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  1 
 Introduction  

    Rich Internet Applications (RIAs), with their somewhat vaguely worded  rich  opportunities, have 
significantly changed the way we use the Web over the past few years. And the speed of this 
change keeps increasing. The significance of classic desktop applications is being repositioned. 
Many types of programs that were traditionally used only as desktop application now suddenly 
appear on the Web, be it personal calendars, entire office programs, games, route planners, or 
communication programs. But apps for cell phones or smartphones are also increasingly based 
on web technology. This changes both the user behavior and the user expectation for Internet 
applications in  general and the availability of services. As classic web applications, but with a 
certain extra value, RIAs are, on the one hand, always available if you have a halfway decent 
Internet access and a modern browser.  1   On the other hand, they are hardly distinguishable 
any more from classic desktop or mobile apps in terms of operation, performance, and visual 
appearance.   

 The most effective way to ensure that these rich opportunities are available usually involves 
using an appropriate web framework. Be aware, however, that if you use a framework, you 
become significantly dependent on a manufacturer or a project, and that you then no longer 
have complete control over the source code in your applications. In any case, using frameworks 
requires familiarizing yourself sufficiently with the relevant function libraries and working 
methods of the system. In contrast to grandiose advertising claims of some frameworks (and 
some tools), you can usually use them effectively only after you understand web programming 
concepts and  have at least a basic knowledge of the underlying technology. Strictly speaking, 
you will profit most from frameworks the less you actually need them and the more you master 
the basics.  

 Regardless of these problems and disadvantages, however, there is much to be said for making 
use of frameworks and toolkits. They will certainly help you develop and maintain sophisti-
cated websites much more quickly, effectively, and efficiently; and they enable you to offer a 
richer and more robust site.  

 1.   The browser becomes a multifunctional access instrument for a specific task and thus replaces clas-

sic application types. In the future, users might only need a browser as application, or the operating sys-

tem and the browser may merge so that they become indistinguishable. 
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  Note 
 The preceding text included the terms  framework  and  toolkit  a few times. There is no standard 
definition for exactly what a framework is and how it differs from a toolkit. In fact, a reliable def-
inition and differentiation is not very straightforward. But generally, the term framework implies 
a programming framework that already offers certain functionalities. A framework is not yet a 
finished program in itself, but merely provides a frame within which one or several programmers 
can create an application. A framework usually contains a library with useful predefined code 
structures, but also (in contrast to a pure library) specifies a certain  control of the behavior pat-
terns involved in using it (for example, a syntax or grammar). With a toolkit, the main focus is 
on a collection of programs (tools), but these can also be based on specific libraries or 
a syntax concept. Both a framework and, in particular, toolkits often provide widgets or 
components—in other words, elements that constitute a graphical user interface (GUI).       

  1.1   What Is This Book About?  
 This book provides an easy introduction to web programming with  jQuery, jQuery UI , and 
 Mobile jQuery . jQuery is a free and comprehensive framework built on top of the JavaScript 
language. It was originally developed by John Resig and released in January 2006 at BarCamp 
(NYC). It is now consistently developed further as an open source project. jQuery UI is built 
on top of jQuery and extends the jQuery framework with UI specific components. Similarly, 
jQuery Mobile is also built on top of jQuery and extends the jQuery framework with mobile 
device-specific components.  

 The framework offers a whole range of very helpful features (for example, easy-to-use functions 
for DOM manipulation and navigation, as well as basic AJAX support). Beyond this, the frame-
work offers support for Cascading Style Sheets (CSS), an expanded event system, impressive 
effects and animations, various auxiliary functions, and numerous free plug-ins.  

 But where jQuery particularly excels is the seamless integration of the framework in many 
web platforms by large industry providers or their official support. For example, Microsoft uses 
jQuery in the development environment Visual Studio in combination with the ASP.NET MVC 
framework and Microsoft Asynchronous JavaScript and XML (AJAX). For example, if you create 
a new ASP.NET project, you can also integrate jQuery automatically (although not necessarily 
in the latest version).     

 In an ASP.NET MVC 3 or later web application in Visual Studio, you can even choose to inte-
grate some jQuery plug-ins (such as jquery.validate.js for validating user input).    
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 Figure 1.2   An ASP.NET MVC 4 web application with references to jQuery itself plus several 
jQuery plug-ins.         

 Figure 1.1   In an ASP.NET web application in Visual Studio 2010, you can also integrate jQuery.        
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 The links to the libraries are already created in the pregenerated source text and can be simply 
enabled by deleting the comment characters.    

 

 Figure 1.3   In the generated code, you just need to enable the script references.         

 In addition to Visual Studio, various other web development tools offer jQuery. But even 
other suppliers with a different focus use jQuery (for example, the cell phone manufacturer 
Nokia in its Web Runtime platform, as well as Google, Dell, Mozilla, WordPress, Drupal, and 
Digg). The list of popular users reads like a Who’s Who of the Web. The framework is also 
extremely popular on a wide scale, as many statistics prove. If you look at modern RIAs, more 
than 60% of them currently use jQuery and the jQuery UI, despite its powerful and impressive 
competitors.  

  1.1.1   What You Can Learn from This Book  
 In this book, you learn how to use jQuery for your own web applications—from simple 
websites to which you only want to add individual effects, right up to complex RIAs. This book 
is aimed at beginners, without starting right at zero, but it is not intended for an audience of 
freaks and programming experts either. You do not need to have lots of experience with AJAX 
or a framework or toolkit. But you should have a little bit of experience with web technology—
more on this shortly when you read about the target audience.  

 The book follows the same basic structure in each chapter. A brief introduction precedes the 
more detailed topics, and a summary concludes the chapter.  

 The specific approach is this: After this chapter, which already provides all requirements for 
working with jQuery, we just jump in at the deep end and work through a few examples 
without much preparation. This is meant to give a feel for what you can do with jQuery.  

 We then cover some basic background information about the Web, JavaScript, AJAX, Extensible 
Markup Language (XML), JavaScript Object Notation (JSON), and so on. Then, we take a closer 
look at what working with jQuery involves. Next, we turn to selectors and filters. I believe that 
these options for selecting objects in the context of a website are one of the biggest highlights 
of the framework and form the basis for accessing the elements of a website. Many examples 
are provided to help you better understand what we mean.  

 Next comes the topic Dynamic Hypertext Markup Language (DHTML). In DHTML, the main 
focus is on changing websites based on certain events. Essentially (or at least in most cases), 
DHTML means the dynamic influencing of CSS properties. Once more, jQuery offers many 
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options for making this task much easier and compensating for numerous browser incompat-
ibility issues.  

 In the previous paragraph, I used the word  event . Event handling on the Web is a bottomless 
pit with many browsers. jQuery provides a solution. In this book, you learn how.  

