SECOND EDITION

THE

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

SOFTWARE SERIES

THE

C

PROGRAMMING
LANGUAGE

Second Edition

This page intentionally left blank

THE

C

PROGRAMMING
LANGUAGE

Second Edition

Brian W. Kernighan e Dennis M. Ritchie

AT&T Bell Laboratories
Murray Hill, New Jersey

©

Pearson

Library of Congress Cataloging-in-Publication Data

Kernighan, Brian W.

The C programming language.

Includes index.

1. C (Computer program language) 1. Ritchie,
Dennis M. I1. Title.
QA76.73.C15K47 1988 005.13'3 88-5934
ISBN 0-13-110370-9
ISBN 0-13-110362-8 (pbk.)

Copyright © 1988, 1978 by Bell Telephone Laboratories, Incorporated.

© Published by Pearson Education, Inc.
Upper Saddle River, NJ 07458

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the publisher.
Printed in the United States of America. Published simultaneously in Canada.

UNIX is a registered trademark of AT&T.

This book was typeset (picitblieqnitroff -ms) in Times Roman and Courier by
the authors, using an Autologic APS-5 phototypesetter and a DEC VAX 8550 running
the 9th Edition of the UNIX® operating system.

ISBN 0-13-110362-8

Text printed in the United States on recycled paper at Courier in Westford,
Massachusetts.
Fourty-ninth printing, January 2012

ISBN 0-13-1103k2-8 {PBK}
ISBN 0-13-1220370-9

scout International (UK) Limited, London
scout of Australia Pty. Limited, Sydney
Scout of Canada, Inc., Toronto

Scout Hispanoamericana, S. A., Mexico
Scout of India Private Limited, New Delhi
scout of Japan, Inc., Tokyo

scout Asia Pte. Ltd., Singapore

Editora scout do Brasil, Ltda., Rio de Janeiro

Preface

Preface to the First Edition

Introduction
Chapter 1. A Tutorial Introduction
1.1 Getting Started
1.2 Variables and Arithmetic Expressions
1.3 The For Statement
1.4 Symbolic Constants
1.5 Character Input and Output
1.6 Arrays
1.7 Functions
1.8 Arguments--Call by Value
1.9 Character Arrays
1.10 External Variables and Scope
Chapter 2. Types, Operators, and Expressions
2.1 Variable Names
2.2 Data Types and Sizes
2.3 Constants
2.4 Declarations
2.5 Arithmetic Operators
2.6 Relational and Logical Operators
2.7 Type Conversions
2.8 Increment and Decrement Operators
29 Bitwise Operators
2.10 Assignment Operators and Expressions
2.11 Conditional Expressions
2.12 Precedence and Order of Evaluation
Chapter 3. Control Flow
3.1 Statements and Blocks
3.2 If-Else

Contents

vi THE C PROGRAMMING LANGUAGE

33
34
35
3.6
3.7
38

Chapter 4.
4.1
4.2
43
44
4.5
4.6
47
48
49
4.10
4.11

Chapter 5.
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

Chapter 6.
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Chapter 7.
71
7.2

Else-If

Switch

Loops— While and For
Loops—Do-while
Break and Continue
Goto and Labels

Functions and Program Structure
Basics of Functions

Functions Returning Non-integers
External Variables

Scope Rules

Header Files

Static Variables

Register Variables

Block Structure

Initialization

Recursion

The C Preprocessor

Pointers and Arrays

Pointers and Addresses

Pointers and Function Arguments
Pointers and Arrays

Address Arithmetic

Character Pointers and Functions
Pointer Arrays; Pointers to Pointers
Multi-dimensional Arrays
Initialization of Pointer Arrays

Pointers vs. Multi-dimensional Arrays

Command-line Arguments
Pointers to Functions
Complicated Declarations

Structures

Basics of Structures
Structures and Functions
Arrays of Structures
Pointers to Structures
Self-referential Structures
Table Lookup

