

Python Without Fear

Overland_Book.indb iOverland_Book.indb i 8/31/17 12:56 PM8/31/17 12:56 PM

This page intentionally left blank

Python Without Fear
A Beginner’s Guide That
Makes You Feel Smart

Brian Overland

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Overland_Book.indb iiiOverland_Book.indb iii 8/31/17 12:56 PM8/31/17 12:56 PM

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Catalog Number: 2017946292

Copyright © 2018 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions,
request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-468747-6
ISBN-10: 0-13-468747-7
1 17

Overland_Book.indb ivOverland_Book.indb iv 8/31/17 12:56 PM8/31/17 12:56 PM

corpsales@pearsoned.com
governmentsales@pearsoned.com
international@pearsoned.com
http://www.informit.com/aw
http://www.pearsoned.com/permissions/

For all my beloved four-legged friends:
Skyler, Orlando, Madison, Cleo, and Pogo.

Overland_Book.indb vOverland_Book.indb v 8/31/17 12:56 PM8/31/17 12:56 PM

This page intentionally left blank

vii

Contents

Preface xvii

Steering Around the “Gotchas” xvii
How to Think “Pythonically” xvii
Intermediate and Advanced Features xviii
Learning in Many Different Styles xviii
What’s Going on “Under the Hood” xviii
Why Python? xix

Acknowledgments xxi

Author Bio xxiii

Chapter 1 Meet the Python 1

A Brief History of Python 1
How Python Is Different 2
How This Book Works 3
Installing Python 4
Begin Using Python with IDLE 6
Correcting Mistakes from Within IDLE 6
Dealing with Ends of Lines 7
Additional Help: Online Sources 8

Overland_Book.indb viiOverland_Book.indb vii 8/31/17 12:56 PM8/31/17 12:56 PM

Contentsviii

Chapter 2 A Python Safari: Numbers 9

Python and Numbers 9
Interlude Why Doesn’t C++ Support Infinite Integers? 11
Interlude How Big Is a Google? 13

Python and Floating-Point Numbers 14
Assigning Numbers to Variables 17

Interlude What Do Python Assignments Really Do? 21
Variable-Naming Conventions in This Book 23
Some Python Shortcuts 23
Chapter 2 Summary 26

Chapter 3 Your First Programs 29

Temperatures Rising? 29
Interlude Python’s Use of Indentation 33

Putting in a Print Message 35
Syntax Summaries 36

Example 3.1. Quadratic Equation as a Function 38
How It Works 39

Getting String Input 41
Getting Numeric Input 43

Example 3.2. Quadratic Formula with I/O 44
How It Works 45

Formatted Output String 46
Example 3.3. Distance Formula in a Script 47
How It Works 48

Chapter 3 Summary 50

Chapter 4 Decisions and Looping 53

Decisions Inside a Computer Program 53
Conditional and Boolean Operators 55
The if, elif, and else Keywords 56

Interlude Programs and Robots in Westworld 56
Example 4.1. Enter Your Age 59
How It Works 60

Overland_Book.indb viiiOverland_Book.indb viii 8/31/17 12:56 PM8/31/17 12:56 PM

Contents ix

while: Looping the Loop 60
Example 4.2. Factorials 63
How It Works 64
Optimizing the Code 65
Example 4.3. Printing Fibonacci Numbers 67
How It Works 69

“Give Me a break” Statement 70
Example 4.4. A Number-Guessing Game 71
How It Works 72
Interlude Binary Searches and “O” Complexity 74

Chapter 4 Summary 75

Chapter 5 Python Lists 77

The Python Way: The World Is Made of Collections 77
Processing Lists with for 80
Modifying Elements with for (You Can't!) 82

Example 5.1. A Sorting Application 83
How It Works 84
Optimizing the Code 84

Indexing and Slicing 85
Copying Data to Slices 88
Ranges 89

Example 5.2. Revised Factorial Program 91
How It Works 91
Optimizing the Code 92
Example 5.3. Sieve of Eratosthenes 93
How It Works 94
Optimizing the Code 96

List Functions and the in Keyword 97
Interlude Who Was Eratosthenes? 98

Chapter 5 Summary 99

Chapter 6 List Comprehension and Enumeration 101

Indexes and the enumerate Function 101
The Format String Method Revisited 103

Example 6.1. Printing a Table 104
How It Works 105

Overland_Book.indb ixOverland_Book.indb ix 8/31/17 12:56 PM8/31/17 12:56 PM

Contentsx

Simple List Comprehension 106
Example 6.2. Difference Between Squares 109
How It Works 110
Interlude Proving the Equation 111

“Two-Dimensional” List Comprehension 112
List Comprehension with Conditional 114

Example 6.3. Sieve of Eratosthenes 2 115
How It Works 116
Optimizing the Code: Sets 117
Example 6.4. Pythagorean Triples 118
How It Works 119
Interlude The Importance of Pythagoras 120

Chapter 6 Summary 123

Chapter 7 Python Strings 125

Creating a String with Quote Marks 125
Indexing and “Slicing” 127
String/Number Conversions 130

Example 7.1. Count Trailing Zeros 131
How It Works 132
Interlude Python Characters vs. Python Strings 135

Stripping for Fun and Profit 135
Example 7.2. Count Zeros, Version 2 137
How It Works 137

Let’s Split: The split Method 138
Building Strings with Concatenation (+) 139

Example 7.3. Sort Words on a Line 141
How It Works 142

The join Method 143
Chapter 7 Summary 144

Chapter 8 Single-Character Ops 147

Naming Conventions in This Chapter 147
Accessing Individual Characters (A Review) 148
Getting Help with String Methods 148
Testing Uppercase vs. Lowercase 149
Converting Case of Letters 150

Overland_Book.indb xOverland_Book.indb x 8/31/17 12:56 PM8/31/17 12:56 PM

Contents xi

Testing for Palindromes 151
Example 8.1. Convert Strings to All Caps 152
How It Works 153
Optimizing the Code 154
Example 8.2. Completing the Palindrome Test 154
How It Works 156
Optimizing the Code 157
Interlude Famous Palindromes 158

Converting to ASCII Code 159
Converting ASCII to Character 160

Example 8.3. Encode Strings 161
How It Works 162
Interlude The Art of Cryptography 164
Example 8.4. Decode Strings 164
How It Works 165

Chapter 8 Summary 166

Chapter 9 Advanced Function Techniques 167

Multiple Arguments 167
Returning More Than One Value 168

Interlude Passing and Modifying Lists 170
Example 9.1. Difference and Sum of Two Points 172
How It Works 172