 For many visitors, effects and animations are an eye-catcher in a website. Again, jQuery has a 
whole range of horses in the stable that need not fear the competition in this race.  

 Then we explicitly venture into the Web 2.0. So, we turn to AJAX and look at what jQuery can 
offer in this respect.  

 That is really all on the topic of jQuery. But wait a sec, wasn’t there something else? The jQuery 
UI! So far, I have hardly mentioned it when describing the topics contained in this book. You 
might now think that the jQuery UI is something like the ugly duckling in the jQuery universe. 
Or perhaps uninteresting. This is far from the truth. The jQuery UI is the beautiful swan. Purely 
in terms of visual appearance, the jQuery UI offers much more than jQuery itself, even though 
using it is much easier—as long as you understand jQuery. jQuery is the basis  that makes 
life easier regarding source code and programming, whereas the jQuery UI builds on it as an 
independent framework and excels with visually advanced interface components and a CSS 
theme framework. Of course, we also take a closer look at the jQuery UI in this book and work 
through many examples with the various widgets it offers. In addition, you learn in detail how 
to use options, events, methods, and theming to adapt it further. The theme framework and 
the ThemeRoller of the jQuery UI are also covered in detail.  

 Then there are also plug-ins in jQuery, as extensions of the framework. You will learn how to 
use foreign plug-ins in case you cannot find a certain function in the jQuery and the jQuery UI 
core libraries, and you will learn how to create and publish your own plug-ins.  

 Last but not least, this book describes how you can create mobile apps based on jQuery. This 
involves using the mobile framework that is directly based on native jQuery (just as the jQuery 
UI is).  

  Note 
 To make things clearer, we often work with code examples in this book. You should type in the 
complete code examples yourself (and, of course, you can then also modify them and experi-
ment with them if you like). However, you will also find the listings on the companion website 
for this book.     

  1.2   Writing Conventions  
 This book uses various writing conventions intended to help you keep track of things more 
easily. Important terms are  emphasized in bold . Sometimes also in  italics . Above all, you are 
meant to be able to see if it is normal text or  program code . Keyboard shortcuts and some other 
special things are also highlighted. This formatting is used consistently throughout this book.  
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 I also want to add a special comment on source text passages of complete listings. For all 
complete listings and some larger source code fragments, you will see  numbering  of the source 
text lines. The numbers are, of course, not part of the source text itself; they are only meant 
to make it easier for you to find your way around, to point out a new line in the source code, 
and to make it clearer which part of the source code I am referring to. In rare cases, it might be 
necessary because of technical reasons to split a source  text line over several book lines. In this 
case, the numbering of the source code lines indicates which passages are to be written into 
one line in the editor. So long as you do not see a new line number in the book listing, you 
still have to type everything into a single line in the editor. This is particularly important for 
longer strings (texts in quotation marks) that must not be divided up into several lines.   

  1.3   Who Is the Target Audience for This Book?  
 It is always tricky to anticipate who may be interested in a particular topic. But I have certain 
ideas and by now quite a lot of experience from jQuery seminars about who will be interested 
in finding out more about creating RIAs in the context of jQuery, their potential reasons, and 
the most likely readership of this book. I assume that you have already created websites and 
have already been programming in one form or another. JavaScript would be a great basis, 
but other programming techniques are just as welcome, although your learning curve will be 
slightly steeper as you  go along. Style sheets should also be a familiar concept to you. If you do 
not have any previous experience with creating websites or working with HTML or program-
ming, this book will probably pose quite a challenge for you (but this should not discourage 
you from reading it). I also assume that you are tired of the limitations of a static HTML site. 
Perhaps you already have some experience with dynamic websites (at least as a user), and you 
would probably like to find an easy way to create such interactive modern sites. jQuery is a 
fantastic method for achieving  this.  

 More and more programmers of powerful techniques and environments such as Java or .NET 
are pressing into the area of web programming. Correspondingly, I want to also address readers 
with this type of background knowledge. For programmers who switch over from such power-
ful and strict worlds, it is often hard to find their way in the seemingly trivial (but, in fact, 
rather distinctive) world of web programming.   

  1.4   What Do You Need?  
 Let’s turn to the requirements you should meet for working with this book and jQuery.  

  1.4.1   Hardware and Operating System  
 We are dealing with the Internet. So, of course, you need to have a computer with Internet 
access. No special requirements apply as far as the computer itself is concerned, but your hard-
ware should be at least reasonable quality. The requirements of modern operating systems 
already determine the minimum level of the required hardware. All graphic operating systems 
such as Linux, Windows, or OS X will work fine as long as they are relatively up-to-date. The 
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exact type of the system you are using is not relevant for our purposes, just as in most cases on 
the Web.   

  1.4.2   jQuery and jQuery UI  
 Of course, you need to have jQuery itself so that you can re-create the examples in this book. 
You also need—in the later part of this book—the jQuery UI. You can download the most 
recent version of jQuery as well as past releases from the jQuery website:  http://docs.jquery.
com/Downloading_jQuery .  

  Tip 
 You can also download the current release from the project’s home page at  http://jquery.com/ . 
You will see a large button that loads the JavaScript library directly. At the time of this writing, 
the current release is version 1.9.1.   

 You can download different variations, basically a minified version without comments and 
redundant spaces or line breaks that is used mainly in production or an uncompressed version 
that has comments in the source code and is easy to read but larger. The function of both 
versions is the same; they contain a JavaScript file that generally has the name jquery.js. This 
file, which will usually also have a version number in the filename and a description of its 
specific variant depending on its type,  2   is the central  library of the framework that you inte-
grate into your websites. If you download a variant with a zip archive from the Internet, simply 
extract it. You then just need to reference the JavaScript file in your website following the usual 
rules (more on this later).   

  Tip 
 If you click the link for downloading the jQuery file, most browsers just display the file, without 
first giving you the option to save it. After all, it is a JavaScript library, and as such is usually 
displayed as pure text. By contrast, if you click a zip file, you usually get the option to save it 
via the browser’s download dialog that pops up when you click the file. In case of the jQuery 
library, you can display the code and then click the browser’s option for saving the page to save 
the jQuery library locally.       

 

 Figure 1.4   The jQuery file is displayed.         

 2.   For example, jquery-1.7.2.min.js indicates the minified version 1.7.2, and jquery-1.7.2.js is the uncom-

pressed version 1.7.2. 

http://docs.jquery.com/Downloading_jQuery
http://jquery.com/
http://docs.jquery.com/Downloading_jQuery
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 Figure 1.5   Use the browser’s Save dialog to save the jQuery library locally.         

