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Preface

There’s a lot of free programming instruction out there, and much of it’s about 
Python. So for a book to be worth your while, it’s got to be good…it’s got to 
be really, really, really good.

I wrote this book because it’s the book I wish was around when I was first 
learning Python a few years back. Like everybody else, I conquered one concept 
at a time by looking at almost a dozen different books and consulting dozens 
of web sites.

But this is Python, and it’s not supposed to be difficult!
The problem is that not all learning is as easy or fast as it should be. And 

not all books or learning sites are fun. You can, for example, go from site to 
site just trying to find the explanation that really works. 

Here’s what this book does that I wish I’d had when I started learning.

Steering Around the “Gotchas” 
Many things are relatively easy to do in Python, but a few things that ought 
to be easy are harder than they’d be in other languages. This is especially 
true if you have any prior background in programming. The “Python way” 
of doing things is often so different from the approach you’d use in any other 
language, you can stare at the screen for hours until someone points out the 
easy solution.

Or you can buy this book.

How to Think “Pythonically”
Closely related to the issue of “gotchas” is the understanding of how to think 
in Python. Until you understand Python’s unique way of modeling the world, 
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Prefacexviii

you might end up writing a program the way a C programmer would. It runs, 
but it doesn’t use any of the features that make Python such a fast develop-
ment tool.

a_list = ['Don\'t', 'do', 'this', 'the' ,'C', 'way']
for x in a_list:
    print(x, end=' ')

This little snippet prints

Don't do this the C way

Intermediate and Advanced Features
Again, although Python is generally easier than other languages, that’s not 
universally true. Some of the important intermediate features of Python are 
difficult to understand unless well explained. This book pays a lot of atten-
tion to intermediate and even advanced features, including list comprehension, 
generators, multidimensional lists (matrixes), and decorators.

Learning in Many Different Styles
In this book, I present a more varied teaching style than you’ll likely find else-
where. I make heavy use of examples, of course, but sometimes it’s the right 
conceptual figure or analogy that makes all the difference. Or sometimes it’s 
working on exercises that challenge you to do variations on what’s just been 
taught. But all of the book’s teaching styles reinforce the same ideas.

What’s Going on “Under the Hood”
Although this book is for people who may be new to programming altogether, 
it also caters to people who want to know how Python works and how it’s fun-
damentally different “under the hood.” That is, how does Python carry out 
the operations internally? If you want more than just a simplistic introduction, 
this book is for you.
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Why Python?
Of course, if you’re trying to decide between programming languages, you’ll 
want to know why you should be using Python in the first place.

Python is quickly taking over much of the programming world. There are 
some things that still require the low-level capabilities of C or C++, but you’ll 
find that Python is a rapid application development tool; it multiplies the 
effort of the programmer. Often, in a few lines of code, you’ll be able to do 
amazing things.

More specifically, a program that might take 100 lines in Python could 
potentially take 1,000 or 2,000 lines to write in C. You can use Python as 
“proof of concept”: write a Python program in an afternoon to see whether 
it fulfills the needs of your project; then after you’re convinced the program is 
useful, you can rewrite it in C or C++, if desired, to make more efficient use of 
computer resources.

With that in mind, I’ll hope you’ll join me on this fun, exciting, entertaining 
journey. And remember this:

x = ['Python', 'is', 'cool']
print(' '.join(x))

Register your copy of Python Without Fear on the InformIT site for con-
venient access to updates and/or corrections as they become available. To 
start the registration process, go to informit.com/register and log in or create 
an account. Enter the product ISBN ( 9780134687476) and click Submit. Look 
on the Registered Products tab for an Access Bonus Content link next to 
this product, and follow that link to access any available bonus materials. 
If you would like to be notified of exclusive offers on new editions and 
updates, please check the box to receive email from us.

http://toinformit.com/register
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1

1
Meet the Python

What if I told you there’s a computer language that’s easier to learn, easier to 
get started with, and easier to accomplish a great deal with, using only a few 
lines of code, than other computer languages?

In the opinion of millions, Python is that language. Derived from a lan-
guage called ABC (as in “simple as ABC”), it’s gained a massive worldwide 
following over the last two decades. So many programmers have joined the 
Python community that there are more than 100,000 free packages that work 
with the basic Python setup.