Arguments by Name 173
Default Arguments 174

Example 9.2. Adding Machine 176
How It Works 176
Optimizing the Code 177

Importing Functions from Modules 178
Example 9.3. Dice Game (Craps) 179
How It Works 180
Interlude Casino Odds Making 182

Chapter 9 Summary 185

Chapter 10 Local and Global Variables 187

Local Variables, What Are They Good For? 187
Locals vs. Globals 188
Introducing the global Keyword 190

Overland_Book.indb xiOverland_Book.indb xi 8/31/17 12:56 PM8/31/17 12:56 PM

Contentsxii

The Python “Local Variable Trap” 190
Interlude Does C++ Have Easier Scope Rules? 191
Example 10.1. Beatles Personality Profile (BPP) 192
How It Works 195
Example 10.2. Roman Numerals 196
How It Works 197
Optimizing the Code 198
Interlude What’s Up with Roman Numerals? 200
Example 10.3. Decode Roman Numerals 201
How It Works 202
Optimizing the Code 203

Chapter 10 Summary 204

Chapter 11 File Ops 207

Text Files vs. Binary Files 207
The Op System (os) Module 208

Interlude Running on Other Systems 211
Open a File 211
Let’s Write a Text File 213

Example 11.1. Write File with Prompt 214
How It Works 214

Read a Text File 216
Files and Exception Handling 217

Interlude Advantages of try/except 219
Example 11.2. Text Read with Line Numbers 220
How It Works 221

Other File Modes 223
Chapter 11 Summary 224

Chapter 12 Dictionaries and Sets 227

Why Do We Need Dictionaries, Ms. Librarian? 227
Adding and Changing Key-Value Pairs 229
Accessing Values 230
Searching for Keys 231

Interlude What Explains Dictionary “Magic”? 232
Example 12.1. Personal Phone Book 232
How It Works 234

Overland_Book.indb xiiOverland_Book.indb xii 8/31/17 12:56 PM8/31/17 12:56 PM

Contents xiii

Converting Dictionaries to Lists 235
Example 12.2. Reading Items by Prefix 236
How It Works 238
Example 12.3. Loading and Saving to a File 238
How It Works 240

All About Sets 241
Operations on Sets 242

Interlude What’s So Important About Sets? 244
Example 12.4. Revised Sieve of Eratosthenes 244
How It Works 245

Chapter 12 Summary 246

Chapter 13 Matrixes: 2-D Lists 249

Simple Matrixes 249
Accessing Elements 250
Irregular Matrixes and Length of a Row 251
Multiplication (*) and Lists 252
The Python Matrix Problem 253
How to Create N*M Matrixes: The Solution 254

Interlude Why Isn’t It Easier? 255
Example 13.1. Multiplication Table 256
How It Works 257
Example 13.2. User-Initialized Matrix 258
How It Works 259
Optimizing the Code 260

How to Rotate a Matrix 261
Interlude Pros and Cons of Garbage Collection 263
Example 13.3. Complete Rotation Example 264
How It Works 266
Optimizing the Code 267

Chapter 13 Summary 268

Chapter 14 Winning at Tic-Tac-Toe 271

Design of a Tic-Tac-Toe Board 271
Plan of This Chapter 273

Phase 1 273
Phase 2 273
Phase 3 273

Overland_Book.indb xiiiOverland_Book.indb xiii 8/31/17 12:56 PM8/31/17 12:56 PM

Contentsxiv

Python One-Line if/else 274
Example 14.1. Simple Two-Player Game 274
How It Works 276
Interlude Variations on Tic-Tac-Toe 279

The count Method for Lists 279
Example 14.2. Two-Player Game with Win Detection 279
How It Works 282

Introducing the Computer Player 285
Example 14.3. Computer Play: The Computer Goes First 287
How It Works 290
Playing Second 291
Interlude The Art of Heuristics 292

Chapter 14 Summary 294

Chapter 15 Classes and Objects I 295

What’s an Object? 295
Classes in Python 296

How Do I Define a Simple Class? 297
How Do I Use a Class to Create Objects? 297
How Do I Attach Data to Objects? 298
How Do I Write Methods? 300

The All-Important _ _init_ _ Method 301
Interlude Why This self Obsession? 302

Design for a Database Class 303
Interlude C++ Classes Compared to Python 304
Example 15.1. Tracking Employees 305
How It Works 307

Defining Other Methods 309
Design for a Point3D Class 310
Point3D Class and Default Arguments 312
Three-Dimensional Tic-Tac-Toe 312

Example 15.2. Looking for a 3-D Win 313
How It Works 314
Example 15.3. Calculating Ways of Winning 315
How It Works 317
Optimizing the Code 317

Chapter 15 Summary 318

Overland_Book.indb xivOverland_Book.indb xiv 8/31/17 12:56 PM8/31/17 12:56 PM

Contents xv

Chapter 16 Classes and Objects II 321

Getting Help from Doc Strings 321
Function Typing and “Overloading” 323

Interlude What Is Duck Typing? 325
Variable-Length Argument Lists 326

Example 16.1. PointN Class 327
How It Works 329
Optimizing the Code 330

Inheritance 331
The Fraction Class 333

Example 16.2. Extending the Fraction Class 334
How It Works 335

Class Variables and Methods 337
Instance Variables as “Default” Values 339

Example 16.3. Polygon “Automated” Class 340
How It Works 342
Interlude OOPS, What Is It Good For? 343

Chapter 16 Summary 344

Chapter 17 Conway’s Game of Life 347

Interlude The Impact of “Life” 347
Game of Life: The Rules of the Game 348
Generating the Neighbor Count 350
Design of the Program 352

Example 17.1. The Customized Matrix Class 352
How It Works 353

Moving the Matrix Class to a Module 354
Example 17.2. Printing a Life Matrix 355
How It Works 355

The Famous Slider Pattern 358
Example 17.3. The Whole Game of Life Program 358
How It Works 360
Interlude Does “Life” Create Life? 363

Chapter 17 Summary 364

Overland_Book.indb xvOverland_Book.indb xv 8/31/17 12:56 PM8/31/17 12:56 PM

Contentsxvi

Chapter 18 Advanced Pythonic Techniques 367

Generators 367
Exploiting the Power of Generators 369

Example 18.1. A Custom Random-Number Generator 370
How It Works 372
Interlude How Random Is “Random”? 373

Properties 375
Getter Methods 376
Setter Methods 377
Putting Getters and Setters Together 378
Example 18.2. Multilevel Temperature Object 379
How It Works 380

Decorators: Functions Enclosing Other Functions 382
Python Decoration 385

Example 18.3. Decorators as Debugging Tools 387
How It Works 388

Chapter 18 Summary 389

Appendix A Python Operator Precedence Table 391

Appendix B Summary of Most Important Formatting Rules
for Python 3.0 393

1. Formatting Ordinary Text 393
2. Formatting Arguments 393
3. Specifying Order of Arguments 393
4. Right Justification Within Field of Size N 394
5. Left Justification Within Field of Size N 394
6. Truncation: Limit Size of Print Field 394
7. Combined Truncation and Justification 395
8. Length and Precision of Floating-Point Numbers 395
9. The Padding Character 395

Appendix C Glossary 397

Index 407

Overland_Book.indb xviOverland_Book.indb xvi 8/31/17 12:56 PM8/31/17 12:56 PM

xvii

Preface

There’s a lot of free programming instruction out there, and much of it’s about
Python. So for a book to be worth your while, it’s got to be good…it’s got to
be really, really, really good.