 If you want to use the jQuery UI, you need this framework, as well, because the jQuery UI 
is not contained in the normal jQuery JavaScript library. The jQuery UI is a separate project 
within the whole jQuery framework and contains other resources such as CSS files and 
graphics in addition to JavaScript files. You can find the home page of the project at 
 http://jqueryui.com . There, you can load the framework via the  Download  link. Upon comple-
tion of the download, you get a compressed zip file that you can extract and make available on 
your server (just as with the jQuery  library) and then integrate into your website via a central 
jQuery UI JavaScript file.  

  Caution 
 Regarding the versions, note that the jQuery UI versions always work with a specific version of 
jQuery itself and that incompatibilities can arise if the versions do not match. But the zip file 
always contains a version of jQuery, as well, the version that is the required minimum. There is 
more to be said about downloading the jQuery UI and its specific use, but I come back to this 
in more detail later in the chapters on the jQuery UI.    

http://jqueryui.com
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  1.4.3   The Browsers  
 What you definitely need for programming with jQuery is, of course, a web browser that 
supports jQuery. After all, you want to be able to view your own sites so that you can test 
them. When using jQuery, you also need to take into account that the visitors of your websites 
have to comply with a certain minimum standard. As with most frameworks and toolkits, 
jQuery has anything but low requirements for the browser of a user who visits a website that 
works with jQuery. The minimum browser requirements may change with each new release of 
jQuery, but the following  browsers are currently officially supported (you can check whether 
this still accurate at  http://docs.jquery.com/Browser_Compatibility ):  

    ■   Firefox  3      

   ■   Internet Explorer   

   ■   Safari   

   ■   Opera   

   ■   Chrome  4       

 Other browsers might work, but there is no official guarantee that they will. In the documenta-
tion, some browsers are officially listed as basically working, but with some known issues.    

 

 Figure 1.6   The officially supported browsers.         

 3.   The same basically applies to all identical browsers, such as Netscape Navigator and Mozilla. 

 4.   Including its safe and, in comparison with Google’s data-gobbling habits, more reticent variant Iron. 

http://docs.jquery.com/Browser_Compatibility
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  Note 
 The version numbers are rather high, but users with older browsers hardly stand a chance in 
the current Web, even if we do not take jQuery into account. The situation has changed from 
what it was a few years ago. Now, more and more website creators no longer support as many 
browsers as possible. Instead, they explicitly set a minimum level. Certain functions cannot be 
realized at all in older browsers, or only with an exorbitant amount of effort, and hardly anyone 
is prepared to pay this price given that only a handful of users still have such old-timers. Some  
developers even cease supporting certain browser types, to give the impression that they are 
producing particularly modern websites. It seems to be almost a “mark of quality” if sites do 
not work with Internet Explorer or are not displayed correctly (as far as I can determine, this 
has almost become a national sport in the United States). This trend is essentially the oppo-
site of what was going on about 10 years ago. Back then, you would find many websites with 
the note  Optimized for Internet Explorer . Now, it seems that many websites want to demon-
strate their exceptional quality by no  longer working in Internet Explorer (at least in the really 
old versions, up to 7). Perhaps this is their motto:  We are making modern websites, and to use 
these, you need to have a modern and powerful browser.    

 I believe that this is the wrong approach. I think that even though Internet Explorer 9 is now 
available and a really good browser, we should still offer a kind of protected-species support for 
versions 7 and 8 (and to a certain extent even version 6). After all, many users on the Internet 
are forced to use Internet Explorer  5   because of company politics or because they do not have 
sufficient knowledge to use an alternative browser  or are just happy with a particular browser. I 
believe that jQuery is taking the sensible approach in supporting the older versions of Internet 
Explorer, and we can live with the few limitations of the jQuery UI regarding Internet Explorer; 
more on this in the relevant chapters later (and the explicit Microsoft support reflects this, too).   

 Unless you have one of the listed browsers, you cannot reliably test your jQuery web applica-
tion. As a creator of websites, you should definitely have several browsers available. Because 
even when using a reliable and well-established framework like jQuery, you still need to test 
web applications in all relevant browsers.  

 And generally, you do not know which browsers the visitors of your websites are using. So, it 
is a good idea to test your website even with browsers that do not have completely guaranteed 
support for jQuery. For example, even though there are known problems with Firefox 1.0.x, 
Internet Explorer 1.0 to 5.x, Safari 1.0 to 2.0.1, Opera 1.0 to 9.x, and Konqueror, jQuery gener-
ally does work with Konqueror or Firefox 1.0.x. Just not with all components. Ultimately, it 
depends on the feature you are using, and you can go and test it in the relevant browsers.   

  1.4.4   Different Operating Systems and Virtual Machines for Testing  
 As mentioned previously, the choice of operating system for working with jQuery when creat-
ing a website is largely one of personal preference or any given constraints. This does not 
concern the choice of a test environment. Ideally, you have several operating systems available 

 5.   Even still occasionally in the antiquated version 6, as I was appalled to realize in 2010/2011 during 

my seminars (and those were really big companies, too). 
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for testing your applications, because, after all, the visitors to your website will also be using 
different operating systems.  

 Of course, Windows is the reference system per se. The majority of users on the Web use this 
system. But Linux and OS X are also widely used, and there are different Windows versions, 
too. Sometimes it is very interesting to see how different web applications behave under differ-
ent operating systems, although the differences should not really be significant. So, use differ-
ent operating systems to test your applications if at all possible.  

 You do not need to have several computers or to install another operating system in parallel 
to your operating system. Especially for Linux, there are excellent live CDs or live DVDs from 
which you can launch the operating system directly without any changes being made to your 
hard disk. For readers with sufficiently capable hardware, it could also be interesting to have a 
closer look at a virtual solution (virtual machine [VM]) such as VMware ( http://www.vmware.
com ), Virtual PC by Microsoft ( http://www.microsoft.com/windows/virtual-pc/default.aspx ), 
or VirtualBox ( http://www.virtualbox.org/ ). These are available for free, at least for private use, 
and they simulate another operating system  within the currently running operating system. For 
example, you can use these VMs to start a Linux system from within Windows or vice versa, 
or you can install another version of Internet Explorer under Windows parallel to your current 
Windows installation. With AJAX, the guest system (in other words, the system that runs in the 
VM) can act as server or client, and you therefore have two completely separate systems on one 
computer, enabling you to test a client/server relationship just as you would in reality.   

  1.4.5   The Web Server for Realistic Testing  
 With AJAX, data from a browser is requested from a web server and integrated into the website 
without reloading the site. Therefore, for practical use and for testing such applications, you 
must have access to a web server on the Internet and be able to execute programs and scripts 
on it. Ultimately, this is necessary for an AJAX project in practice, as well. However, in practice 
it is not usual to be working directly on a web server on the Internet while you are still devel-
oping a web application (especially if you just want to test a few things). But  even without 
AJAX, to properly test a web application, you need to test it under realistic conditions on a web 
server.  