Come join the Python stampede. In this book I show you how to get started 
even if you have limited programming experience. I also steer you around the 
“gotchas”—the things Python does so differently that they trip up experienced 
programmers. This book is for new programmers as well as experienced pro-
grammers alike, and it discusses what goes on under the covers.

A Brief History of Python
Python was invented in 1991 by 
Dutch programmer Guido van 
Rossum, who derived much of it 
from the ABC language (not to 
be confused with C).

ABC had many features that 
exist today in Python. Van Ros-
sum, whose title in the Python 
world is Benevolent Dictator 
for Life (BDFL), also incorpo-
rated elements of the Modula-3 
language.

It’s as easy as
“ABC”!!

A  B  C
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Chapter 1  Meet the Python2

Van Rossum named the language after the BBC comedy series Monty 
Python’s Flying Circus, so the connection to pythons is indirect, although 
troupe member John Cleese originally came up with “Python” as suggesting 
something “slithering and slimy” (source: Wikipedia.org). So there you have 
it—there is a connection to reptiles after all.

Since then, several versions of Python have been developed, adding important 
capabilities, the latest of which is Python 3.0. This book uses Python 3.0, 
although it includes notes about adapting examples to Python 2.0.

How Python Is Different
The first thing to know about Python is that Python is free.

Many Python extensions are free and come with the basic download. These 
modules offer features such as math, date/time, fractions, randomization, and 
tkinter, which supports a graphical user interface that runs across multiple 
platforms. Again, all are free.

Python’s built-in numeric support is impressive, as it includes complex 
numbers, floating-point, fractions (from the Fractions module), and “infinite 
integers.”

Python has attracted an extraordinary following. Many developers provide 
libraries—called packages—to their fellow Python programmers, mostly free 
of charge. You can get gain access by searching for Python Package Index in 
your Internet browser and then going to the site. As of this writing, the site 
offers access to more than 107,000 packages. 

At first glance, a Python program may look something like code in other 
languages, but a close look reveals major differences.

 Unlike most languages, Python has no “begin block” or “end block” syntax—
all relationships are based on indentation! Although this might seem risky to a 
C programmer, it enforces a consistent look that’s more comprehensible to 
beginners.

 Python has no variable declarations. You create variables by assigning values 
to them. This goes a long way toward simplifying the language syntactically, 
but it also creates hidden “gotchas” at a deep level. This book will steer you 
around them.

 Python is built heavily on the idea of iteration, which means looping through 
sequences. This concept is built deeply into high-level structures (lists, dictio-
naries, and sets). Use them well, and you’ll be able to get a great deal done in 
a small space.
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How This Book Works 3
1Python is often considered a “prototyping” or “rapid application development” 

language because of these abilities. You can write a program quickly in Python. 
If you later want to improve machine-level efficiency, you can later rewrite the 
program in C or C++.

How This Book Works
I believe strongly in learning by example as well as by theory. The plan of 
this book is to teach the basics of Python (as well as some intermediate and 
advanced features) by doing the following:

 Introducing a Python feature, using syntax diagrams and short examples

 Showing a major example that demonstrates the practical application of the 
feature

 Including a “How It Works” section that deconstructs the example code line 
by line

 Listing a set of exercises that challenge you to do variations on the example

Because Python has an interactive development environment, IDLE, I often 
invite you to follow along with the shorter examples, as well.

This book uses a number of icons in the margin to help give you additional 
visual cues.

These sections describe some basic rule of Python syntax. Anything meant 
to be entered at the keyboard precisely as shown (such as a keyword or punc-
tuation) is in bold. Meanwhile, placeholders, which contain text you supply 
yourself, are in italics. For example, in the syntax for the global statement, the 
keyword itself is in bold, while the name of the variable—which you supply—
is in italics.

global variable_name

This icon indicates a block of pseudocode, which systematically describes each 
step of a program purely in English, not Python-ese. However, because Python 
statements are often not so far from English, I don’t always need to use pseudocode. 
It can still be helpful, on occasion, for summarizing program design.

This icon indicates a section that deconstructs every line of a major example, 
or at least every line that isn’t already trivial.

Ke
yw

ord

K
ey

 S
yn

tax

Ps
eu

do

code

H
ow

 It

 Works 
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Chapter 1  Meet the Python4

This icon indicates a section that provides exercises based on the preced-
ing example. You’ll learn Python much faster if you try at least some of the 
exercises.