Typedef

Unions

Bit-fields

Input and Output
Standard Input and Output
Formatted Output—Printf

CONTENTS

57
58
60
63
64
65

67
67
71
73
80
81
83
83
84
85
86
88

93
93
95
97
100
104
107
110
113
113
114
118
122

127
127
129
132
136
139
143
146
147
149

151
151
153

THE C PROGRAMMING LANGUAGE

7.3 Variable-length Argument Lists
7.4 Formatted Input—Scanf

7.5 File Access

7.6 Error Handling—Stderr and Exit
7.7 Line Input and Output

7.8 Miscellaneous Functions

Chapter 8. The UNIX System Interface

8.1 File Descriptors

8.2 Low Level I/O—Read and Write

8.3 Open, Creat, Close, Unlink

8.4 Random Access—Lseek

8.5 Example—An Implementation of Fopen and Getc
8.6 Example—Listing Directories

8.7 Example~—A Storage Allocator

Appendix A. Reference Manual

Al Introduction

A2 Lexical Conventions
A3 Syntax Notation

A4 Meaning of Identifiers
A5 Objects and Lvalues
A6 Conversions

A7 Expressions

A8 Declarations

A9 Statements

A10 External Declarations
All Scope and Linkage
Al12 Preprocessing

Al13 Grammar

Appendix B. Standard Library

Bl Input and Output: <stdio.h>

B2 Character Class Tests: <ctype.h>

B3 String Functions: <string.h>

B4 Mathematical Functions: <math.h>
B5 Utility Functions: <stdlib.h>

B6 Diagnostics: <assert.h>

B7 Variable Argument Lists: <stdarg.h>
B8 Non-local Jumps: <setjmp.h>

B9 Signals: <signal.h>

B10 Date and Time Functions: <time.h>
B11 Implementation-defined Limits: <limits.h> and <float.h>

Appendix C. Summary of Changes

Index

CONTENTS

vii

155
157
160
163
164
166

169
169
170
172
174
175
179
185

191
191
191
194
195
197
197
200
210
222
225
227
228
234

241
241
248
249
250
251
253
254
254
255
255
257

259
263

This page intentionally left blank

Preface

The computing world has undergone a revolution since the publication of
The C Programming Language in 1978. Big computers are much bigger, and
personal computers have capabilities that rival the mainframes of a decade ago.
During this time, C has changed too, although only modestly, and it has spread
far beyond its origins as the language of the UNIX operating system.

The growing popularity of C, the changes in the language over the years,
and the creation of compilers by groups not involved in its design, combined to
demonstrate a need for a more precise and more contemporary definition of the
language than the first edition of this book provided. In 1983, the American
National Standards Institute (ANSI) established a committee whose goal was to
produce “an unambiguous and machine-independent definition of the language
C,” while still retaining its spirit. The result is the ANSI standard for C.

The standard formalizes constructions that were hinted at but not described
in the first edition, particularly structure assignment and enumerations. It pro-
vides a new form of function declaration that permits cross-checking of defini-
tion with use. It specifies a standard library, with an extensive set of functions
for performing input and output, memory management, string manipulation,
and similar tasks. It makes precise the behavior of features that were not
spelled out in the original definition, and at the same time states explicitly
which aspects of the language remain machine-dependent.

This second edition of The C Programming Language describes C as defined
by the ANSI standard. Although we have noted the places where the language
has evolved, we have chosen to write exclusively in the new form. For the most
part, this makes no significant difference; the most visible change is the new
form of function declaration and definition. Modern compilers already support
most features of the standard.

We have tried to retain the brevity of the first edition. C is not a big
language, and it is not well served by a big book. We have improved the exposi-
tion of critical features, such as pointers, that are central to C programming.
We have refined the original examples, and have added new examples in several
chapters. For instance, the treatment of complicated declarations is augmented
by programs that convert declarations into words and vice versa. As before, all

ix

X PREFACE

examples have been tested directly from the text, which is in machine-readable
form.

Appendix A, the reference manual, is not the standard, but our attempt to
convey the essentials of the standard in a smaller space. It is meant for easy
comprehension by programmers, but not as a definition for compiler writers—
that role properly belongs to the standard itself. Appendix B is a summary of
the facilities of the standard library. It too is meant for reference by program-
mers, not implementers. Appendix C is a concise summary of the changes from
the original version.

As we said in the preface to the first edition, C “wears well as one’s experi-
ence with it grows.” With a decade more experience, we still feel that way.
We hope that this book will help you to learn C and to use it well.

We are deeply indebted to friends who helped us to produce this second edi-
tion. Jon Bentley, Doug Gwyn, Doug Mcllroy, Peter Nelson, and Rob Pike
gave us perceptive comments on almost every page of draft manuscripts. We
are grateful for careful reading by Al Aho, Dennis Allison, Joe Campbell, G. R.
Emlin, Karen Fortgang, Allen Holub, Andrew Hume, Dave Kristol, John
Linderman, Dave Prosser, Gene Spafford, and Chris Van Wyk. We also
received helpful suggestions from Bill Cheswick, Mark Kernighan, Andy
Koenig, Robin Lake, Tom London, Jim Reeds, Clovis Tondo, and Peter Wein-
berger. Dave Prosser answered many detailed questions about the ANSI stand-
ard. We used Bjarne Stroustrup’s C++ translator extensively for local testing
of our programs, and Dave Kristol provided us with an ANSI C compiler for
final testing. Rich Drechsler helped greatly with typesetting.

Our sincere thanks to all.

Brian W. Kernighan
Dennis M. Ritchie

Preface to the First Edition

C is a general-purpose programming language which features economy of
expression, modern control flow and data structures, and a rich set of operators.
C is not a “very high level” language, nor a “big” one, and is not specialized to
any particular area of application. But its absence of restrictions and its gen-
erality make it more convenient and effective for many tasks than supposedly
more powerful languages.