 For those reasons, you should create a test environment with a web server on a local computer 
or in a local network. Linux distributions, in particular, almost always contain one or more web 
servers. Different development environments for web applications also have an integrated web 
server. Then you are on the safe side. But even if you do not automatically have a web server 
available or simply want to make things as easy as possible, you can make use of an all-
inclusive package such as XAMPP, which you can simply download for different operating 
systems from the Internet (at  http://www.apachefriends.org ).  

 This package is a collection of programs relating to the web server Apache, including the data-
base management system MySQL (together with phpMyAdmin for administrating the database 
management system) and PHP support, the FTP server FileZilla, plus several other web technol-
ogies. You just install this package with a simple assistant, and then you have a fully functional 
web server in basic configuration at your disposal.  

http://www.vmware.com
http://www.vmware.com
http://www.microsoft.com/windows/virtual-pc/default.aspx
http://www.virtualbox.org/
http://www.apachefriends.org
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  Caution 
 Note that in their default settings, these packages by XAMPP are for local testing purposes 
only. To make things as simple as possible, all security settings are at a minimum.   

 As soon as the installation of XAMPP completes, you can either launch Apache manually or set 
it up so that Apache is integrated as a service or process in your operating system and can 
even be launched automatically when the computer starts up. XAMPP offers a helpful and easy-
to-use control panel.    

 

 Figure 1.7   The XAMPP control panel: Apache, MySQL, and FileZilla are running.         

  Tip 
 Note that under XAMPP you have to follow the conventions commonly used on the Internet or 
Web regarding the path you specify. You cannot act as if you are working just under Windows 
(which, of course, means that you have to make sure that you work thoroughly and avoid 
potential problems right from the start). Under Apache, uppercase and lowercase is usually rel-
evant. The best approach is to consistently use lowercase for directory names and filenames. 
And Windows users should note that you do not use a backslash for separating levels on the 
Internet, but instead use the slash.    
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  1.4.6   The Development Tools  
 As backbone of an RIA, as for any website, you will almost always be using an HTML or XHTML 
frame. So, for creating the HTML source text and for all other techniques you use such as 
CSS, JavaScript, and so on, the minimum is a pure text editor, as included with any operating 
system.  

 In practice, though, you will probably use more powerful programming tools that support you 
in creating and analyzing the source text. Such programs may know some components of a 
programming or description language (such as HTML, CSS, or JavaScript) and support simple 
and sometimes even more complex standard processes, such as masking (the coded representa-
tion) of special characters, inserting source code templates, or aids for providing greater clarity 
by color-coding known commands. Some editors also offer the commands of a used language 
directly, which means the programmer can use menus or toolbars to choose them (sometimes 
with the mouse).  Notepad++ ( http://notepad-plus-plus.org/ ), for example, is an excellent editor 
offering this kind of support.  

 Another feature offered by some programs is different document views. This is often the case 
with pure HTML editors. You then have the choice of switching between the preview of a 
website (as it will look in the browser), a graphic editing mode, and above all a view of the 
HTML code itself.  

 Even in web programming, you can now make use of some proper integrated development 
environments (IDEs). These allow programming and executing from an integrated, common 
interface. A free yet very powerful IDE is Aptana ( http://aptana.com/ ). It is based directly on 
the powerful development environment Eclipse ( http://www.eclipse.org ). Aptana offers a source 
code editor and has many features to directly support JavaScript, HTML, and CSS plus access to 
the DOM object model and even AJAX itself. The Code Assist function tries to autocomplete 
various user inputs, and syntax is marked with syntax highlighting (highlighting key terms and 
syntax structures in different colors).  The option of displaying the properties and methods of 
objects is particularly interesting. The program even offers a debugger for JavaScript. Aptana 
also contains its own little web server (Jetty), via which you can test an AJAX application 
without installing an independent web server. If you create a project with Aptana, you will see 
that various popular JavaScript libraries are already integrated directly, among others jQuery, 
although there are usually more recent versions available on the Internet.    

http://notepad-plus-plus.org/
http://aptana.com/
http://www.eclipse.org
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 Figure 1.8   Aptana with direct support for jQuery.         

  Tip 
 Even if the version of jQuery available in Aptana for direct integration is not completely 
up-to-date, you should import the thus available (most recent, but potentially also outdated) 
jQuery library. You do not even need to use this outdated version. Instead, I recommend that 
you also download the most recent version separately and use this version in your web projects. 
But the import gives you the option of enabling in Aptana a code completion for the imported 
library (and this is not possible if you integrate the JavaScript file into a project via HTML alone). 
This code completion may then  not be quite up-to-date, but is still immensely helpful.   

 Before you can use the code completion, you first have to complete the following steps:  

    1.   Create a new web project via  File > New .   

   2.   Select  Default  from this list of available web project types.   

   3.   After you have entered a name, you can either select a jQuery library directly (if it is 
already on offer), or you can click the  Install JavaScript Libraries  button. In the next 
dialog, you then choose  jQuery  under JavaScript Libraries. Where applicable, ensure that 
jQuery is also selected in the subsequent dialogs.   

   4.   Under  Window > Preferences , you can now go to the category Aptana Studio and open 
the subcategory  Editors  and then  JavaScript . Here, you can select the code completion 
for jQuery under Code Assist. It is then available in all further default web projects. In 
other words, you need to complete these three steps only once, not for each and every 
project.      
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 Figure 1.9   Enabling the code completion.         

  Note 
 The specific editor or IDE is not relevant for this book, although I am working mainly with 
Aptana.   

 As mentioned elsewhere, the big players in development also integrate jQuery into their tools; 
for example, Microsoft integrates it in Visual Studio from version 2008 onward. For creating 
web applications, the Web Developer integrated into Visual Studio is of particular interest. 
If your background involves ASP.NET, Visual Studio, which is also available as a free Express 
version (for example, as version 2012 under  http://www.microsoft.com/visualstudio/eng/
products/visual-studio-express-products ), is an excellent development environment.  

 You can also expand the web browser Firefox with numerous extensions (add-ons) so that it 
offers many useful features for web development (for example, the DOM Inspector, Firebug, 
Live HTTP headers, and Web Developer). After installation, you can find the add-ons in the 
Extras menu. The simplest way of installing a Firefox extension is to go to the download page 
of the Mozilla project ( https://addons.mozilla.org/ ), type the name of the add-on you want into 
the search field, and then click the installation hyperlink for your browser.    

http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-products
https://addons.mozilla.org/
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-products
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  1.5   About the Author  
 To conclude this chapter, I give you a bit of information about myself. You will already know 
my name from the cover of this book or from reading the preface, but for the sake of polite-
ness, allow me to introduce myself once more: My name is Ralph Steyer. I went to university 
in Frankfurt/Main (Germany) and studied mathematics (Diploma). I then spent several years 
working as a programmer and conceptual project member for a large insurance company in 
the Rhine-Main area, first with Turbo Pascal, later with C and C++. After 4 years, I spent 1 year 
working in database  conception for a mainframe database under MVS. This experience was a 
great motivation for my step toward being self-employed because I realized that I did not want 
to do this long term.  