This icon precedes a section that shows how to revise or greatly improve an 
example. These are not included for every example. Where this book does use 
them, it’s because the example used the more obvious way to do something; 
the “optimized” approach will then show how the more experienced, sophisti-
cated Python programmer would handle the job.

Installing Python 
The steps for installing Python are essentially the same regardless of whether 
you have a Windows-based system, Macintosh, or any other system that Python 
supports. Here are the basic steps:

1 Go to the Python home page: python.org.

2 Open the Downloads menu.

3 If a Downloads for Windows screen appears, click the Python 3.6.1 button. If 
your system does not run Windows, you’ll need to select another operating sys-
tem by examining all the choices in the Downloads menu.

4 Click the Save File button.

5 Find the file you just saved; any system will generally have a place that it puts 
downloads. This saved file contains the Python installer. Double-click the name 
of this saved file and follow the instructions.

If all goes well, Python is installed on your computer with all the basic mod-
ules, tkinter (GUI development) included. Now you have a choice to make. 
To start using Python, you can use “basic interactive mode”—which is func-
tional but nothing special—or you can use IDLE, the interactive development 
environment. 

I strongly recommend the latter. IDLE does everything the basic interactive 
mode does, and a great deal more. In the next section, I describe some ways of 
using IDLE that can save you a lot of time later.

Here’s what basic interactive mode looks like. It offers only rudimentary 
editing and no support for loading programs from text files.
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Here’s what IDLE looks like. Notice all the menus it provides. You can do 
a great deal more—including loading programs from text files and debugging 
them—than you can with the basic interactive mode.

From within Windows, you should find the basic interactive-mode applica-
tion right on the Start menu. But this is not the Python you want. It’s well worth 
your while to select Programs, select Python, and then finally select IDLE. 
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With Mac systems (assuming you have downloaded Python, including 
IDLE), you may need to get to IDLE by opening Finder and selecting Applica-
tions; then select Python and finally select IDLE. Your download may or may 
not even have basic mode.

Begin Using Python with IDLE
Start IDLE, the interactive development environment. I advise you to make 
this your home base, the place you’ll want to spend most of your time while 
learning Python. You should use your system to put the icon on your desktop 
so that you can easily start IDLE any time you want.

As soon as you start IDLE, you’ll see a prompt, like this:

>>>

In response to this prompt, you can enter a Python statement or expression. 
You can also get help by typing the help command followed by a type name, 
like this:

>>>help(str)

Here I’ve shown the user input—the characters you would enter at the 
keyboard—in bold; output from Python is in normal font. I follow this con-
vention throughout the book.

Correcting Mistakes from Within IDLE
One of the best features of IDLE is that it makes error correction easy. Let’s 
say you sit down and enter the following:

>>>x = z

As you’ll learn in upcoming chapters, this assignment statement produces 
an error if the variable z has not already been assigned a value. The environ-
ment responds by printing a message like this:

Traceback (most recent call last):
  File "<pyshell#205>", line 1, in <module>
    x = z
NameError: name 'z' is not defined

In this case, it’s easy to reenter the offending statement. But suppose you 
have a much longer block of code that is erroneous and you don’t want to 
retype the whole thing. Here’s an example:
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1def print_nums(n):

    i = 1
    while i <= n:
        print(i, end='\t')
        i +++= 1

The problem with this block of code is that it ends with the line i +++= i
instead of i += i. There was supposed to be only one plus sign (+).

You’d like to fix this error but don’t want to retype all those statements. 
Fortunately, Python makes error correction easy. Just do the following:

1 Position the cursor on any line in the block of code. (If the block of code is only 
one line, make sure the cursor is at the end of the line.)

2 Press the Enter key.

Voilà! The entire block of code magically reappears, with the cursor positioned 
at the end; you can then fix whatever you need to fix. Use the arrow keys to go back 
to any statement and then make your corrections. Finally, to resubmit a block of 
code, place the cursor at the end of the last line again and press Enter twice.

Remember this technique. It will save you many hours of work.

Dealing with Ends of Lines
Because of the way in which Python interprets lines, you cannot freely cross 
physical-line borders as you can in C. But what if you need to enter an excep-
tionally long line?