C was originally designed for and implemented on the UNIX operating sys-
tem on the DEC PDP-11, by Dennis Ritchie. The operating system, the C com-
piler, and essentially all UNIX applications programs (including all of the
software used to prepare this book) are written in C. Production compilers also
exist for several other machines, including the IBM System/370, the Honeywell
6000, and the Interdata 8/32. C is not tied to any particular hardware or sys-
tem, however, and it is easy to write programs that will run without change on
any machine that supports C.

This book is meant to help the reader learn how to program in C. It con-
tains a tutorial introduction to get new users started as soon as possible,
separate chapters on each major feature, and a reference manual. Most of the
treatment is based on reading, writing and revising examples, rather than on
mere statements of rules. For the most part, the examples are complete, real
programs, rather than isolated fragments. All examples have been tested
directly from the text, which is in machine-readable form. Besides showing how
to make effective use of the language, we have also tried where possible to illus-
trate useful algorithms and principles of good style and sound design.

The book is not an introductory programming manual; it assumes some fam-
iliarity with basic programming concepts like variables, assignment statements,
loops, and functions. Nonetheless, a novice programmer should be able to read
along and pick up the language, although access to a more knowledgeable col-
league will help.

In our experience, C has proven to be a pleasant, expressive, and versatile
language for a wide variety of programs. It is easy to learn, and it wears well
as one’s experience with it grows. We hope that this book will help you to use it
well.

xi

xii PREFACE TO THE IST EDITION

The thoughtful criticisms and suggestions of many friends and colleagues
have added greatly to this book and to our pleasure in writing it. In particular,
Mike Bianchi, Jim Blue, Stu Feldman, Doug Mcllroy, Bill Roome, Bob Rosin,
and Larry Rosler all read multiple versions with care. We are also indebted to
Al Aho, Steve Bourne, Dan Dvorak, Chuck Haley, Debbie Haley, Marion
Harris, Rick Holt, Steve Johnson, John Mashey, Bob Mitze, Ralph Muha, Peter
Nelson, Elliot Pinson, Bill Plauger, Jerry Spivack, Ken Thompson, and Peter
Weinberger for helpful comments at various stages, and to Mike Lesk and Joe
Ossanna for invaluable assistance with typesetting.

Brian W. Kernighan
Dennis M. Ritchie

Introduction

C is a general-purpose programming language. It has been closely associ-
ated with the UNIX system where it was developed, since both the system and
most of the programs that run on it are written in C. The language, however, is
not tied to any one operating system or machine; and although it has been
called a “system programming language” because it is useful for writing com-
pilers and operating systems, it has been used equally well to write major pro-
grams in many different domains.

Many of the important ideas of C stem from the language BCPL, developed
by Martin Richards. The influence of BCPL on C proceeded indirectly through
the language B, which was written by Ken Thompson in 1970 for the first
UNIX system on the DEC PDP-7.

BCPL and B are “typeless” languages. By contrast, C provides a variety of
data types. The fundamental types are characters, and integers and floating-
point numbers of several sizes. In addition, there is a hierarchy of derived data
types created with pointers, arrays, structures, and unions. Expressions are
formed from operators and operands; any expression, including an assignment or
a function call, can be a statement. Pointers provide for machine-independent
address arithmetic.

C provides the fundamental control-flow constructions required for well-
structured programs: statement grouping, decision making (if-else), selecting
one of a set of possible cases (switch), looping with the termination test at the
top (while, for) or at the bottom (do), and early loop exit (break).

Functions may return values of basic types, structures, unions, or pointers.
Any function may be called recursively. Local variables are typically
“automatic,” or created anew with each invocation. Function definitions may
not be nested but variables may be declared in a block-structured fashion. The
functions of a C program may exist in separate source files that are compiled
separately. Variables may be internal to a function, external but known only
within a single source file, or visible to the entire program.

A preprocessing step performs macro substitution on program text, inclusion
of other source files, and conditional compilation.

C is a relatively “low level” language. This characterization is not

1

2 INTRODUCTION

pejorative; it simply means that C deals with the same sort of objects that most
computers do, namely characters, numbers, and addresses. These may be com-
bined and moved about with the arithmetic and logical operators implemented
by real machines.

C provides no operations to deal directly with composite objects such as
character strings, sets, lists, or arrays. There are no operations that manipulate
an entire array or string, although structures may be copied as a unit. The
language does not define any storage allocation facility other than static defini-
tion and the stack discipline provided by the local variables of functions; there is
no heap or garbage collection. Finally, C itself provides no input/output facili-
ties; there are no READ or WRITE statements, and no built-in file access
methods. All of these higher-level mechanisms must be provided by explicitly-
called functions. Most C implementations have included a reasonably standard
collection of such functions.

Similarly, C offers only straightforward, single-thread control flow: tests,
loops, grouping, and subprograms, but not multiprogramming, parallel opera-
tions, synchronization, or coroutines.

Although the absence of some of these features may seem like a grave defi-
ciency (“You mean I have to call a function to compare two character
strings?”’), keeping the language down to modest size has real benefits. Since C
is relatively small, it can be described in a small space, and learned quickly. A
programmer can reasonably expect to know and understand and indeed regu-
larly use the entire language.