 Since 1995, I have been earning my living as a freelancer, switching on-the-fly between 
working as technical author, specialized journalist, IT lecturer, consultant, and programmer. 
In addition to these roles, I sometimes give lectures on web conferences, teach at various 
academies and one university, occasionally translate specialist books, and record online train-
ing videos. In my opinion, this makes quite a good mixture, preserves me from professional 
apathy, and keeps me close to the practice and at the forefront of development. In particular, I 
have the pleasure but also the burden of having to constantly stay current with new IT devel-
opments  because the half-life of computer knowledge is rather short. Correspondingly, my job 
is sometimes tiring, but always exciting.    

     Summary  
 In this introductory chapter, you have found out who will guide you through this book, what 
this book is about, and who it is aimed at (in addition to its underlying structure). You now 
know what requirements you need to meet to start creating RIAs based on jQuery. And that is 
what we do next.     



  2 
 First Examples with jQuery  

    In this chapter, we make first contact with jQuery without any further preparations. In other 
words, we are jumping right into the deep end. I am anxious for you to get a feeling for what 
you can do with jQuery and what you can get out of this framework. Just accept for now that 
many questions regarding the source text have to remain open at this stage. Don’t worry, 
though; these questions are answered over the next few chapters. The explanations on the list-
ings also remain somewhat superficial at this stage, to avoid going off topic. We want to get  
into the practical application of jQuery as quickly as possible and just have some fun playing 
around, which means creating examples.  

  Note 
 For the examples in this chapter, but also most examples in the following chapters, it is not 
relevant which specific version of jQuery you are using. The examples in this book have been 
created with jQuery 1.8.2 or later, but often any version from 1.3 or at least 1.4.1 onward is 
sufficient.       

  2.1   Accessing Elements and Protecting the DOM  
 If you already have some basic knowledge of programming on the Web,  1   you already know 
that you can access the components of a web page via JavaScript or another script language in 
the browser via an object model with the name Document Object Model (DOM). For this type 
of access, there are several standard techniques,  2   each of which has its own weaknesses. 

 2.   For example, the methods  getElementById()  and  getElementsByTagName()  plus access via 

object fields or names. 

 1.   Given the target audience of this book, I assume you do. 
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In particular, you usually have to enter many characters when accessing just a single element of 
the web page  (or a group). This involves a lot of effort and is susceptible to errors. Most frame-
works therefore offer a system via which this access can take place with an abbreviated, unified 
approach. Plus the underlying mechanisms compensate for various weaknesses of the standard 
access methods, above all by compensating for browser-dependent particularities and supple-
menting various missing functions of the pure DOM concept. Particularly important is that 
this compensation has generally been tested on all officially supported browsers and therefore 
works rather reliably.    

 The following example demonstrates another extremely important function of jQuery—protect-
ing the DOM. More on what this is all about later. For now, let’s just say that different browsers 
process the web page differently on loading (parsing) the page, which can lead to a number of 
problems when the elements of the web page are accessed (especially if you try to access the 
elements of the web page too soon in a script—in other words, before the browser has correctly 
constructed the DOM). Here, jQuery offers a reliably method for mastering these problems.  

 The example also shows you in passing, as it were, how you can use jQuery as a standardized 
way of accessing contents of elements with text and reacting to events. But enough introduc-
tion. Here is our very first listing (ch2_1.html):  3     

  Listing 2.1   The First jQuery Example  

01 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 01

   Transitional//EN"

   "http://www.w3.org/TR/html4/loose.dtd">

02 <html xmlns="http://www.w3.org/1999/xhtml">

03  <head>

04    <meta http-equiv="Content-Type"

05      content="text/html; charset=utf-8" />

06    <title>The first jQuery example</title>

07    <script type="text/javascript"

08        src="lib/jquery-1.8.min.js"></script>

09    <script type="text/javascript">

10      $(document).ready(function(){

11        $("#a").click(function(){

12          $("#output").html("Boring :-(");

13        });

14        $("#b").click(function(){

15          $("#output").html("A nice game :-)");

16        });

17        $("#c").click(function(){

 3.   The quotations are from the movie  War Games —one of the first movies about a hacker. I highly 

recommend that you watch it the next time it is on TV. 
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18          $("#output").html("A strange game. " +

19               "The only winning move " +

20             "is not to play.");

21        });

22      });

23    </script>

24  </head>

25  <body>

26    <h1>Welcome to WOPR</h1>

27    <h3>Shall we play a game</h3>

28    <button id="a">Tic Tac Toe</button>

29    <button id="b">Chess</button>

30    <button id="c">

31      Worldwide Thermonuclear War</button>

32    <div id="output"></div>

33  </body>

34 </html> 

 Just create the HTML file in a separate directory and save it under the listed name.  

 In practice, you would usually save all your resources that are part of a project within a separate 
directory. For a web project, the best solution is to create these directories in the shared folder 
of your web server. In the case of Apache/XAMPP, this is usually the directory htdocs. This has 
the advantage that—if the web server is running—you can run the test directly via HTTP and 
a proper web call, not just load the file via the FILE protocol into the browser (in other words, 
the classic opening as file or simply dragging the file into the browser).  The latter is not a real-
istic, practice-related test because later the pages also have to be requested by the visitor via a 
web server.  

 If you are working with an integrated development environment (IDE) such as Aptana or the 
Visual Studio Web Developer, you can usually display a web page directly from the IDE via an 
integrated web server. In Aptana, this is done via the  Run  command, and in Web Developer (a 
Firefox add-on) you can use the shortcut  Ctrl+F5.   

  Note 
 In this book, all examples are sorted by chapter and listed accordingly on the companion web-
site ( http://jquery.safety-first-rock.de ).   

 In lines 7 and 8, you see the reference to an external JavaScript file—the jQuery library that 
in this specific case resides in the subdirectory lib of the project directory where the website is 
saved. This structure has now become widely accepted in practice. This means that the jQuery 
library also has to be located in exactly that place. But, of course, you can instead choose to use 
a different path structure.    

http://jquery.safety-first-rock.de
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 Figure 2.1   In this project, the jQuery library is located in the directory lib, seen from the perspec-
tive of the website.         

 Line 9 to 23 contains a normal JavaScript container. In it, the web page is addressed with 
 $(document)  (line 10). The function  $()  is a shorthand notation for referencing an element of 
the web page. You also see these shortened access notations in lines 11, 12, 14, 15, 17, and 18. 
But here, an element ID is used as a parameter.  

  Note 

 Note that an element (in terms of jQuery) as a parameter of  $()  is not enclosed in quotation 
marks, whereas an ID (or another selector) is enclosed in quotation marks.   