I wrote this book because it’s the book I wish was around when I was first
learning Python a few years back. Like everybody else, I conquered one concept
at a time by looking at almost a dozen different books and consulting dozens
of web sites.

But this is Python, and it’s not supposed to be difficult!
The problem is that not all learning is as easy or fast as it should be. And

not all books or learning sites are fun. You can, for example, go from site to
site just trying to find the explanation that really works.

Here’s what this book does that I wish I’d had when I started learning.

Steering Around the “Gotchas”
Many things are relatively easy to do in Python, but a few things that ought
to be easy are harder than they’d be in other languages. This is especially
true if you have any prior background in programming. The “Python way”
of doing things is often so different from the approach you’d use in any other
language, you can stare at the screen for hours until someone points out the
easy solution.

Or you can buy this book.

How to Think “Pythonically”
Closely related to the issue of “gotchas” is the understanding of how to think
in Python. Until you understand Python’s unique way of modeling the world,

Overland_Book.indb xviiOverland_Book.indb xvii 8/31/17 12:56 PM8/31/17 12:56 PM

Prefacexviii

you might end up writing a program the way a C programmer would. It runs,
but it doesn’t use any of the features that make Python such a fast develop-
ment tool.

a_list = ['Don\'t', 'do', 'this', 'the' ,'C', 'way']
for x in a_list:
 print(x, end=' ')

This little snippet prints

Don't do this the C way

Intermediate and Advanced Features
Again, although Python is generally easier than other languages, that’s not
universally true. Some of the important intermediate features of Python are
difficult to understand unless well explained. This book pays a lot of atten-
tion to intermediate and even advanced features, including list comprehension,
generators, multidimensional lists (matrixes), and decorators.

Learning in Many Different Styles
In this book, I present a more varied teaching style than you’ll likely find else-
where. I make heavy use of examples, of course, but sometimes it’s the right
conceptual figure or analogy that makes all the difference. Or sometimes it’s
working on exercises that challenge you to do variations on what’s just been
taught. But all of the book’s teaching styles reinforce the same ideas.

What’s Going on “Under the Hood”
Although this book is for people who may be new to programming altogether,
it also caters to people who want to know how Python works and how it’s fun-
damentally different “under the hood.” That is, how does Python carry out
the operations internally? If you want more than just a simplistic introduction,
this book is for you.

Overland_Book.indb xviiiOverland_Book.indb xviii 8/31/17 12:56 PM8/31/17 12:56 PM

Preface xix

Why Python?
Of course, if you’re trying to decide between programming languages, you’ll
want to know why you should be using Python in the first place.

Python is quickly taking over much of the programming world. There are
some things that still require the low-level capabilities of C or C++, but you’ll
find that Python is a rapid application development tool; it multiplies the
effort of the programmer. Often, in a few lines of code, you’ll be able to do
amazing things.

More specifically, a program that might take 100 lines in Python could
potentially take 1,000 or 2,000 lines to write in C. You can use Python as
“proof of concept”: write a Python program in an afternoon to see whether
it fulfills the needs of your project; then after you’re convinced the program is
useful, you can rewrite it in C or C++, if desired, to make more efficient use of
computer resources.

With that in mind, I’ll hope you’ll join me on this fun, exciting, entertaining
journey. And remember this:

x = ['Python', 'is', 'cool']
print(' '.join(x))

Register your copy of Python Without Fear on the InformIT site for con-
venient access to updates and/or corrections as they become available. To
start the registration process, go to informit.com/register and log in or create
an account. Enter the product ISBN (9780134687476) and click Submit. Look
on the Registered Products tab for an Access Bonus Content link next to
this product, and follow that link to access any available bonus materials.
If you would like to be notified of exclusive offers on new editions and
updates, please check the box to receive email from us.

http://toinformit.com/register

This page intentionally left blank

xxi

Acknowledgments

It’s customary for authors to write an acknowledgments page, but in this case,
there’s a particularly good reason for one. There is no chapter in this book
that wasn’t strongly influenced by one of the collaborators: retired Microsoft
programmer (and software development engineer) John Bennett.

John, who has used Python for a number of years—frequently to help
implement his own high-level script languages—was particularly helpful in
pointing out that this book should showcase “the Python way of doing things.”
So the book covers not just how to transcribe a Python version of a C++
solution but rather how to take full advantage of Python concepts—that is, how
to “think in Python.”

I should also note that this book exists largely because of the moral support
of two fine acquisition editors: Kim Boedigheimer, who championed the
project early on, and Greg Doench, whom she handed the project off to.

Developmental and technical editors Michael Thurston and John Wargo made
important suggestions that improved the product. My thanks go to them, as well
as the editorial team that so smoothly and cheerfully saw the manuscript
through its final phases: Julie Nahil, Kim Wimpsett, Angela Urquhart, and
Andrea Archer.

Overland_Book.indb xxiOverland_Book.indb xxi 8/31/17 12:56 PM8/31/17 12:56 PM

Overland_Book.indb xxiiOverland_Book.indb xxii 8/31/17 12:56 PM8/31/17 12:56 PM

This page intentionally left blank

xxiii

Author Bio

At one time or another, Brian Overland was in charge of, or at least influential in,
documenting all the languages that Microsoft Corporation ever sold: Macro
Assembler, FORTRAN, COBOL, Pascal, Visual Basic, C, and C++. Unlike
some people, he wrote a lot of code in all these languages. He’d never document
a language he couldn’t write decent programs in.

For years, he was Microsoft’s “go to” man for writing up the use of utilities
needed to support new technologies, such as RISC processing, linker extensions,
and exception handling.