For many years, the definition of C was the reference manual in the first
edition of The C Programming Language. In 1983, the American National
Standards Institute (ANSI) established a committee to provide a modern,
comprehensive definition of C. The resuiting definition, the ANSI standard, or
“ANSI C,” was completed late in 1988. Most of the features of the standard
are already supported by modern compilers.

The standard is based on the original reference manual. The language is
relatively little changed; one of the goals of the standard was to make sure that
most existing programs would remain valid, or, failing that, that compilers could
produce warnings of new behavior.

For most programmers, the most important change is a new syntax for
declaring and defining functions. A function declaration can now include a
description of the arguments of the function; the definition syntax changes to
match. This extra information makes it much easier for compilers to detect
errors caused by mismatched arguments; in our experience, it is a very useful
addition to the language.

There are other small-scale language changes. Structure assignment and
enumerations, which had been widely available, are now officially part of the
language. Floating-point computations may now be done in single precision.
The properties of arithmetic, especially for unsigned types, are clarified. The
preprocessor is more elaborate. Most of these changes will have only minor

THE C PROGRAMMING LANGUAGE 3

effects on most programmers.

A second significant contribution of the standard is the definition of a library
to accompany C. It specifies functions for accessing the operating system (for
instance, to read and write files), formatted input and output, memory alloca-
tion, string manipulation, and the like. A collection of standard headers pro-
vides uniform access to declarations of functions and data types. Programs that
use this library to interact with a host system are assured of compatible
behavior. Most of the library is closely modeled on the “standard 170 library”
of the UNIX system. This library was described in the first edition, and has
been widely used on other systems as well. Again, most programmers will not
see much change.

Because the data types and control structures provided by C are supported
directly by most computers, the run-time library required to implement self-
contained programs is tiny. The standard library functions are only called
explicitly, so they can be avoided if they are not needed. Most can be written in
C, and except for the operating system details they conceal, are themselves port-
able.

Although C matches the capabilities of many computers, it is independent of
any particular machine architecture. With a little care it is easy to write port-
able programs, that is, programs that can be run without change on a variety of
hardware. The standard makes portability issues explicit, and prescribes a set
of constants that characterize the machine on which the program is run.

C is not a strongly-typed language, but as it has evolved, its type-checking
has been strengthened. The original definition of C frowned on, but permitted,
the interchange of pointers and integers; this has long since been eliminated, and
the standard now requires the proper declarations and explicit conversions that
had already been enforced by good compilers. The new function declarations
are another step in this direction. Compilers will warn of most type errors, and
there is no automatic conversion of incompatible data types. Nevertheless, C
retains the basic philosophy that programmers know what they are doing; it only
requires that they state their intentions explicitly.

C, like any other language, has its blemishes. Some of the operators have
the wrong precedence; some parts of the syntax could be better. Nonetheless, C
has proven to be an extremely effective and expressive language for a wide
variety of programming applications.

The book is organized as follows. Chapter 1 is a tutorial on the central part
of C. The purpose is to get the reader started as quickly as possible, since we
believe strongly that the way to learn a new language is to write programs in it.
The tutorial does assume a working knowledge of the basic elements of pro-
gramming; there is no explanation of computers, of compilation, nor of the
meaning of an expression like n=n+1. Although we have tried where possible to
show useful programming techniques, the book is not intended to be a reference
work on data structures and algorithms; when forced to make a choice, we have
concentrated on the language.

4 INTRODUCTION

Chapters 2 through 6 discuss various aspects of C in more detail, and rather
more formally, than does Chapter 1, although the empbhasis is still on examples
of complete programs, rather than isolated fragments. Chapter 2 deals with the
basic data types, operators and expressions. Chapter 3 treats control flow:
if-else, switch, while, for, etc. Chapter 4 covers functions and program
structure—external variables, scope rules, multiple source files, and so on—and
also touches on the preprocessor. Chapter 5 discusses pointers and address
arithmetic. Chapter 6 covers structures and unions.

Chapter 7 describes the standard library, which provides a common interface
to the operating system. This library is defined by the ANSI standard and is
meant to be supported on all machines that support C, so programs that use it
for input, output, and other operating system access can be moved from one sys-
tem to another without change.

Chapter 8 describes an interface between C programs and the UNIX operat-
ing system, concentrating on input/output, the file system, and storage alloca-
tion. Although some of this chapter is specific to UNIX systems, programmers
who use other systems should still find useful material here, including some
insight into how one version of the standard library is implemented, and sugges-
tions on portability.