 Let’s now take a quick look at the method  ready()  that starts in line 10 and goes up to line 22. 
This method ensures that the calls it contains are only executed when the web page has been 
fully loaded and the DOM is correctly constructed. As hinted at before and without going into 
too much detail, this is already a feature whose value cannot be appreciated highly enough.  

  Note 

 For readers with the corresponding knowledge and experience, the method  ready()  is an alter-
native for the event handler  onload  that you can write in HTML in the body of a web page or 
under JavaScript for the corresponding DOM object. But this event handler is seen as extremely 
 unreliable  because it is insufficiently implemented in various browsers. It is a good idea to 
avoid it wherever possible.   
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 Within the  ready()  method, three event handlers each specify the reaction when clicking the 
listed elements. In our examples, these are three buttons marked with a unique ID.  

  Note 

 The method  click()  encapsulates (you probably guessed it) the function call of the event han-
dler  onclick .   

 The allocation to the correct function is achieved via the ID and triggering the function 
within the method  click() . Note that we are using an anonymous function here (without an 
identifier).  

 It also gets interesting if a user clicks one of the buttons. This displays a specific text output in 
a section of the web page. We are again using  $()  and an ID for selecting the section (a  div  
block) and the method  html()  for accessing the content.    

 

 Figure 2.2   The web page with the three buttons; the user has just clicked the third button.         

  Note 

 In all following examples, we omit writing or using the  DOCTYPE  statement. For the sake of com-
pleteness, it does belong there, but omitting it does not have any effect for us, and because it 
is always the same, writing it down over and over again is just a waste of space in this book. 
In the examples on the companion website, the statement is included because it forms part of 
the correct standard.    
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  2.2   Editing the Web Page with DHTML à la jQuery  
 Generally, you can design the visual appearance of a web page much better and more effec-
tively with style sheets than with pure HTML. In particular, they make it easier to separate 
layout and structure of the site. These statements are probably old hat to you, as true as they 
are.  

 If you now change the style sheets of a site dynamically via JavaScript, we are talking about 
Dynamic Hypertext Markup Language (DHTML). But animation effects such as showing and 
hiding parts of a web page via other JavaScript techniques also form part of this. In the follow-
ing example, we look at how you can carry out animated web page changes with jQuery 
quickly, simply, conveniently, and yet reliably in the various browsers. In this example, we 
change the Cascading Style Sheets (CSS) class of an element dynamically.  

 First, let’s look at a little CSS file that should be integrated into the following web page and 
saved in the lib directory (ch2_2.css):  

  Listing 2.2   The File with the External Style Sheets  

01 body {

02  background: lightgray;color: blue;

03 }

04 div {

05  background: white;font-size: 14px;

06 }

07 .mClass {

08  background: red; color: yellow; font-size: 24px;

09 } 

 Nothing much happens in the CSS file. It determines the background and foreground color of 
the entire web page and all elements of the type  div , plus the font size for all elements of the 
type  div .  

 Of primary interest is the class described in lines 7–9. It is not yet to be used on loading the 
following web page, but is to be assigned dynamically in case of a user action (ch2_2.html):  

  Listing 2.3   Changing the CSS Class  

01 <html xmlns="http://www.w3.org/1999/xhtml">

02  <head>

03  <meta http-equiv="Content-Type"

04    content="text/html; charset=utf-8" />

05  <title>The second jQuery example</title>

06  <link type="text/css" rel="stylesheet"

07    href="lib/ ch2_2.css" />

08  <script type="text/javascript"

09    src="lib/jquery-1.8.2.min.js"></script>
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10  <script type="text/javascript">

11    $(document).ready(function(){

12      $("#a").click(function(){

13        $("#c").addClass("mClass");

14      });

15      $("#b").click(function(){

16        $("#c").removeClass("mClass");

17      });

18    });

19  </script>

20  </style>

21 </head>

22 <body>

23  <h1>Editing Style Sheets with jQuery</h1>

24  <button id="a">Add CSS class</button>

25  <button id="b">Remove CSS class</button><hr/>

26  <div id="c">He who knows all the answers

27    has not been asked all the questions.

28  </div><hr/>

29  <div id="c">Be not afraid of going slowly,

30   be afraid only of standing still.</div>

31 </body>

32 </html> 

 In the example, you can see two buttons below a heading and two texts within a  div  section 
that is separated by a separator in each case. This is pure HTML. Plus in lines 6 and 7 you can 
see the link to the CSS file.    

 

 Figure 2.3   The site after loading         
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 But now we want to use jQuery to manipulate the text below the buttons or the first  div  
container. That is why the  div  container has an ID. The text below it is intended for compari-
son purposes.  

 For accessing the elements of the web page, the example uses jQuery mechanisms already 
mentioned in the first example. To react to the relevant click on a button, we again use the 
method  click() . So far, there is nothing new.  

 Now you should notice that we do not yet assign the CSS class from the linked CSS file to an 
element on loading the web page. But take a look at line 13.  

  Listing 2.4   Adding a CSS Class  

$("#c").addClass("mClass");

 As the name of the method  addClass()  already implies, calling this method assigns the indi-
cated style sheet class to the preceding element. This happens dynamically without the web 
page having to be reloaded in any way. The function is triggered when the user clicks the corre-
sponding button, as you can see from the surrounding  click()  method.    

 

 Figure 2.4   The CSS class has been assigned.         

 In line 16, you can see how the class is removed again following the same pattern. This time, 
we use the method  removeClass() . If you test the example, you will see that font and back-
ground are changed accordingly.  
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  Tip 

 Alternatively, you could use the method  toggleClass()  in this example. This removes or 
adds a CSS class, always depending on the state. If the class is already assigned, it is then 
removed, and vice versa.    

  2.3   Animatedly Reducing and Enlarging of an Element  
 Now we want to use jQuery to animatedly reduce and enlarge an element to hide or show it. 
First, let’s look at the external CSS file in the subdirectory lib, in which a property is defined 
that has specific consequences for the following animation (ch2_3.css):  

  Listing 2.5   The CSS File  

01 body {

02  background: lightgray;color: blue;

03 }

04 #i1 {

05 width:300px; height:225px;

06 }

07 #i2 {

08  height:225px;

09 }

10 #h2{

11  background: white; color:#0000FF; font-size: 18px;

12 } 

 The specification that is interesting for the following example is the width data in line 5. The 
ID used as selector references an image. The width specification influences the type of the 
animation that follows. But first, let’s look at the web page itself. It basically contains two 
images and some text below. We want to animate all three elements (ch2_3.html):  

  Listing 2.6   Reducing or Enlarging Two Images and Some Text  

...