The Python language first grabbed his attention a few years ago, when he
realized that he could write many of his favorite applications—the Game of
Life, for example, or a Reverse Polish Notation interpreter—in a smaller space
than any computer language he’d ever seen.

When he’s not exploring new computer languages, he does a lot of other
things, many of them involving writing. He’s an enthusiastic reviewer of films
and writer of fiction. He’s twice been a finalist in the Pacific Northwest Literary
Contest.

Overland_Book.indb xxiiiOverland_Book.indb xxiii 8/31/17 12:56 PM8/31/17 12:56 PM

Overland_Book.indb xxivOverland_Book.indb xxiv 8/31/17 12:56 PM8/31/17 12:56 PM

This page intentionally left blank

1

1
Meet the Python

What if I told you there’s a computer language that’s easier to learn, easier to
get started with, and easier to accomplish a great deal with, using only a few
lines of code, than other computer languages?

In the opinion of millions, Python is that language. Derived from a lan-
guage called ABC (as in “simple as ABC”), it’s gained a massive worldwide
following over the last two decades. So many programmers have joined the
Python community that there are more than 100,000 free packages that work
with the basic Python setup.

Come join the Python stampede. In this book I show you how to get started
even if you have limited programming experience. I also steer you around the
“gotchas”—the things Python does so differently that they trip up experienced
programmers. This book is for new programmers as well as experienced pro-
grammers alike, and it discusses what goes on under the covers.

A Brief History of Python
Python was invented in 1991 by
Dutch programmer Guido van
Rossum, who derived much of it
from the ABC language (not to
be confused with C).

ABC had many features that
exist today in Python. Van Ros-
sum, whose title in the Python
world is Benevolent Dictator
for Life (BDFL), also incorpo-
rated elements of the Modula-3
language.

It’s as easy as
“ABC”!!

A B C

Overland_Book.indb 1Overland_Book.indb 1 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 1 Meet the Python2

Van Rossum named the language after the BBC comedy series Monty
Python’s Flying Circus, so the connection to pythons is indirect, although
troupe member John Cleese originally came up with “Python” as suggesting
something “slithering and slimy” (source: Wikipedia.org). So there you have
it—there is a connection to reptiles after all.

Since then, several versions of Python have been developed, adding important
capabilities, the latest of which is Python 3.0. This book uses Python 3.0,
although it includes notes about adapting examples to Python 2.0.

How Python Is Different
The first thing to know about Python is that Python is free.

Many Python extensions are free and come with the basic download. These
modules offer features such as math, date/time, fractions, randomization, and
tkinter, which supports a graphical user interface that runs across multiple
platforms. Again, all are free.

Python’s built-in numeric support is impressive, as it includes complex
numbers, floating-point, fractions (from the Fractions module), and “infinite
integers.”

Python has attracted an extraordinary following. Many developers provide
libraries—called packages—to their fellow Python programmers, mostly free
of charge. You can get gain access by searching for Python Package Index in
your Internet browser and then going to the site. As of this writing, the site
offers access to more than 107,000 packages.

At first glance, a Python program may look something like code in other
languages, but a close look reveals major differences.

 Unlike most languages, Python has no “begin block” or “end block” syntax—
all relationships are based on indentation! Although this might seem risky to a
C programmer, it enforces a consistent look that’s more comprehensible to
beginners.

 Python has no variable declarations. You create variables by assigning values
to them. This goes a long way toward simplifying the language syntactically,
but it also creates hidden “gotchas” at a deep level. This book will steer you
around them.

 Python is built heavily on the idea of iteration, which means looping through
sequences. This concept is built deeply into high-level structures (lists, dictio-
naries, and sets). Use them well, and you’ll be able to get a great deal done in
a small space.

Overland_Book.indb 2Overland_Book.indb 2 8/31/17 12:56 PM8/31/17 12:56 PM

http://Wikipedia.org

How This Book Works 3
1Python is often considered a “prototyping” or “rapid application development”

language because of these abilities. You can write a program quickly in Python.
If you later want to improve machine-level efficiency, you can later rewrite the
program in C or C++.

How This Book Works
I believe strongly in learning by example as well as by theory. The plan of
this book is to teach the basics of Python (as well as some intermediate and
advanced features) by doing the following:

 Introducing a Python feature, using syntax diagrams and short examples

 Showing a major example that demonstrates the practical application of the
feature

 Including a “How It Works” section that deconstructs the example code line
by line

 Listing a set of exercises that challenge you to do variations on the example

Because Python has an interactive development environment, IDLE, I often
invite you to follow along with the shorter examples, as well.

This book uses a number of icons in the margin to help give you additional
visual cues.

These sections describe some basic rule of Python syntax. Anything meant
to be entered at the keyboard precisely as shown (such as a keyword or punc-
tuation) is in bold. Meanwhile, placeholders, which contain text you supply
yourself, are in italics. For example, in the syntax for the global statement, the
keyword itself is in bold, while the name of the variable—which you supply—
is in italics.

global variable_name

This icon indicates a block of pseudocode, which systematically describes each
step of a program purely in English, not Python-ese. However, because Python
statements are often not so far from English, I don’t always need to use pseudocode.
It can still be helpful, on occasion, for summarizing program design.

This icon indicates a section that deconstructs every line of a major example,
or at least every line that isn’t already trivial.

Ke
yw

ord

K
ey

 S
yn

tax

Ps
eu

do

code

H
ow

 It

 Works

Overland_Book.indb 3Overland_Book.indb 3 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 1 Meet the Python4

This icon indicates a section that provides exercises based on the preced-
ing example. You’ll learn Python much faster if you try at least some of the
exercises.

This icon precedes a section that shows how to revise or greatly improve an
example. These are not included for every example. Where this book does use
them, it’s because the example used the more obvious way to do something;
the “optimized” approach will then show how the more experienced, sophisti-
cated Python programmer would handle the job.

Installing Python
The steps for installing Python are essentially the same regardless of whether
you have a Windows-based system, Macintosh, or any other system that Python
supports. Here are the basic steps:

1 Go to the Python home page: python.org.

2 Open the Downloads menu.

3 If a Downloads for Windows screen appears, click the Python 3.6.1 button. If
your system does not run Windows, you’ll need to select another operating sys-
tem by examining all the choices in the Downloads menu.

4 Click the Save File button.

5 Find the file you just saved; any system will generally have a place that it puts
downloads. This saved file contains the Python installer. Double-click the name
of this saved file and follow the instructions.

If all goes well, Python is installed on your computer with all the basic mod-
ules, tkinter (GUI development) included. Now you have a choice to make.
To start using Python, you can use “basic interactive mode”—which is func-
tional but nothing special—or you can use IDLE, the interactive development
environment.