Appendix A contains a language reference manual. The official statement of
the syntax and semantics of C is the ANSI standard itself. That document,
however, is intended foremost for compiler writers. The reference manual here
conveys the definition of the language more concisely and without the same
legalistic style. Appendix B is a summary of the standard library, again for
users rather than implementers. Appendix C is a short summary of changes
from the original language. In cases of doubt, however, the standard and one’s
own compiler remain the final authorities on the language.

cHapTer 1: A Tutorial Introduction

Let us begin with a quick introduction to C. Our aim is to show the essen-
tial elements of the language in real programs, but without getting bogged down
in details, rules, and exceptions. At this point, we are not trying to be complete
or even precise (save that the examples are meant to be correct). We want to
get you as quickly as possible to the point where you can write useful programs,
and to do that we have to concentrate on the basics: variables and constants,
arithmetic, control flow, functions, and the rudiments of input and output. We
are intentionally leaving out of this chapter features of C that are important for
writing bigger programs. These include pointers, structures, most of C’s rich set
of operators, several control-flow statements, and the standard library.

This approach has its drawbacks. Most notable is that the complete story on
any particular language feature is not found here, and the tutorial, by being
brief, may also be misleading. And because the examples do not use the full
power of C, they are not as concise and elegant as they might be. We have
tried to minimize these effects, but be warned. Another drawback is that later
chapters will necessarily repeat some of this chapter. We hope that the repeti-
tion will help you more than it annoys.

In any case, experienced programmers should be able to extrapolate from the
material in this chapter to their own programming needs. Beginners should sup-
plement it by writing small, similar programs of their own. Both groups can use
it as a framework on which to hang the more detailed descriptions that begin in
Chapter 2.

1.1 Getting Started

The only way to learn a new programming language is by writing programs
in it. The first program to write is the same for all languages:

Print the words
hello, world

This is the big hurdle; to leap over it you have to be able to create the program

6 A TUTORIAL INTRODUCTION CHAPTER 1

text somewhere, compile it successfully, load it, run it, and find out where your
output went. With these mechanical details mastered, everything else is com-
paratively easy.

In C, the program to print “hello, world” is

#include <stdio.h>

main()
{

printf("hello, world\n");
}

Just how to run this program depends on the system you are using. As a
specific example, on the UNIX operating system you must create the program in
a file whose name ends in “.¢”, such as hello.c, then compile it with the
command

cc hello.c

If you haven’t botched anything, such as omitting a character or misspelling
something, the compilation will proceed silently, and make an executable file
called a.out. If you run a.out by typing the command

a.out
it will print
hello, world

On other systems, the rules will be different; check with a local expert.

Now for some explanations about the program itself. A C program, what-
ever its size, consists of functions and variables. A function contains state-
ments that specify the computing operations to be done, and variables store
values used during the computation. C functions are like the subroutines and
functions of Fortran or the procedures and functions of Pascal. Qur example is
a function named main. Normally you are at liberty to give functions whatever
names you like, but “main” is special—your program begins executing at the
beginning of main. This means that every program must have a main some-
where.

main will usually call other functions to help perform its job, some that you
wrote, and others from libraries that are provided for you. The first line of the
program,

#include <stdio.h>

tells the compiler to include information about the standard input/output
library; this line appears at the beginning of many C source files. The standard
library is described in Chapter 7 and Appendix B.

One method of communicating data between functions is for the calling
function to provide a list of values, called arguments, to the function it calls.
The parentheses after the function name surround the argument list. In this

SECTION 1.1 GETTING STARTED 7

#include <stdio.h> include information about standard library
main() define a function named main
that receives no argument values

{ statements of main are enclosed in braces
printf("hello, world\n"); main calls library function printf

to print this sequence of characters;

} \n represents the newline character

The first C program.

example, main is defined to be a function that expects no arguments, which is
indicated by the empty list ().

The statements of a function are enclosed in braces {}. The function main
contains only one statement,

printf("hello, world\n");

A function is called by naming it, followed by a parenthesized list of arguments,
so this calls the function printf with the argument "hello, world\n".
printf is a library function that prints output, in this case the string of char-
acters between the quotes.

A sequence of characters in double quotes, like "hello, world\n", is
called a character string or string constant. For the moment our only use of
character strings will be as arguments for printf and other functions.

The sequence \n in the string is C notation for the newline character, which
when printed advances the output to the left margin on the next line. If you
leave out the \n (a worthwhile experiment), you will find that there is no line
advance after the output is printed. You must use \n to include a newline
character in the printf argument; if you try something like

printf("hello, world

")3

the C compiler will produce an error message.

printf never supplies a newline automatically, so several calls may be used
to build up an output line in stages. Our first program could just as well have
been written

8 A TUTORIAL INTRODUCTION CHAPTER 1

#include <stdio.h>

main()

{
printf("hello, ");
printf("world");
printf("\n");

}

to produce identical output.

Notice that \n represents only a single character. An escape sequence like
\n provides a general and extensible mechanism for representing hard-to-type
or invisible characters. Among the others that C provides are \t for tab, \b
for backspace, \" for the double quote, and \\ for the backslash itself. There
is a complete list in Section 2.3.