The end of a physical line usually terminates a Python statement, because 
there is no statement-terminator syntax as in C. However, an open parenthesis, 
curly brace, or bracket automatically continues the virtual line to the next 
physical line. Here’s an example:

total_amount = (this_amount + that_amount 
   + a_big_number + count + even_more amounts )

The open parenthesis, (, on the top line creates a situation in which you 
can freely continue the statement onto other lines, until this parenthesis is 
matched. This is one case in which indentation doesn’t matter but is only for 
readability. (Usually, Python forces indentation to be consistent.)

Occasionally, you may not be able to rely on this technique. If you really need 
to continue a physical line and have no alternative, you can use a backslash.

>>>my_str = 'I am typing a very long \
line of code.'
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This example raises a question: How would you type a literal backslash in 
quoted string? The answer is that you’d use a double backslash, \\, to represent 
a literal backslash.

>>>my_str = 'I am typing a backslash: \\ \
in a long line of code.'

Chapter 7, “Python Strings,” will get into the details of creating quoted 
strings in much greater detail.

In the last few pages, I’ve given you some Python survival skills. Now, if 
you’re ready, it’s time to go on a Python safari.

Ad ditional Help: Online Sources
In this chapter, I’ve strongly suggested you download Python 3.0 or newer. If 
you are using an older version of Python 2.0, most of the code in this book will 
work, but you may need to make some adjustments. Although I’ve included 
some version notes, you can find additional help on the following websites:

wiki.python.org/moin/Python2orPython3

wiki.python.org/moin/PortingToPy3k/BilingualQuickRef

Although many chapters in this book feature examples that are relatively 
short and therefore easy to type in yourself, some of the later chapters feature 
longer program listings. You may find it helpful to download the code. You 
can find the code listings at this site:

brianoverland.com/books
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9

2 A Python Safari: 
Numbers

Now that you’ve installed Python (you did install it, didn’t you?), you’re ready to 
go. The IDLE interactive environment is your starting point for Python safaris. 
But it’s not just for beginners; for a long time, you should find it useful as a 
learning device as you advance.

But now—let’s start! This chapter covers the following:

 Python “infinite” integers

 Integer vs. floating-point operations

 How variables are used in Python

Python and Numbers
Start IDLE. Up should come a prompt, although you may have to hit Enter 
one time to get it to appear.

>>>

Type in your favorite number and press Enter again. Let’s say it’s five.

>>>5
5

Here I use bold—as I will throughout most of this book—to show user 
input. Entering 5 and getting 5 in response is not that exciting. But let’s do a 
calculation.

>>>10 + 15
25
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So…interactive Python is a handy calculator! It’s obvious what + does. But 
as with other programming languages, we can throw in subtraction (–) and 
multiplication (*).

>>>25 - 5 * 2
15

There’s an issue of precedence here. If you subtract first, you get a final 
result of 40. But standard conventions of math say you multiply first, so 15 is 
correct. We could’ve used parentheses to get a different result.

>>>(25 - 5) * 5
40

So far, Python just appears to be a convenient one-line calculator. But wait. 
The next thing I want to show you is that Python—almost (but not quite) 
uniquely among programming languages—can handle extraordinarily large 
numbers.

The easiest way to generate super-large numbers is to use the exponent 
operator. This operator consists of two asterisks (**) in a row. For example, 
taking 3 to the 4th power gives us 3 times 3 times 3 times 3, or 81.

>>>3 ** 4
81

Eighty-one isn’t that big, but 9 to the 30th power is 30 factors of 9 multi-
plied together…and that’s a pretty big number.

>>>9 ** 30
42391158275216203514294433201

You might be tempted to say, “I’ve used floating-point numbers, and they 
can get bigger than this, so what’s so impressive?”

In Python, as in most other programming languages, integers are abso-
lutely precise, which means that no matter how high they get, adding 1 always 
creates a new value. That is not true of floating-point numbers, as you’ll see.

For example, enter 10**40 and 10**40+1 and see what happens.

>>>10 ** 40
10000000000000000000000000000000000000000
>>>10 ** 40 + 1
10000000000000000000000000000000000000001

You should be able to see that these two numbers are distinct; they are not 
equal. Just look at the last digit in each number and compare. If you apply the 
test-for-equality operator, you can verify this directly in Python.
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Test-for-equality (==) is an operator you’ll probably use a great deal in 
Python programming. This operator produces the value True or False, 
which are special reserved words, called keywords. That means they have a 
special predefined meaning to the Python language.