I strongly recommend the latter. IDLE does everything the basic interactive
mode does, and a great deal more. In the next section, I describe some ways of
using IDLE that can save you a lot of time later.

Here’s what basic interactive mode looks like. It offers only rudimentary
editing and no support for loading programs from text files.

Ex
er

cis
es

Op
ti

m

izing

Overland_Book.indb 4Overland_Book.indb 4 8/31/17 12:56 PM8/31/17 12:56 PM

http://python.org

Installing Python 5
1

Here’s what IDLE looks like. Notice all the menus it provides. You can do
a great deal more—including loading programs from text files and debugging
them—than you can with the basic interactive mode.

From within Windows, you should find the basic interactive-mode applica-
tion right on the Start menu. But this is not the Python you want. It’s well worth
your while to select Programs, select Python, and then finally select IDLE.

Overland_Book.indb 5Overland_Book.indb 5 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 1 Meet the Python6

With Mac systems (assuming you have downloaded Python, including
IDLE), you may need to get to IDLE by opening Finder and selecting Applica-
tions; then select Python and finally select IDLE. Your download may or may
not even have basic mode.

Begin Using Python with IDLE
Start IDLE, the interactive development environment. I advise you to make
this your home base, the place you’ll want to spend most of your time while
learning Python. You should use your system to put the icon on your desktop
so that you can easily start IDLE any time you want.

As soon as you start IDLE, you’ll see a prompt, like this:

>>>

In response to this prompt, you can enter a Python statement or expression.
You can also get help by typing the help command followed by a type name,
like this:

>>>help(str)

Here I’ve shown the user input—the characters you would enter at the
keyboard—in bold; output from Python is in normal font. I follow this con-
vention throughout the book.

Correcting Mistakes from Within IDLE
One of the best features of IDLE is that it makes error correction easy. Let’s
say you sit down and enter the following:

>>>x = z

As you’ll learn in upcoming chapters, this assignment statement produces
an error if the variable z has not already been assigned a value. The environ-
ment responds by printing a message like this:

Traceback (most recent call last):
 File "<pyshell#205>", line 1, in <module>
 x = z
NameError: name 'z' is not defined

In this case, it’s easy to reenter the offending statement. But suppose you
have a much longer block of code that is erroneous and you don’t want to
retype the whole thing. Here’s an example:

Overland_Book.indb 6Overland_Book.indb 6 8/31/17 12:56 PM8/31/17 12:56 PM

Dealing with Ends of Lines 7
1def print_nums(n):

 i = 1
 while i <= n:
 print(i, end='\t')
 i +++= 1

The problem with this block of code is that it ends with the line i +++= i
instead of i += i. There was supposed to be only one plus sign (+).

You’d like to fix this error but don’t want to retype all those statements.
Fortunately, Python makes error correction easy. Just do the following:

1 Position the cursor on any line in the block of code. (If the block of code is only
one line, make sure the cursor is at the end of the line.)

2 Press the Enter key.

Voilà! The entire block of code magically reappears, with the cursor positioned
at the end; you can then fix whatever you need to fix. Use the arrow keys to go back
to any statement and then make your corrections. Finally, to resubmit a block of
code, place the cursor at the end of the last line again and press Enter twice.

Remember this technique. It will save you many hours of work.

Dealing with Ends of Lines
Because of the way in which Python interprets lines, you cannot freely cross
physical-line borders as you can in C. But what if you need to enter an excep-
tionally long line?

The end of a physical line usually terminates a Python statement, because
there is no statement-terminator syntax as in C. However, an open parenthesis,
curly brace, or bracket automatically continues the virtual line to the next
physical line. Here’s an example:

total_amount = (this_amount + that_amount
 + a_big_number + count + even_more amounts)

The open parenthesis, (, on the top line creates a situation in which you
can freely continue the statement onto other lines, until this parenthesis is
matched. This is one case in which indentation doesn’t matter but is only for
readability. (Usually, Python forces indentation to be consistent.)

Occasionally, you may not be able to rely on this technique. If you really need
to continue a physical line and have no alternative, you can use a backslash.

>>>my_str = 'I am typing a very long \
line of code.'

Overland_Book.indb 7Overland_Book.indb 7 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 1 Meet the Python8

This example raises a question: How would you type a literal backslash in
quoted string? The answer is that you’d use a double backslash, \\, to represent
a literal backslash.

>>>my_str = 'I am typing a backslash: \\ \
in a long line of code.'

Chapter 7, “Python Strings,” will get into the details of creating quoted
strings in much greater detail.

In the last few pages, I’ve given you some Python survival skills. Now, if
you’re ready, it’s time to go on a Python safari.

Ad ditional Help: Online Sources
In this chapter, I’ve strongly suggested you download Python 3.0 or newer. If
you are using an older version of Python 2.0, most of the code in this book will
work, but you may need to make some adjustments. Although I’ve included
some version notes, you can find additional help on the following websites:

wiki.python.org/moin/Python2orPython3

wiki.python.org/moin/PortingToPy3k/BilingualQuickRef

Although many chapters in this book feature examples that are relatively
short and therefore easy to type in yourself, some of the later chapters feature
longer program listings. You may find it helpful to download the code. You
can find the code listings at this site:

brianoverland.com/books

Overland_Book.indb 8Overland_Book.indb 8 8/31/17 12:56 PM8/31/17 12:56 PM

http://wiki.python.org/moin/Python2orPython3
http://wiki.python.org/moin/PortingToPy3k/BilingualQuickRef
http://brianoverland.com/books

9

2 A Python Safari:
Numbers

Now that you’ve installed Python (you did install it, didn’t you?), you’re ready to
go. The IDLE interactive environment is your starting point for Python safaris.
But it’s not just for beginners; for a long time, you should find it useful as a
learning device as you advance.

But now—let’s start! This chapter covers the following:

 Python “infinite” integers

 Integer vs. floating-point operations

 How variables are used in Python

Python and Numbers
Start IDLE. Up should come a prompt, although you may have to hit Enter
one time to get it to appear.

>>>

Type in your favorite number and press Enter again. Let’s say it’s five.

>>>5
5

Here I use bold—as I will throughout most of this book—to show user
input. Entering 5 and getting 5 in response is not that exciting. But let’s do a
calculation.

>>>10 + 15
25

Overland_Book.indb 9Overland_Book.indb 9 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 2 A Python Safari: Numbers10

So…interactive Python is a handy calculator! It’s obvious what + does. But
as with other programming languages, we can throw in subtraction (–) and
multiplication (*).

