT ):

R(τ) = r0 + γr1 + γ2r2 + · · ·+ γT rT =
T∑

t=0

γtrt (1.6)

Equation 1.6 defines the return as a discounted sum of the rewards in a trajectory,
where γ ∈ [0, 1] is the discount factor.

Then, the objective J(τ) is simply the expectation of the returns over many trajectories,
shown in Equation 1.7.

J(τ) = Eτ∼π[R(τ)] = Eτ

[ T∑
t=0

γtrt

]
(1.7)

The return R(τ) is the sum of discounted rewards γtrt over all time steps t = 0, . . . , T .
The objective J(τ) is the return averaged over many episodes. The expectation accounts
for stochasticity in the actions and the environment—that is, in repeated runs, the return
may not always end up the same. Maximizing the objective is the same as maximizing the
return.

The discount factor γ ∈ [0, 1] is an important variable which changes the way future
rewards are valued. The smaller γ, the less weight is given to rewards in future time steps,
making it “shortsighted.” In the extreme case with γ = 0, the objective only considers the
initial reward r0, as shown in Equation 1.8.

R(τ)γ=0 =

T∑
t=0

γtrt = r0 (1.8)

The larger γ, the more weight is given to rewards in future time steps: the objective
becomes more “farsighted.” If γ = 1, rewards from every time step are weighted equally, as
shown in Equation 1.9.

R(τ)γ=1 =
T∑

t=0

γtrt =
T∑

t=0

rt (1.9)

For problems with infinite time horizon, we need to set γ < 1 to prevent the objective
from becoming unbounded. For finite time horizon problems, γ is an important parameter
as a problem may become more or less difficult to solve depending on the discount factor
we use. We’ll look at an example of this at the end of Chapter 2.

Having defined reinforcement learning as an MDP and the objective, we can now
express the reinforcement learning control loop from Figure 1.2 as an MDP control loop
in Algorithm 1.1.

2. We use R to denote return and reserve R for the reward function.
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Algorithm 1.1 MDP control loop

1: Given an env (environment) and an agent:
2: for episode = 0, . . . ,MAX_EPISODE do
3: state = env.reset()

4: agent.reset()

5: for t = 0, . . . , T do
6: action = agent.act(state)

7: state, reward = env.step(action)

8: agent.update(action, state, reward)

9: if env.done() then
10: break

11: end if
12: end for
13: end for

Algorithm 1.1 expresses the interactions between an agent and an environment over
many episodes and time steps. At the beginning of each episode, the environment and the
agent are reset (lines 3–4). On reset, the environment produces an initial state. Then they
begin interacting—an agent produces an action given a state (line 6), then the
environment produces the next state and reward given the action (line 7), stepping into the
next time step. The agent.act-env.step cycle continues until the maximum time step T
is reached or the environment terminates. Here we also see a new component,
agent.update (line 8), which encapsulates an agent’s learning algorithm. Over multiple
time steps and episodes, this method collects data and performs learning internally to
maximize the objective.

This algorithm is generic to all reinforcement learning problems as it defines a
consistent interface between an agent and an environment. The interface serves as a
foundation for implementing many reinforcement learning algorithms under a unified
framework, as we will see in SLM Lab, the companion library to this book.

1.3 Learnable Functions in Reinforcement
Learning

With reinforcement learning formulated as an MDP, the natural question to ask is, what
should an agent learn?

We have seen that an agent can learn an action-producing function known as a policy.
However, there are other properties of an environment that can be useful to an agent. In
particular, there are three primary functions to learn in reinforcement learning:
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1. A policy, π, which maps state to action: a ∼ π(s)

2. A value function, V π(s) or Qπ(s, a), to estimate the expected return Eτ [R(τ)]

3. The environment model,3 P (s′ | s, a)

A policy π is how an agent produces actions in the environment to maximize the
objective. Given the reinforcement learning control loop, an agent must produce an action
at every time step after observing a state s. A policy is fundamental to this control loop,
since it generates the actions to make it run.

A policy can be stochastic. That is, it may probabilistically output different actions for
the same state. We can write this as π(a | s) to denote the probability of an action a given
a state s. An action sampled from a policy is written as a ∼ π(s).

The value functions provide information about the objective. They help an agent
understand how good the states and available actions are in terms of the expected future
return. They come in two forms—the V π(s) and Qπ(s, a) functions.

V π(s) =Es0=s,τ∼π

[ T∑
t=0

γtrt

]
(1.10)

Qπ(s, a) =Es0=s,a0=a,τ∼π

[ T∑
t=0

γtrt

]
(1.11)

The value function V π shown in Equation 1.10 evaluates how good or bad a state is.
V π measures the expected return from being in state s, assuming the agent continues to
act according to its current policy π. The return R(τ) =

∑T
t=0 γ

trt is measured from the
current state s to the end of an episode. It is a forward-looking measure, since all rewards
received before state s are ignored.

To give some intuition for the value function V π, let’s consider a simple example.
Figure 1.4 depicts a grid-world environment in which an agent can move from cell to cell
vertically or horizontally. Each cell is a state with an associate reward, as shown on the left
of the figure. The environment terminates when the agent reaches the goal state with
reward r = +1.

On the right, we show the value V π(s) calculated for each state from the rewards using
Equation 1.10, with γ = 0.9. The value function V π always depends on a particular
policy π. In this example, we chose a policy π which always takes the shortest path to the
goal state. If we had chosen another policy—for example, one that always moves
right—then the values would be different.

Here we can see the forward-looking property of the value function and its ability to
help an agent differentiate between states that give the same reward. The closer an agent is
to the goal state, the higher the value.