Exercise 1-1. Run the “hello, world” program on your system. Experiment
with leaving out parts of the program, to see what error messages you get. O

Exercise 1-2. Experiment to find out what happens when printf’s argument
string contains \c, where ¢ is some character not listed above. O

1.2 Variables and Arithmetic Expressions

The next program uses the formula *C = (5/9) (° F—32) to print the follow-
ing table of Fahrenheit temperatures and their centigrade or Celsius equivalents:

0 -17
20 -6
40 4

60 15
80 26
100 37
120 48
140 60
160 71

180 82

200 93

220 104
240 115
260 126
280 137
300 148

The program itself still consists of the definition of a single function named
main. It is longer than the one that printed “hello, world”, but not compli-
cated. It introduces several new ideas, including comments, declarations, vari-
ables, arithmetic expressions, loops, and formatted output.

SECTION 1.2 VARIABLES AND ARITHMETIC EXPRESSIONS 9

#include <stdio.h>

/#+ print Fahrenheit-Celsius table
for fahr = 0, 20, ..., 300 »/
main()
{
int fahr, celsius;
int lower, upper, step;

lower = 03 /% lower limit of temperature table »/
upper = 300; /% upper limit =/
step = 20; /% step size »/

fahr = lower;

while (fahr <= upper) {
celsius = 5 # (fahr-32) / 9;
printf("%d\t¥d\n", fahr, celsius);
fahr = fahr + step;

}
The two lines

/+ print Pahrenheit-Celsius table
for fahr = 0, 20, ..., 300 %/

are a comment, which in this case explains briefly what the program does. Any
characters between /+ and «/ are ignored by the compiler; they may be used
freely to make a program easier to understand. Comments may appear any-
where a blank or tab or newline can.

In C, all variables must be declared before they are used, usually at the
beginning of the function before any executable statements. A declaration
announces the properties of variables; it consists of a type name and a list of
variables, such as

int fahr, celsius;
int lower, upper, step;

The type int means that the variables listed are integers, by contrast with
float, which means floating point, i.e., numbers that may have a fractional
part. The range of both int and float depends on the machine you are
using; 16-bit ints, which lie between —32768 and +32767, are common, as are
32-bit ints. A float number is typically a 32-bit quantity, with at least six
significant digits and magnitude generally between about 107>® and 103,

C provides several other basic data types besides int and float, including:

char character—a single byte
short short integer
long long integer

double double-precision floating point

10 A TUTORIAL INTRODUCTION CHAPTER 1

The sizes of these objects are also machine-dependent. There are also arrays,
structures and unions of these basic types, pointers to them, and functions that
return them, all of which we will meet in due course.

Computation in the temperature conversion program begins with the assign-
ment statements

lower = 0;

upper 300;
step = 20;
fahr = lower;

which set the variables to their initial values. Individual statements are ter-
minated by semicolons.

Each line of the table is computed the same way, so we use a loop that
repeats once per output line; this is the purpose of the while loop

while (fahr <= upper) {

}

The while loop operates as follows: The condition in parentheses is tested. If
it is true (£ahr is less than or equal to upper), the body of the loop (the three
statements enclosed in braces) is executed. Then the condition is re-tested, and
if true, the body is executed again. When the test becomes false (fahr exceeds
upper) the loop ends, and execution continues at the statement that follows the
loop. There are no further statements in this program, so it terminates.

The body of a while can be one or more statements enclosed in braces, as
in the temperature converter, or a single statement without braces, as in

while (i < j)
i=24+1iy

In either case, we will always indent the statements controlled by the while by
one tab stop (which we have shown as four spaces) so you can see at a glance
which statements are inside the loop. The indentation emphasizes the logical
structure of the program. Although C compilers do not care about how a pro-
gram looks, proper indentation and spacing are critical in making programs easy
for people to read. We recommend writing only one statement per line, and
using blanks around operators to clarify grouping. The position of braces is less
important, although people hold passionate beliefs. We have chosen one of
several popular styles. Pick a style that suits you, then use it consistently.

Most of the work gets done in the body of the loop. The Celsius tempera-
ture is computed and assigned to the variable celsius by the statement

celsius = 5 » (fahr-32) / 9;

The reason for multiplying by 5 and then dividing by 9 instead of just multiply-
ing by 5/9 is that in C, as in many other languages, integer division truncates:
any fractional part is discarded. Since 5 and 9 are integers, 5/9 would be
truncated to zero and so all the Celsius temperatures would be reported as zero.

SECTION 1.2 VARIABLES AND ARITHMETIC EXPRESSIONS 11

This example also shows a bit more of how printf works. printf is a
general-purpose output formatting function, which we will describe in detail in
Chapter 7. Its first argument is a string of characters to be printed, with each
% indicating where one of the other (second, third, ...) arguments is to be substi-
tuted, and in what form it is to be printed. For instance, %d specifies an integer
argument, so the statement

printf("%¥da\t%¥d\n", fahr, celsius);

causes the values of the two integers fahr and celsius to be printed, with a
tab (\t) between them.