If the two expressions produce indistinguishable results, then this operator 
will produce True.

>>>10 ** 40 == 10 ** 40 + 1
False

The result, False, means that Python recognizes that the results on either 
side of the equal signs (==) are not equal. So, adding 1 does produce a truly 
distinct number.

That, in turn, is amazing, because it shows the usefulness of super-large integers; 
they never lose their precision. Even if you’re counting a very large population, one 
item at a time, you can rest assured that each time you add 1, you get a distinct value.

This Python “infinite integer” feature is impressive. You even can handle—
with absolute precision—some legendary large numbers. For example, you 
may have heard of the term google (also spelled googol). In math, a google (or 
googol) is 10 to the 100th power, an almost unimaginably large number.

But it’s a piece of cake to handle this number in Python.

>>>10 ** 100
10000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000

You can start with this number and then count forward one at a time. As 
before, adding 1 produces a distinct number, because there’s no loss of precision.

>>>10 ** 100 + 1
10000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000001

By the way, there is a subtlety here. In the absence of parentheses, the expo-
nent operator is applied before addition. There is a definite precedence to 
Python operators, as listed in Appendix A.

Why Doesn’t C++ Support Infinite Integers?

Among programming languages in wide use today, Python is the only lan-
guage that supports “infinite integers” in its standard form. Why doesn’t 
C++ support this feature?

continued on next page

Interlude
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continued

Using the class feature of C++, which is very powerful, you could in 
fact create an infinite-integer class for yourself. My book C++ Without 
Fear doesn’t discuss how to do that exactly, but by using all the tools in 
that book, you could figure it out.

But it would not be easy. Creating a super-integer class that supports 
addition and subtraction would not be so difficult, but multiplication and 
division are tough. The Python integer type was created by math special-
ists who understand optimal ways to multiply and divide exceptionally 
large numbers. The good news is that when you use Python, all these 
problems have been solved for you.

Although Python’s integer capacity is impressive, there is ultimately a limitation—
imposed not by Python but by the computer’s hardware capabilities. This is a 
fuzzy limitation, admittedly. You can go much bigger than a google, specify-
ing (for example) 10 to the 200th power.

>>>10 ** 200
10000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000

This is a number so large it is beyond the ability of the human mind to 
grasp. Yet Python can handle this number.

Mathematicians can think of far higher numbers still. A google-plex is 10 
raised to the power of a google. This is easy enough to specify.

10 ** (10 ** 100)

But as they say on television, don’t try this at home! Printing out such a 
number would be 1 followed by a google zeros! Just the number of zeroes the 
computer would have to print would be larger than the number of atoms in 
the universe, and that far exceeds the ability of your computer to print zeroes. 

Before we leave “the google” altogether, consider that we can use the abili-
ties in this section to solve problems not even solvable in most programming 
languages—that is, not without great difficulty. Consider the problem of tak-
ing the number google plus 1 and then determining whether it is divisible by 7. 

The remainder operator (%), which has the same precedence as multiplica-
tion and division, comes to our aid here. This operator produces the remainder 
after division; if a number is evenly divisible by 7, then—after division by 7—it 
will produce a remainder of 0. Let’s try this.

Interlude
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>>>(10 ** 100 + 1) % 7
5

What did we just learn? The first number bigger than a google (which is a 
google plus 1) yields a remainder of 5 if you divide by 7. It is therefore not a mul-
tiple of 7. With a little mathematical reasoning, you can quickly infer that the 
smallest integer bigger than a google, which is a multiple of 7, is a google plus 3.

That is a fact that would be difficult or impossible to determine with other 
programming languages.

Ex
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 EXERCISES

Exercise 2.1.1. Would you expect the power operator (**) to take precedence over 
multiplication? Try a calculation to test your guess.

Exercise 2.1.2. Use Python to generate the result of 7 to the 40th power.

Exercise 2.1.3. How big, precisely, is the address space of a 64-bit architecture 
computer? Bear in mind that for each additional bit, the address space dou-
bles. Use Python to generate this number.

Exercise 2.1.4. Use Python to help determine the first number bigger than a google 
that is divisible by 13. You may need to use a little trial and error, but you 
shouldn’t need too much.

How Big Is a Google?