3. To make notation more compact, it is customary to write a successive pair of tuples (st, at, rt),
(st+1, at+1, rt+1) as (s, a, r), (s′, a′, r′), where the prime symbol ′ represents the next time step. We will
see this throughout the book.
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Figure 1.4 Rewards r and values V π(s) for each state s in a simple grid-world environment.

The value of a state is calculated from the rewards using Equation 1.10 with γ = 0.9 while

using a policy π that always takes the shortest path to the goal state with r = +1.

The Q-value function Qπ shown in Equation 1.11 evaluates how good or bad a
state-action pair is. Qπ measures the expected return from taking action a in state s
assuming that the agent continues to act according to its current policy, π. In the same
manner as V π, the return is measured from the current state s to the end of an episode. It
is also a forward-looking measure, since all rewards received before state s are ignored.

We discuss the V π and Qπ functions in more detail in Chapter 3. For the moment,
you just need to know that these functions exist and can be used by agents to solve
reinforcement learning problems.

The transition function P (s′ | s, a) provides information about the environment. If an
agent learns this function, it is able to predict the next state s′ that the environment will
transition into after taking action a in state s. By applying the learned transition function,
an agent can “imagine” the consequences of its actions without actually touching the
environment. It can then use this information to plan good actions.

1.4 Deep Reinforcement Learning
Algorithms

In RL, an agent learns functions to help it act and maximize the objective. This book is
concerned with deep reinforcement learning (deep RL). This means that we use deep
neural networks as the function approximation method.

In Section 1.3, we saw the three primary learnable functions in reinforcement learning.
Correspondingly, there are three major families of deep reinforcement learning
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algorithms—policy-based, value-based, and model-based methods which learn policies, value
functions, and models, respectively. There are also combined methods in which agents
learn more than one of these functions—for instance, a policy and a value function, or a
value function and a model. Figure 1.5 gives an overview of the major deep reinforcement
learning algorithms in each family and how they are related.

Figure 1.5 Deep reinforcement learning algorithm families

1.4.1 Policy-Based Algorithms
Algorithms in this family learn a policy π. Good policies should generate actions which
produce trajectories τ that maximize an agent’s objective, J(τ) = Eτ∼π

[∑T
t=0 γ

trt
]
.

This approach is quite intuitive—if an agent needs to act in an environment, it makes
sense to learn a policy. What constitutes a good action at a given moment depends on the
state, so a policy function π takes a state s as input to produce an action a ∼ π(s). This
means an agent can make good decisions in different contexts. REINFORCE [148],
discussed in Chapter 2, is the most well known policy-based algorithm that forms the
foundation of many subsequent algorithms.

A major advantage of policy-based algorithms is that they are a very general class of
optimization methods. They can be applied to problems with any type of actions—
discrete, continuous, or a mixture (multiactions). They also directly optimize for the thing
an agent cares most about—the objective J(τ). Additionally, this class of methods is
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guaranteed to converge to a locally4 optimal policy, as proven by Sutton et al. with the
Policy Gradient Theorem [133]. One disadvantage of these methods is that they have high
variance and are sample-inefficient.

1.4.2 Value-Based Algorithms
An agent learns either V π(s) or Qπ(s, a). It uses the learned value function to evaluate
(s, a) pairs and generate a policy. For example, an agent’s policy could be to always select
the action a in state s with the highest estimated Qπ(s, a). Learning Qπ(s, a) is far more
common than V π(s) for pure value-based approaches because it is easier to convert into a
policy. This is because Qπ(s, a) contains information about paired states and actions
whereas V π(s) just contains information about states.

SARSA [118], discussed in Chapter 3, is one of the older reinforcement learning
algorithms. Despite its simplicity, SARSA incorporates many of the core ideas of
value-based methods, so it is a good algorithm to study first in this family. However, it is
not commonly used today due to its high variance and sample inefficiency during training.
Deep Q-Networks (DQN) [88] and its descendants, such as Double DQN [141] and
DQN with Prioritized Experience Replay (PER) [121], are much more popular and
effective algorithms. These are the subjects of Chapters 4 and 5.

Value-based algorithms are typically more sample-efficient than policy-based
algorithms. This is because they have lower variance and make better use of data gathered
from the environment. However, there are no guarantees that these algorithms will
converge to an optimum. In their standard formulation, they are also only applicable to
environments with discrete action spaces. This has historically been a major limitation, but
with more recent advances, such as QT-OPT [64], they can be effectively applied to
environments with continuous action spaces.

1.4.3 Model-Based Algorithms
Algorithms in this family either learn a model of an environment’s transition dynamics or
make use of a known dynamics model. Once an agent has a model of the environment,
P (s′ | s, a), it can “imagine” what will happen in the future by predicting the trajectory
for a few time steps. If the environment is in state s, an agent can estimate how the state
will change if it makes a sequence of actions a1, a2, . . . , an by repeatedly applying
P (s′ | s, a), all without actually producing an action to change the environment. Hence,
the predicted trajectory occurs in the agent’s “head” using a model. An agent can complete
many different trajectory predictions with different actions sequences, then examine these
options to decide on the best action a to actually take.

Purely model-based approaches are most commonly applied to games with a target
state, such as winning or losing in a game of chess, or navigation tasks with a goal state s∗.

4. Global convergence guarantee is still an open problem. Recently, it was proven for a subclass of problems
known as linearized control. See the paper “Global Convergence of Policy Gradient Methods for Linearized
Control Problems” by Fazel et al. (2018) [38].