06    <link type="text/css" rel="stylesheet"

07      href="lib/ch2_3.css" />

08    <script type="text/javascript"

09      src="lib/jquery-1.8.min.js"></script>

10    <script type="text/javascript">

11      $(document).ready(function(){

12        $("#toggle1").click(function(event){

13          $('#i1').slideToggle('slow');

14        });

15        $("#toggle2").click(function(event){

16          $('#i2').slideToggle('slow');

17        });
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18        $("#toggle3").click(function(event){

19          $('#h2').slideToggle('slow');

20        });

21      });

22    </script>

23  </head>

24  <body>

25    <h1>Animated showing and hiding

26   of an image and text with jQuery</h1>

27    <button id="toggle1">Toggle Image 1</button>

28    <button id="toggle2">Toggle Image 2</button>

29    <button id="toggle3">Toggle Text</button><hr/>

30    <img src="images/i1.jpg" id="i1" />

31    <img src="images/i2.jpg" id="i2" /><hr/>

32    <h2 id="h2">A ski jump</h2>

33  </body>

34 </html> 

 At the core of this animation is the method  slideToggle() . This name is also very telling. 
You can use this effect to show or hide objects depending on the current state, or to reduce or 
enlarge them. In other words, the current state is toggled to the opposite state. You can see it 
applied in lines 13, 16, and 19.  

  Tip 
 As you can probably see, a temporal interval is specified as a parameter. It determines how 
long the animation should take. You can pass such parameters for the speed in most anima-
tions in jQuery. Permitted parameters are  slow ,  normal ,  fast , or a specification of time in mil-
liseconds. The specification in milliseconds is not enclosed by quotation marks.     

 

 Figure 2.5   The original looks like this.         
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 If you reconstruct the animation of the first image, you will see that reducing the image results 
in a reduction in image height and the image then disappears altogether. Vice versa, the image 
grows upward from that point if you enlarge it.    

 

 Figure 2.6   Here, the first image is squashed down.         

 Of massive importance for this behavior is that the width of this image is specified via the 
CSS rule for the ID  i1 . This prevents the width from also being reduced. The animation of the 
second image whose width is not specified shows what that looks like. You will see that on 
reducing the image, it shrinks into the lower-left corner of the image and then disappears alto-
gether. Vice versa, the image grows outward from this point to the top right.    

 

 Figure 2.7   The second image shrinks animatedly in width and height.         
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 But now observe what happens to the text if you click the third button. The heading also disap-
pears but only in terms of height.  

 For the effect of  slideToggle() , it matters to what type of element the animation technique is 
applied, and the CSS rules that have been previously applied to an element also play a role.  

 The animations in the example are basically independent from one another. If you set the 
interval for running the animation long enough, you can have the animations run in parallel.    

 

 Figure 2.8   The three elements are animated in parallel.         

 In that case, note that the content positioned lower down is moved upward or could be repo-
sitioned vertically if a preceding element has disappeared completely. (In effect, it is removed 
from the text flow.)  

 But what happens in the example if you click the same button several times? This answer 
might surprise you: The events are cumulated. This means they are executed consecutively; 
the next event is executed only when the previous one has been fully processed. So, clicking 
the button again does not cause the current animation to stop and the next one to commence 
immediately. If that is what you want to achieve, you have to program it explicitly.   

  2.4   Changing Attributes Dynamically  
 This section shows how you can dynamically change attributes for an element of the web page. 
To this purpose, jQuery offers the extremely flexible and useful method  attr() . With this, 
you can dynamically change one or several attributes of an element. In curly brackets, you set 
a value pair as parameter, first specifying the attribute, followed by a colon and then a string 
with the new value. Alternatively, you can also specify two string parameters. In this variation, 
the first parameter represents the attribute name and the second parameter the value. (In this 
case, you can change only one attribute.)  If you only want to request the value of an attribute, 
you just enter the name of the attribute as a string parameter.  
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  Note 
 For the sake of simplicity, we change only one attribute in the following example. If you want to 
change several attributes at once, however, you just need to write additional value pairs in the 
curly brackets, separated by commas.   

 For our example, we want to replace an image in the web page by changing the value of the 
attribute  src  of an  <img>  tag (ch2_4.html).  

  Listing 2.7   Changing Attributes on an Element  

...

06    <script type="text/javascript"

07      src="lib/jquery-1.8.min.js"></script>

08    <script type="text/javascript">

09      $(document).ready(function(){

10        $("#toggle1").click(function(){

11          $("img").attr({

12            src: "images/i1.jpg"

13          });

14        });

15        $("#toggle2").click(function(){

16          $("img").attr(

17            "src", "images/i2.jpg"

18          );

19        });

20      });

21    </script>

22  </head>

23  <body>

24    <h1>Replacing an image</h1>

25    <button id="toggle1">Image 1</button>

26    <button id="toggle2">Image 2</button>

27    <hr/><img src="images/i1.jpg"/>

28 </html> 

 We change the value via the notation in the curly brackets once, and via the two string param-
eters once. As mentioned earlier, we replace the value  src  in each case.    
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     Summary  
 This chapter provided just a few examples, but they already serve well to demonstrate central 
key facts of jQuery. In particular, you should memorize the function  $()  and the method 
 ready() . But techniques for specifying reactions, such as the method  click() , are also of 
elementary importance. And animation techniques such as  addClass() ,  toggleClass() , 
 removeClass() , and  slideToggle()  are also going to be helpful in practice later for DHTML 
effects. In this chapter, you also learned about changing attribute values ( attr() ). You will 
more fully understand these techniques as you work through other chapters of this book and 
have delved deeper into the overall  concept of jQuery.     



  3 
 Basic Knowledge  

    In the preceding chapter, you worked through the first few examples with jQuery. Now it’s 
time to turn to the underlying basics—not yet in the detail of jQuery itself, but in the world 
where jQuery is used and how the framework is anchored within it. This world is the Web with 
Hypertext Markup Language (HTML) or Extensible HTML (XHTML), Cascading Style Sheets 
(CSS), JavaScript, Extensible Markup Language (XML), JavaScript Object Notation (JSON), and 
Asynchronous JavaScript and XML (AJAX). After all, just as many other frameworks and tool-
kits in this area, jQuery is a JavaScript extension for websites that provides certain  CSS features 
(in case of the jQuery UI, even custom CSS themes) and support for AJAX in addition to an 
independent syntax. Without elementary basic knowledge of the underlying technologies, you 
will hardly be able to use jQuery effectively and appropriately. In all our basic explanations, we 
focus, of course, on the jQuery aspect in this chapter as you learn how to integrate the jQuery 
library into your web page and what you need to look out for. Now let’s get cracking so we can 
delve deeper into jQuery later.  