The best estimates by scientists now say the number of elementary parti-
cles in our physical universe—counting all electrons, protons, neutrons, 
and so on—is around 10 to the 80th power. 

The number of grains of sand on our planet has been estimated at a 
“mere” 7.5 times 10 to the 18th power. Therefore, the number of particles 
in the universe is (no surprise!) incomprehensibly larger.

Although 10 to the 80th is pretty big, it still falls short of a google by 
10 to the 20th, and 10 to the 20th is 1 followed by 20 zeroes. That number 
itself is not so small.

10,000,000,000,000,000,000,000

That is to say, 10,000 times a billion times another billion. What Carl 
Sagan called “billions and billions.” So, if every universe was like our own, 
it would take all the particles in that many universes to equal a google!

continued on next page

Interlude
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continued

The base number here—10 to the 80th power—is just a few powers of 10 
short of the estimated size of the physical universe in cubic centimeters. 
This follows from the estimate that the diameter of the physical universe 
is 10 to the 26th meters across.

But as far as mathematicians are concerned, we’ve hardly gotten 
started. The number called a google-plex can be expressed as 1 followed
by a google’s worth of zeroes. Therefore, just to write out the number 
using standard notation would be 1 followed by so many zeroes they 
could not fit into the universe, if each 0 was written on its own little block 
a 10th of a meter (roughly 3 inches) in diameter.

It would take “billions and billions” of physical universes like our own 
just to find space to write down all the zeroes in a google-plex!

Fortunately, scientific notation and substitution makes it possible to 
write down these figures, even though they are so large as to be far beyond 
corresponding to anything in the universe.

google = 10 ** 100
google-plex = 10 ** google

As I’ve shown in this chapter, Python is good at handling numbers in the 
range of a google or even a google squared—which would be 1 followed by 200 
zeroes. Even division between two such quantities is fast and efficient. But don’t 
ask Python to try to deal with a google-plex, which is far beyond the ability of 
Python to handle. It’s really only comprehensible as a theoretical notion.

Oh, and the physical constant that comes closest to a google? That would 
be the density of the universe (in kilograms per cubic meter) at the time of the 
Big Bang—or rather one unit of Planck time immediately after the Big Bang. 
That number is 10 to the 96th power, and it still comes up short.

Python and Floating-Point Numbers
Another operation, of course, is division. Division is special, because even 
though you use two integers (an integer being a number with no fractional 
portion), division has the possibility of producing a fractional result; if it is 
fractional, it will be stored in floating-point format.

>>>15 / 2
7.5

Unfortunately, here is where version differences raise their ugly head. This is 
the result you can expect to see with Python version 3.x. With version 2.x, if two 

Interlude

Overland_Book.indb   14Overland_Book.indb   14 8/31/17   12:56 PM8/31/17   12:56 PM



Python and Floating-Point Numbers 15
2

integers are involved in division, the result is automatically rounded down to the 
nearest integer. To get the same effect with version 3.x, use integer division (//).

>>>15 // 2
7

This looks like the remainder is being thrown away. Indeed it is. But you 
can always use the remainder-division operator (%) to get that quantity.

>>>15 % 2
1

Version Ë In version 2.x, all division between two integer operands is interpreted 
as integer, or rather “ground” division. That is to say, if both operands are 
integers, division will throw fractional portions away. Sadly, Python 3.x is not 
100 percent backward compatible, and integer division is one of those areas in 
which there is a significant difference.

With version 2.x, to force division to be precise, you’d need to promote one 
of the operands to floating point, either by specifying it in floating-point format 
(such as “2.0”) or by using a float conversion.

>>>15 / float(2)
7.5

 Ç Version

For the most part, you don’t need to worry about the details of how the 
computer carries out floating-point math. However, there are a few things you 
do need to know.

First, floating-point numbers have the capacity to represent fractions. For 
that reason, there are many situations in which you’ll want to use floating point.

Second, to specify floating-point format, just use a decimal point. The fol-
lowing numbers are both considered floating point by Python, even though 
the second case contains a zero fractional portion:

>>>1.75
1.75
>>>9.0
9.0

The third thing to understand about floating-point format is that you can 
freely combine integer and floating-point expressions. Python will happily 
promote an integer expression to floating point so that the numbers can be 
freely combined.