>>>25 - 5 * 2
15

There’s an issue of precedence here. If you subtract first, you get a final
result of 40. But standard conventions of math say you multiply first, so 15 is
correct. We could’ve used parentheses to get a different result.

>>>(25 - 5) * 5
40

So far, Python just appears to be a convenient one-line calculator. But wait.
The next thing I want to show you is that Python—almost (but not quite)
uniquely among programming languages—can handle extraordinarily large
numbers.

The easiest way to generate super-large numbers is to use the exponent
operator. This operator consists of two asterisks (**) in a row. For example,
taking 3 to the 4th power gives us 3 times 3 times 3 times 3, or 81.

>>>3 ** 4
81

Eighty-one isn’t that big, but 9 to the 30th power is 30 factors of 9 multi-
plied together…and that’s a pretty big number.

>>>9 ** 30
42391158275216203514294433201

You might be tempted to say, “I’ve used floating-point numbers, and they
can get bigger than this, so what’s so impressive?”

In Python, as in most other programming languages, integers are abso-
lutely precise, which means that no matter how high they get, adding 1 always
creates a new value. That is not true of floating-point numbers, as you’ll see.

For example, enter 10**40 and 10**40+1 and see what happens.

>>>10 ** 40
100
>>>10 ** 40 + 1
10000000000000000000000000000000000000001

You should be able to see that these two numbers are distinct; they are not
equal. Just look at the last digit in each number and compare. If you apply the
test-for-equality operator, you can verify this directly in Python.

Overland_Book.indb 10Overland_Book.indb 10 8/31/17 12:56 PM8/31/17 12:56 PM

Python and Numbers 11
2

Test-for-equality (==) is an operator you’ll probably use a great deal in
Python programming. This operator produces the value True or False,
which are special reserved words, called keywords. That means they have a
special predefined meaning to the Python language.

If the two expressions produce indistinguishable results, then this operator
will produce True.

>>>10 ** 40 == 10 ** 40 + 1
False

The result, False, means that Python recognizes that the results on either
side of the equal signs (==) are not equal. So, adding 1 does produce a truly
distinct number.

That, in turn, is amazing, because it shows the usefulness of super-large integers;
they never lose their precision. Even if you’re counting a very large population, one
item at a time, you can rest assured that each time you add 1, you get a distinct value.

This Python “infinite integer” feature is impressive. You even can handle—
with absolute precision—some legendary large numbers. For example, you
may have heard of the term google (also spelled googol). In math, a google (or
googol) is 10 to the 100th power, an almost unimaginably large number.

But it’s a piece of cake to handle this number in Python.

>>>10 ** 100
1000
000

You can start with this number and then count forward one at a time. As
before, adding 1 produces a distinct number, because there’s no loss of precision.

>>>10 ** 100 + 1
1000
001

By the way, there is a subtlety here. In the absence of parentheses, the expo-
nent operator is applied before addition. There is a definite precedence to
Python operators, as listed in Appendix A.

Why Doesn’t C++ Support Infinite Integers?

Among programming languages in wide use today, Python is the only lan-
guage that supports “infinite integers” in its standard form. Why doesn’t
C++ support this feature?

continued on next page

Interlude

Overland_Book.indb 11Overland_Book.indb 11 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 2 A Python Safari: Numbers12

continued

Using the class feature of C++, which is very powerful, you could in
fact create an infinite-integer class for yourself. My book C++ Without
Fear doesn’t discuss how to do that exactly, but by using all the tools in
that book, you could figure it out.

But it would not be easy. Creating a super-integer class that supports
addition and subtraction would not be so difficult, but multiplication and
division are tough. The Python integer type was created by math special-
ists who understand optimal ways to multiply and divide exceptionally
large numbers. The good news is that when you use Python, all these
problems have been solved for you.

Although Python’s integer capacity is impressive, there is ultimately a limitation—
imposed not by Python but by the computer’s hardware capabilities. This is a
fuzzy limitation, admittedly. You can go much bigger than a google, specify-
ing (for example) 10 to the 200th power.

>>>10 ** 200
1000
00
00
000000000000000000000000000000000

This is a number so large it is beyond the ability of the human mind to
grasp. Yet Python can handle this number.

Mathematicians can think of far higher numbers still. A google-plex is 10
raised to the power of a google. This is easy enough to specify.

10 ** (10 ** 100)

But as they say on television, don’t try this at home! Printing out such a
number would be 1 followed by a google zeros! Just the number of zeroes the
computer would have to print would be larger than the number of atoms in
the universe, and that far exceeds the ability of your computer to print zeroes.

Before we leave “the google” altogether, consider that we can use the abili-
ties in this section to solve problems not even solvable in most programming
languages—that is, not without great difficulty. Consider the problem of tak-
ing the number google plus 1 and then determining whether it is divisible by 7.

The remainder operator (%), which has the same precedence as multiplica-
tion and division, comes to our aid here. This operator produces the remainder
after division; if a number is evenly divisible by 7, then—after division by 7—it
will produce a remainder of 0. Let’s try this.

Interlude

Overland_Book.indb 12Overland_Book.indb 12 8/31/17 12:56 PM8/31/17 12:56 PM

Python and Numbers 13
2

>>>(10 ** 100 + 1) % 7
5

What did we just learn? The first number bigger than a google (which is a
google plus 1) yields a remainder of 5 if you divide by 7. It is therefore not a mul-
tiple of 7. With a little mathematical reasoning, you can quickly infer that the
smallest integer bigger than a google, which is a multiple of 7, is a google plus 3.

That is a fact that would be difficult or impossible to determine with other
programming languages.

Ex
er

cis
es

 EXERCISES

Exercise 2.1.1. Would you expect the power operator (**) to take precedence over
multiplication? Try a calculation to test your guess.

Exercise 2.1.2. Use Python to generate the result of 7 to the 40th power.

Exercise 2.1.3. How big, precisely, is the address space of a 64-bit architecture
computer? Bear in mind that for each additional bit, the address space dou-
bles. Use Python to generate this number.

Exercise 2.1.4. Use Python to help determine the first number bigger than a google
that is divisible by 13. You may need to use a little trial and error, but you
shouldn’t need too much.

How Big Is a Google?

The best estimates by scientists now say the number of elementary parti-
cles in our physical universe—counting all electrons, protons, neutrons,
and so on—is around 10 to the 80th power.

The number of grains of sand on our planet has been estimated at a
“mere” 7.5 times 10 to the 18th power. Therefore, the number of particles
in the universe is (no surprise!) incomprehensibly larger.