Each % construction in the first argument of printf is paired with the
corresponding second argument, third argument, etc.; they must match up prop-
erly by number and type, or you’ll get wrong answers.

By the way, printf is not part of the C language; there is no input or out-
put defined in C itself. printf is just a useful function from the standard
library of functions that are normally accessible to C programs. The behavior
of printf£ is defined in the ANSI standard, however, so its properties should be
the same with any compiler and library that conforms to the standard.

In order to concentrate on C itself, we won’t talk much about input and out-
put until Chapter 7. In particular, we will defer formatted input until then. If
you have to input numbers, read the discussion of the function scanf in Sec-
tion 7.4. scanf is like printf, except that it reads input instead of writing
output.

There are a couple of problems with the temperature conversion program.
The simpler one is that the output isn’t very pretty because the numbers are not
right-justified. That’s easy to fix; if we augment each %d in the printf state-
ment with a width, the numbers printed will be right-justified in their fields.
For instance, we might say

printf (%34 %64\n", fahr, celsius);

to print the first number of each line in a field three digits wide, and the second
in a field six digits wide, like this:

0 -17
20 -6
40 4
60 15
80 26

100 37

The more serious problem is that because we have used integer arithmetic,
the Celsius temperatures are not very accurate; for instance, 0°F is actually
about ~17.8°C, not —17. To get more accurate answers, we should use
floating-point arithmetic instead of integer. This requires some changes in the
program. Here is a second version:

12 A TUTORIAL INTRODUCTION CHAPTER 1

#include <stdio.h>

/# print Fahrenheit-Celsius table

for fahr = 0, 20, ..., 300; floating-point version */
main()
{

float fahr, celsius;

int lower, upper, step;

lower = 0; /+ lower limit of temperature table »/
upper = 300; /% upper limit =/
step = 20; /+ step size #/

fahr = lower;

while (fahr <= upper) {
celsius = (5.0/9.0) # (fahr-32.0);
printf("%3.0f %6.1£f\n", fahr, celsius);
fahr = fahr + step;

}

This is much the same as before, except that fahr and celsius are
declared to be float, and the formula for conversion is written in a more
natural way. We were unable to use 5/9 in the previous version because
integer division would truncate it to zero. A decimal point in a constant indi-
cates that it is floating point, however, so 5.0/9.0 is not truncated because it
is the ratio of two floating-point values.

If an arithmetic operator has integer operands, an integer operation is per-
formed. If an arithmetic operator has one floating-point operand and one
integer operand, however, the integer will be converted to floating point before
the operation is done. If we had written fahr-32, the 32 would be automati-
cally converted to floating point. Nevertheless, writing floating-point constants
with explicit decimal points even when they have integral values emphasizes
their floating-point nature for human readers.

The detailed rules for when integers are converted to floating point are in
Chapter 2. For now, notice that the assignment

fahr = lower;
and the test
while (fahr <= upper)

also work in the natural way—the int is converted to £loat before the opera-
tion is done.

The printf conversion specification %3.0f says that a floating-point
number (here fahr) is to be printed at least three characters wide, with no
decimal point and no fraction digits. %6.1f describes another number
(celsius) that is to be printed at least six characters wide, with 1 digit after
the decimal point. The output looks like this:

SECTION 1.3 THE FOR STATEMENT 13

0 -17.8
20 -6.7
40 4.4

Width and precision may be omitted from a specification: %6f says that the
number is to be at least six characters wide; %.2f£ specifies two characters after
the decimal point, but the width is not constrained; and %£ merely says to print
the number as floating point.

%4 print as decimal integer

%6d print as decimal integer, at least 6 characters wide

%£ print as floating point

%6 £ print as floating point, at least 6 characters wide

%.2f print as floating point, 2 characters after decimal point

%6 .2f print as floating point, at least 6 wide and 2 after decimal point

Among others, printf also recognizes %o for octal, %x for hexadecimal, %c for
character, %s for character string, and %% for % itself.

Exercise 1-3. Modify the temperature conversion program to print a heading
above the table. O

Exercise 1-4. Write a program to print the corresponding Celsius to Fahrenheit
table. O

1.3 The For Statement

There are plenty of different ways to write a program for a particular task.
Let’s try a variation on the temperature converter.

#include <stdio.h>

/+ print Fahrenheit-Celsius table */
main()
{

int fahr;

for (fahr = 0; fahr <= 300; fahr = fahr + 20)
printf("%3d4 %6.1f\n", fahr, (5.0/9.0)%(fahr-32));
}

This produces the same answers, but it certainly looks different. One major
change is the elimination of most of the variables; only fahr remains, and we
have made it an int. The lower and upper limits and the step size appear only
as constants in the for statement, itself a new construction, and the expression
that computes the Celsius temperature now appears as the third argument of
printf instead of as a separate assignment statement.

This last change is an instance of a general rule—in any context where it is

14 A TUTORIAL INTRODUCTION CHAPTER 1

permissible to use the value of a variable of some type, you can use a more com-
plicated expression of that type. Since the third argument of printf must be
a floating-point value to match the %6. 1£, any floating-point expression can
occur there.