>>>1 + 2.5
3.5
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Floating-point numbers, unlike integers, have limited precision. This means 
that very large floating-point numbers lose the ability to distinguish between 
one number and the next. Consider the following number, formed by taking 9 
to the 30th power—but doing so with floating-point math, not integer:

>>>9.0 ** 30
4.23911582752162e+28

We used a decimal point in 9.0, so the expression is treated as floating point, 
not integer. With large floating-point numbers (or tiny amounts extremely 
close to 0.0), Python switches to scientific notation. The number shown here is 
approximately 4.239 times 10 to the 28th power.

If you now add 1 (either floating-point or integer) to this result, you’ll see 
that there’s a limited precision. The following produces a result that isn’t dis-
tinguishable from the previous result:

>>>9.0 ** 30 + 1
4.23911582752162e+28

There are cases where you might want to use this number in counting, and 
in such cases, it’s critical that adding 1 produces a new number. So if we test the 
two quantities for equality (==), we should get False. But look what happens:

>>>9.0 ** 30 == 9.0 ** 30 + 1.0
True

In other words, we added 1 to the quantity 9.0 ** 30 and failed to get a new 
number.

Think about what this means. We added 1 to a number, which should pro-
duce a different number not equal to the first! Yet Python says they are equal. 
This means either that Python doesn’t understand math or that there was a 
rounding error because of loss of precision.

As we saw in the previous section, adding 1 to the quantity 9 ** 30 (which is 
an integer expression, not floating point) does produce a new number. That’s 
because integers, unlike floating-point numbers, are always precise.

The moral of the story is, if you have a number that’s used for counting or 
indexing purposes, it should be an integer.
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 EXERCISES

Exercise 2.2.1. Describe in English the meaning of the expression 
5.23911582752162e+22.

Exercise 2.2.2. Based on how the expressions were evaluated in the previous exam-
ples, what would you say is the precedence of test-for-equality (==) relative to 
arithmetic operators (+, –, /, *, **)?
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Assigning Numbers to Variables
So far, we’ve been using Python as a super-powered calculator, able to handle 
numbers such as a google.

But programming requires variables. A variable is simply a name to which 
we assign a data value. In Python, any variable can refer to any type of data at 
any time. That’s because Python variables have no type; only data objects do. 
I’ll get into the consequences of that fact later.

It’s easy to start using variables in Python. For example, you can enter the 
following:

>>>a = 1
>>>b = 2
>>>a + b
3

If you’ve used any other programming language before—or even if you 
haven’t—what happened here should be clear. Even if this is your first 
attempt at programming, this should still be easy to understand. Here’s 
what we did:

1 Associate the variable name a with the value 1.

2 Associate the variable name b with the value 2.

3 Add a and b together, which represent 1 and 2, respectively. Python responds as if 
1 + 2 were entered.

Although Python may seem lax, there are restrictions. The third statement 
in this example used a + b on the right side of the assignment; but this was 
valid only because a and b had already been created. Here is the general rule, 
and it’s the most fundamental rule in Python:

 A variable must be created before being used, but an assignment (=) creates a 
variable if it does not already exist.

One upshot of this rule is that—with few exceptions—a variable must 
appear on the left side of an assignment before it appears on the right.

For example, you can create a variable named my_amount, but if a new 
variable appears on the right of the assignment, that’s an error. Here, the use 
of x on the right side causes an error:

my_amount = x          # Error! x not yet created.
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The problem was that this statement used x, even though x didn’t represent 
anything. The solution is to create x first, by assigning it a value. Only then 
can x be used in any other context.

>>>x = 10
>>>my_amount = x

Python has no trouble with these statements now. The effect in this case is 
to associate both of the names, x and my_amount, with the data value, 10.

What happens if we assign a value to a variable a second time? The answer is 

 First, the value on the right is fully calculated.

 Second, any previous association the variable had is now canceled.

 The variable is now associated with the value on the right side of the equal 
sign (=).

Once again, it doesn’t matter whether the variable previously referred to 
integer or floating-point data; the variable becomes associated with the new 
value. Here’s an example:

>>>x = 7.59
>>>x
7.59
>>>x = 2
>>>x
2

A variable may appear on both sides of an assignment—but only if it was 
previously created by another assignment. The old value is used in the calcula-
tion of the new. Here’s an example:

>>>n = 5
>>>n = n + 1
>>>n
6

Another rule is that every name in the Python language is case-sensitive. 
Consequently, the following produces 101, not 200!