Although 10 to the 80th is pretty big, it still falls short of a google by
10 to the 20th, and 10 to the 20th is 1 followed by 20 zeroes. That number
itself is not so small.

10,000,000,000,000,000,000,000

That is to say, 10,000 times a billion times another billion. What Carl
Sagan called “billions and billions.” So, if every universe was like our own,
it would take all the particles in that many universes to equal a google!

continued on next page

Interlude

Overland_Book.indb 13Overland_Book.indb 13 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 2 A Python Safari: Numbers14

continued

The base number here—10 to the 80th power—is just a few powers of 10
short of the estimated size of the physical universe in cubic centimeters.
This follows from the estimate that the diameter of the physical universe
is 10 to the 26th meters across.

But as far as mathematicians are concerned, we’ve hardly gotten
started. The number called a google-plex can be expressed as 1 followed
by a google’s worth of zeroes. Therefore, just to write out the number
using standard notation would be 1 followed by so many zeroes they
could not fit into the universe, if each 0 was written on its own little block
a 10th of a meter (roughly 3 inches) in diameter.

It would take “billions and billions” of physical universes like our own
just to find space to write down all the zeroes in a google-plex!

Fortunately, scientific notation and substitution makes it possible to
write down these figures, even though they are so large as to be far beyond
corresponding to anything in the universe.

google = 10 ** 100
google-plex = 10 ** google

As I’ve shown in this chapter, Python is good at handling numbers in the
range of a google or even a google squared—which would be 1 followed by 200
zeroes. Even division between two such quantities is fast and efficient. But don’t
ask Python to try to deal with a google-plex, which is far beyond the ability of
Python to handle. It’s really only comprehensible as a theoretical notion.

Oh, and the physical constant that comes closest to a google? That would
be the density of the universe (in kilograms per cubic meter) at the time of the
Big Bang—or rather one unit of Planck time immediately after the Big Bang.
That number is 10 to the 96th power, and it still comes up short.

Python and Floating-Point Numbers
Another operation, of course, is division. Division is special, because even
though you use two integers (an integer being a number with no fractional
portion), division has the possibility of producing a fractional result; if it is
fractional, it will be stored in floating-point format.

>>>15 / 2
7.5

Unfortunately, here is where version differences raise their ugly head. This is
the result you can expect to see with Python version 3.x. With version 2.x, if two

Interlude

Overland_Book.indb 14Overland_Book.indb 14 8/31/17 12:56 PM8/31/17 12:56 PM

Python and Floating-Point Numbers 15
2

integers are involved in division, the result is automatically rounded down to the
nearest integer. To get the same effect with version 3.x, use integer division (//).

>>>15 // 2
7

This looks like the remainder is being thrown away. Indeed it is. But you
can always use the remainder-division operator (%) to get that quantity.

>>>15 % 2
1

Version Ë In version 2.x, all division between two integer operands is interpreted
as integer, or rather “ground” division. That is to say, if both operands are
integers, division will throw fractional portions away. Sadly, Python 3.x is not
100 percent backward compatible, and integer division is one of those areas in
which there is a significant difference.

With version 2.x, to force division to be precise, you’d need to promote one
of the operands to floating point, either by specifying it in floating-point format
(such as “2.0”) or by using a float conversion.

>>>15 / float(2)
7.5

 Ç Version

For the most part, you don’t need to worry about the details of how the
computer carries out floating-point math. However, there are a few things you
do need to know.

First, floating-point numbers have the capacity to represent fractions. For
that reason, there are many situations in which you’ll want to use floating point.

Second, to specify floating-point format, just use a decimal point. The fol-
lowing numbers are both considered floating point by Python, even though
the second case contains a zero fractional portion:

>>>1.75
1.75
>>>9.0
9.0

The third thing to understand about floating-point format is that you can
freely combine integer and floating-point expressions. Python will happily
promote an integer expression to floating point so that the numbers can be
freely combined.

>>>1 + 2.5
3.5

Overland_Book.indb 15Overland_Book.indb 15 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 2 A Python Safari: Numbers16

Floating-point numbers, unlike integers, have limited precision. This means
that very large floating-point numbers lose the ability to distinguish between
one number and the next. Consider the following number, formed by taking 9
to the 30th power—but doing so with floating-point math, not integer:

>>>9.0 ** 30
4.23911582752162e+28

We used a decimal point in 9.0, so the expression is treated as floating point,
not integer. With large floating-point numbers (or tiny amounts extremely
close to 0.0), Python switches to scientific notation. The number shown here is
approximately 4.239 times 10 to the 28th power.

If you now add 1 (either floating-point or integer) to this result, you’ll see
that there’s a limited precision. The following produces a result that isn’t dis-
tinguishable from the previous result:

>>>9.0 ** 30 + 1
4.23911582752162e+28

There are cases where you might want to use this number in counting, and
in such cases, it’s critical that adding 1 produces a new number. So if we test the
two quantities for equality (==), we should get False. But look what happens:

>>>9.0 ** 30 == 9.0 ** 30 + 1.0
True

In other words, we added 1 to the quantity 9.0 ** 30 and failed to get a new
number.

Think about what this means. We added 1 to a number, which should pro-
duce a different number not equal to the first! Yet Python says they are equal.
This means either that Python doesn’t understand math or that there was a
rounding error because of loss of precision.

As we saw in the previous section, adding 1 to the quantity 9 ** 30 (which is
an integer expression, not floating point) does produce a new number. That’s
because integers, unlike floating-point numbers, are always precise.

The moral of the story is, if you have a number that’s used for counting or
indexing purposes, it should be an integer.

Ex
er

cis
es

 EXERCISES

Exercise 2.2.1. Describe in English the meaning of the expression
5.23911582752162e+22.

Exercise 2.2.2. Based on how the expressions were evaluated in the previous exam-
ples, what would you say is the precedence of test-for-equality (==) relative to
arithmetic operators (+, –, /, *, **)?

Overland_Book.indb 16Overland_Book.indb 16 8/31/17 12:56 PM8/31/17 12:56 PM

Assigning Numbers to Variables 17
2

Assigning Numbers to Variables
So far, we’ve been using Python as a super-powered calculator, able to handle
numbers such as a google.

But programming requires variables. A variable is simply a name to which
we assign a data value. In Python, any variable can refer to any type of data at
any time. That’s because Python variables have no type; only data objects do.
I’ll get into the consequences of that fact later.