The for statement is a loop, a generalization of the while. If you compare
it to the earlier while, its operation should be clear. Within the parentheses,
there are three parts, separated by semicolons. The first part, the initialization

fahr = 0

is done once, before the loop proper is entered. The second part is the test or
condition that controls the loop:

fahr <= 300

This condition is evaluated; if it is true, the body of the loop (here a single
printf) is executed. Then the increment step

fahr = fahr + 20

is executed, and the condition re-evaluated. The loop terminates if the condition
has become false. As with the while, the body of the loop can be a single
statement, or a group of statements enclosed in braces. The initialization, con-
dition, and increment can be any expressions.

The choice between while and for is arbitrary, based on which seems
clearer. The for is usually appropriate for loops in which the initialization ai:d
increment are single statements and logically related, since it is more compact
than while and it keeps the loop control statements together in one place.

Exercise 1-5. Modify the temperature conversion program to print the table in
reverse order, that is, from 300 degrees to 0. O

1.4 Symbolic Constants

A final observation before we leave temperature conversion forever. It’s bad
practice to bury “magic numbers” like 300 and 20 in a program; they convey
little information to someone who might have to read the program later, and
they are hard to change in a systematic way. One way to deal with magic
numbers is to give them meaningful names. A #define line defines a sym-
bolic name or symbolic constant to be a particular string of characters:

#define name replacement text

Thereafter, any occurrence of name (not in quotes and not part of another
name) will be replaced by the corresponding replacement text. The name has
the same form as a variable name: a sequence of letters and digits that begins
with a letter. The replacement text can be any sequence of characters; it is not
limited to numbers.

SECTION 1.5 CHARACTER INPUT AND OUTPUT 1§

#include <stdio.h>

#define LOWER O /+ lower limit of table »/
#define UPPER 300 /% upper limit »/
#define STEP 20 /% step size »/

/% print PFahrenheit-Celsius table »/
main()
{

int fahr;

for (fahr = LOWER; fahr <= UPPER; fahr = fahr + STEP)
printf("%34 %6.1£f\n", fahr, (5.0/9.0)+(fahr-32));
}

The quantities LOWER, UPPER and STEP are symbolic constants, not variables,
so they do not appear in declarations. Symbolic constant names are convention-
ally written in upper case so they can be readily distinguished from lower case
variable names. Notice that there is no semicolon at the end of a #define
line.

1.8 Character Input and Output

We are now going to consider a family of related programs for processing
character data. You will find that many programs are just expanded versions of
the prototypes that we discuss here.

The model of input and output supported by the standard library is very sim-
ple. Text input or output, regardless of where it originates or where it goes to,
is dealt with as streams of characters. A fext stream is a sequence of charac-
ters divided into lines; each line consists of zero or more characters followed by
a newline character. It is the responsibility of the library to make each input or
output stream conform to this model; the C programmer using the library need
not worry about how lines are represented outside the program.

The standard library provides several functions for reading or writing one
character at a time, of which getchar and putchar are the simplest. Each
time it is called, getchar reads the next input character from a text stream
and returns that as its value. That is, after

¢ = getchar()

the variable ¢ contains the next character of input. The characters normally
come from the keyboard; input from files is discussed in Chapter 7.
The function putchar prints a character each time it is called:

putchar(c)

prints the contents of the integer variable ¢ as a character, usually on the
screen. Calls to putchar and printf may be interleaved; the output will

16 A TUTORIAL INTRODUCTION CHAPTER 1

appear in the order in which the calls are made.

1.5.1 File Copying

Given getchar and putchar, you can write a surprising amount of useful
code without knowing anything more about input and output. The simplest
example is a program that copies its input to its output one character at a time:

read a character

while (character is not end-of-file indicator)
output the character just read
read a character

Converting this into C gives

#include <stdio.h>

/# copy input to output; 1st version #/
main()
{

int ¢3

¢ = getchar();
while (¢ 1= EOF) {
putchar(c);
¢ = getchar();

}

The relational operator 1= means “not equal to.”

What appears to be a character on the keyboard or screen is of course, like
everything else, stored internally just as a bit pattern. The type char is specifi-
cally meant for storing such character data, but any integer type can be used.
We used int for a subtle but important reason.

The problem is distinguishing the end of the input from valid data. The
solution is that getchar returns a distinctive value when there is no more
input, a value that cannot be confused with any real character. This value is
called EOF, for “end of file.” We must declare ¢ to be a type big enough to
hold any value that getchar returns. We can’t use char since ¢ must be big
enough to hold EOF in addition to any possible char. Therefore we use int.

EOF is an integer defined in <stdio.h>, but the specific numeric value
doesn’t matter as long as it is not the same as any char value. By using the
symbolic constant, we are assured that nothing in the program depends on the
specific numeric value.

The program for copying would be written more concisely by experienced C
programmers. In C, any assignment, such as

¢ = getchar()