>>>a = 1
>>>A = 100
>>>a + A
101
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Assignment, in Python, is a statement. That means there’s a strict syntax 
that determines how you can use it. With some exceptions we’ll cover later, 
this is how you use assignment:

variable_name = expression

Remember that a single equal sign (=) is used here, not double (==), which 
differentiates assignment from test-for-equality. 

As for variable names, rules are as follows:

 The first letter in a variable (or other symbolic name) must be an underscore 
(_) or a letter.

 The other characters may be any combination of underscores, letters, and 
numerals.

The expression on the right can be a single value, or it can be more com-
plex. Here’s an example:

>>>my_num1 = 7
>>>my_num2 = my_num1 + (3.0 / 2)
>>>my_num2
8.5

The first line here creates the variable my_num1, through assignment. The 
second statement creates the variable my_num2 while using my_num1 on the right; 
this usage of my_num1 is valid because my_num1 was already created. The next 
line is just the name my_num2. When you are in the interactive environment 
(IDLE) and you enter a variable name by itself, Python prints its value.

Once we get to script programming, you’ll find variables to be essential. 
But we can use variables now to build complex expressions.

For example, consider the problem of using the quadratic formula, which is 
as follows:

x ==

b b2 4–±– ac
2a

Taking a square root is the same operation as raising it to the power of one 
half (0.5). We therefore have all the tools we need to use this formula.

As you may recall from high school, the quadratic formula solves an equa-
tion of the following form:

0 = ax2 + bx + c

K
ey

 S
yn

tax
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One quadratic I’ve always been fascinated with is the one that determines 
the golden ratio, in which A/B equals (A + B)/A. One of the properties is that the 
square of this number is 1 more than the number itself.

x2 = x + 1

This gives us a quadratic equation like this:

0 = x2 – x – 1

This gives us values for a, b, and c, which we can enter into Python.

>>>a = 1
>>>b = -1
>>>c = -1

Now let’s apply the quadratic formula. First, let’s get the determinant, 
which is the portion of the formula under the square root sign. I’ll abbreviate 
this value as determ to make for less typing.

>>>determ = (b * b - 4 * a * c) ** 0.5

Again, assignment creates a variable, in this case, determ. As always, we 
can get the value of this variable by entering it alone on a line.

>>>determ
2.23606797749979

Looking back at the full quadratic formula, it’s not too hard to plug this 
into the rest of the formula to get the final answer or, rather, one of them.

>>>x = (-b + determ) / (2 * a)

This statement creates x as a variable by assigning a value to it, and now we 
can get its value.

>>>x
1.618033988749895

This result is indeed the golden ratio, to a high degree of precision!

Ex
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 EXERCISES

Exercise 2.3.1. If you look closely at the quadratic formula and the steps we took 
to get a value, you should see that there is another value possible for x. Using a 
statement similar to the one we just entered, get this second value for x. (Hint: 
if you turn a few pages back, you’ll see that the formula uses a plus-or-minus 
sign, indicating that there are two different solutions.)
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Exercise 2.3.2. What is the problem, if any, with the following series of Python 
statements?

he_loves = 10
she_loves = -10
Love = 2
they_love = he_loves * she_loves + love

Exercise 2.3.3. Which of the following are valid names for variables?

amount
amount55
_amount
1x
y1
2y
n2

What Do Python Assignments Really Do?

For C, C++, and BASIC, the way I usually define a variable is as a named 
location that stores a value. In other words, a variable is like a little box 
that has a name on it, into which you can put any value you want as long 
as it is in the right format.

Such “little boxes,” it should be noted, have a series of attributes in 
C++. A variable, or “box,” is declared to only be able to hold certain 
kinds of data. If I try to put any other data in there, the result is an error.

But Python does things differently. This difference may seem trivial 
right now. But later in the book, it will matter greatly.

Consider how things are done in other languages. Again, most variables can 
be viewed as little boxes that contain values for as long as you want them to:

5

a

5

b

5

c

Python instead treats every variable as a reference. A reference, in turn, 
has some similarities to C pointers or to Windows handles. The key point 
is that when multiple variables are references (that is, refer to) the same 
value, they do not store the value separately. Let’s say several variables are 
assigned the value 5.

continued on next page

Interlude
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