It’s easy to start using variables in Python. For example, you can enter the
following:

>>>a = 1
>>>b = 2
>>>a + b
3

If you’ve used any other programming language before—or even if you
haven’t—what happened here should be clear. Even if this is your first
attempt at programming, this should still be easy to understand. Here’s
what we did:

1 Associate the variable name a with the value 1.

2 Associate the variable name b with the value 2.

3 Add a and b together, which represent 1 and 2, respectively. Python responds as if
1 + 2 were entered.

Although Python may seem lax, there are restrictions. The third statement
in this example used a + b on the right side of the assignment; but this was
valid only because a and b had already been created. Here is the general rule,
and it’s the most fundamental rule in Python:

 A variable must be created before being used, but an assignment (=) creates a
variable if it does not already exist.

One upshot of this rule is that—with few exceptions—a variable must
appear on the left side of an assignment before it appears on the right.

For example, you can create a variable named my_amount, but if a new
variable appears on the right of the assignment, that’s an error. Here, the use
of x on the right side causes an error:

my_amount = x # Error! x not yet created.

Overland_Book.indb 17Overland_Book.indb 17 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 2 A Python Safari: Numbers18

The problem was that this statement used x, even though x didn’t represent
anything. The solution is to create x first, by assigning it a value. Only then
can x be used in any other context.

>>>x = 10
>>>my_amount = x

Python has no trouble with these statements now. The effect in this case is
to associate both of the names, x and my_amount, with the data value, 10.

What happens if we assign a value to a variable a second time? The answer is

 First, the value on the right is fully calculated.

 Second, any previous association the variable had is now canceled.

 The variable is now associated with the value on the right side of the equal
sign (=).

Once again, it doesn’t matter whether the variable previously referred to
integer or floating-point data; the variable becomes associated with the new
value. Here’s an example:

>>>x = 7.59
>>>x
7.59
>>>x = 2
>>>x
2

A variable may appear on both sides of an assignment—but only if it was
previously created by another assignment. The old value is used in the calcula-
tion of the new. Here’s an example:

>>>n = 5
>>>n = n + 1
>>>n
6

Another rule is that every name in the Python language is case-sensitive.
Consequently, the following produces 101, not 200!

>>>a = 1
>>>A = 100
>>>a + A
101

Overland_Book.indb 18Overland_Book.indb 18 8/31/17 12:56 PM8/31/17 12:56 PM

Assigning Numbers to Variables 19
2

Assignment, in Python, is a statement. That means there’s a strict syntax
that determines how you can use it. With some exceptions we’ll cover later,
this is how you use assignment:

variable_name = expression

Remember that a single equal sign (=) is used here, not double (==), which
differentiates assignment from test-for-equality.

As for variable names, rules are as follows:

 The first letter in a variable (or other symbolic name) must be an underscore
(_) or a letter.

 The other characters may be any combination of underscores, letters, and
numerals.

The expression on the right can be a single value, or it can be more com-
plex. Here’s an example:

>>>my_num1 = 7
>>>my_num2 = my_num1 + (3.0 / 2)
>>>my_num2
8.5

The first line here creates the variable my_num1, through assignment. The
second statement creates the variable my_num2 while using my_num1 on the right;
this usage of my_num1 is valid because my_num1 was already created. The next
line is just the name my_num2. When you are in the interactive environment
(IDLE) and you enter a variable name by itself, Python prints its value.

Once we get to script programming, you’ll find variables to be essential.
But we can use variables now to build complex expressions.

For example, consider the problem of using the quadratic formula, which is
as follows:

x ==

b b2 4–±– ac
2a

Taking a square root is the same operation as raising it to the power of one
half (0.5). We therefore have all the tools we need to use this formula.

As you may recall from high school, the quadratic formula solves an equa-
tion of the following form:

0 = ax2 + bx + c

K
ey

 S
yn

tax

Overland_Book.indb 19Overland_Book.indb 19 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 2 A Python Safari: Numbers20

One quadratic I’ve always been fascinated with is the one that determines
the golden ratio, in which A/B equals (A + B)/A. One of the properties is that the
square of this number is 1 more than the number itself.

x2 = x + 1

This gives us a quadratic equation like this:

0 = x2 – x – 1

This gives us values for a, b, and c, which we can enter into Python.

>>>a = 1
>>>b = -1
>>>c = -1

Now let’s apply the quadratic formula. First, let’s get the determinant,
which is the portion of the formula under the square root sign. I’ll abbreviate
this value as determ to make for less typing.

>>>determ = (b * b - 4 * a * c) ** 0.5

Again, assignment creates a variable, in this case, determ. As always, we
can get the value of this variable by entering it alone on a line.

>>>determ
2.23606797749979

Looking back at the full quadratic formula, it’s not too hard to plug this
into the rest of the formula to get the final answer or, rather, one of them.

>>>x = (-b + determ) / (2 * a)

This statement creates x as a variable by assigning a value to it, and now we
can get its value.

>>>x
1.618033988749895

This result is indeed the golden ratio, to a high degree of precision!

Ex
er

cis
es

 EXERCISES

Exercise 2.3.1. If you look closely at the quadratic formula and the steps we took
to get a value, you should see that there is another value possible for x. Using a
statement similar to the one we just entered, get this second value for x. (Hint:
if you turn a few pages back, you’ll see that the formula uses a plus-or-minus
sign, indicating that there are two different solutions.)

Overland_Book.indb 20Overland_Book.indb 20 8/31/17 12:56 PM8/31/17 12:56 PM

Assigning Numbers to Variables 21
2

Exercise 2.3.2. What is the problem, if any, with the following series of Python
statements?

he_loves = 10
she_loves = -10
Love = 2
they_love = he_loves * she_loves + love

Exercise 2.3.3. Which of the following are valid names for variables?

amount
amount55
_amount
1x
y1
2y
n2

What Do Python Assignments Really Do?

For C, C++, and BASIC, the way I usually define a variable is as a named
location that stores a value. In other words, a variable is like a little box
that has a name on it, into which you can put any value you want as long
as it is in the right format.

Such “little boxes,” it should be noted, have a series of attributes in
C++. A variable, or “box,” is declared to only be able to hold certain
kinds of data. If I try to put any other data in there, the result is an error.

But Python does things differently. This difference may seem trivial
right now. But later in the book, it will matter greatly.

Consider how things are done in other languages. Again, most variables can
be viewed as little boxes that contain values for as long as you want them to:

5

a

5

b

5

c

Python instead treats every variable as a reference. A reference, in turn,
has some similarities to C pointers or to Windows handles. The key point
is that when multiple variables are references (that is, refer to) the same
value, they do not store the value separately. Let’s say several variables are
assigned the value 5.

continued on next page

Interlude

Overland_Book.indb 21Overland_Book.indb 21 8/31/17 12:56 PM8/31/17 12:56 PM