  Note 
 What this chapter cannot, should not, and does not do is to give you a complete introduction 
to the relevant techniques. Here you find only the basic information absolutely necessary in 
relation to jQuery. If you need to, use additional sources to find out more. The appendix con-
tains more information about the most important basics of JavaScript as the core technology of 
jQuery.       
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  3.1   The Web, Web 2.0, and the Client/Server Principle 
on the Internet  
 To start with, let’s take a brief look at the World Wide Web (WWW); after all, you already 
know the basics facts about the WWW. At its core, the Web is based on the service protocol 
Hypertext Transfer Protocol (HTTP) for communication, the document description language 
HTML, and its strict XML-based twin XHTML plus the program types web server and 
web browser.  

 Just like all services available on the Internet, the Web is a classic client/server system, where 
each action consists of a cycle of requesting a service and providing the service. More specifi-
cally, this means that on the Web it is practically always a situation of a browser (the client) 
requesting a file (usually a web page or content that is to be integrated into a web page) and 
in some cases sending further requests for external resources referenced within this site (for 
example, graphics, videos, flash animations, or external JavaScript or CSS files). These are then 
displayed in the browser  together with the web page or are otherwise processed. The central 
control mechanism is always the (X)HTML file.  

  3.1.1   Programming on the Web  
 Over the years, the Web has evolved into a system where you can program both on the server 
and on the client in terms of offering content. The hysteria about the dangers of client-side 
programming seems to have calmed down in recent years, and nearly all modern websites use 
client-side programming for that part of the business logic that should quite sensibly be taken 
care of in the client. After all these years, the only relevant representative of the client-side field 
that is still around is JavaScript, but by now it is used and accepted widely. Just take a look  at 
some popular websites on the Internet. Not one of these sites can manage without JavaScript. 
And almost all users on the Web have JavaScript enabled in their browser. After all, who wants 
to do without the full and unlimited use of popular websites such as Google, Amazon, eBay, 
Facebook, Twitter, Wikipedia, or Yahoo! As a creator of websites, you can, in turn, assume that 
most clients have JavaScript plus its associated techniques.  1   This means that most arguments 
against using JavaScript frameworks such as jQuery or Dojo Toolkit, Prototype, YUI, and so on 
are no longer valid.   

  Note 
 As mentioned earlier in this book, various manufacturers are trying to establish proprietary tech-
niques such as Silverlight in the client system to break through the limitations of JavaScript and 
web browsers as clients. But it will take some time before these are supported and accepted 
on a wide scale. It is unclear, at this point, whether these proprietary efforts will succeed.    

 1.   According to the statistics I consulted, the support for JavaScript is fluctuating massively. Some sta-

tistics assume 99.9% availability, others perceive “only” 99.1% availability. I hope you are aware  of the 

irony in my statementl to spell it out, you can currently assume that there is almost unlimited availability. 
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  3.1.2   The Web 2.0  
 As ingenious and fundamentally simple as the concept of the Web is, there is a basic and 
serious problem with HTTP, HTML, and the concept of classic web browsers. When the 
browser requests new data from a web server, the latter always has to send a complete web 
page in response. Or to be more precise, the browser interprets the response in such a way 
that it completely replaces the site previously displayed in the browser with this new content. 
Obviously, this is very inefficient. This is where AJAX enters the stage. (You will read more 
about its technical background  shortly.)  

 Generally, this is a procedure that ensures a reaction from a web application in (almost) real 
time, although new data is being requested from the web server. Instead of resulting in a 
complete web page with data that is in principle already present in the browser, an AJAX data 
request will result in only the really new data being sent by the web server and then using 
DHTML methods to “build it in to” the web page that is already loaded in the client. This does 
not usually even interrupt the normal user interaction with the web application by loading  
new data. Therefore, you can now create sites on the Web that are very much focused on 
interaction with the user. Thanks to Google, in particular, AJAX has now become established 
as standard procedure for such interactive websites. And since about 2005, the buzzword  Web 
2.0  has been a collective term for most interactive websites. Often, Web 2.0 is also referred to 
as “participatory” or “interactive” web, because users are no longer just consumers but also 
contribute content themselves. Just think of blogs; tweets; wikis; or communities such as Xing, 
Facebook, MySpace, and so on. But even if users, for example,  enter data in an online calendar, 
this will result in a different representation of the website (for example, the event is displayed—
and, of course, also saved on the server). In this respect, that is also a form of participating in 
the Web 2.0.    

  3.2   JavaScript and Its Relationship to jQuery  
 Because jQuery is fundamentally a JavaScript library, we, of course, need to take a closer look 
at this language. Although marketing statements of jQuery and various other frameworks claim 
it will do many things with regard to JavaScript for you, to use jQuery you ought to have basic 
knowledge of JavaScript. And if you want to use jQuery really effectively (for example, to create 
plug-ins), you should even have good knowledge of JavaScript.  

  Note 
 The next few chapters lead you deeper into the world of JavaScript, where it is appropriate in 
connection with jQuery. For now, just a bit of basic information on JavaScript will suffice. For 
more basic concepts and information on JavaScript, see the appendix.   

 Generally, script languages on the Web are some of the most important extensions of HTML 
or XHTML and implement the client-side logic of a web application. These script languages are 
interpreter languages that are translated and executed within a host program (the browser) at 
runtime. This particularly applies to JavaScript.  



34 Chapter 3 Basic Knowledge

  Note 
 New browsers have a just-in-time compiler for JavaScript. This expands the interpreter principle 
for JavaScript with the option of keeping already translated code in the memory and making it 
available in a more performant way in case of a repeat execution. This is a key factor for Rich 
Internet Applications (RIAs) that are meant to behave in the same manner as desktop applica-
tions in terms of performance.   

 Essentially, jQuery is a JavaScript library. In other words, jQuery is based only on a function 
that every modern browser offers. You do not need a plug-in or another type of extension for 
the browser to have the functions in this library available. So, you are not adding it to the 
browser or even the operating system (as can be the case with competing technologies). This is, 
on the one hand, a great advantage, but on the other hand, you can only realize those things 
in the library that can be achieved with JavaScript or Dynamic HTML (DHTML) and Cascading  
Style Sheets plus Document Object Model (DOM) manipulation. But to be able to offer these 
exciting and powerful effects and services by jQuery using these simple basic technologies, they 
had to be stretched to their limits. As a consequence, not every browser can be fully supported 
(especially not older browsers).  

 If you are really good at programming with JavaScript, you could reproduce all the functional-
ity of jQuery yourself. But that would involve quite some work and effort. The jQuery team has 
already invested many years of work in developing this library, and you can profit from this 
work for your own purposes.  

  3.2.1   The General Integration of JavaScript in Websites  
 JavaScript is to be seen as direct complement to and extension of HTML or XHTML and is 
intended for use as an integrated component of a corresponding website frame. Web scripts are 
directly written in plain text into a website or integrated and interpreted at runtime. Various 
techniques exist for connecting scripts to a website. Let’s take a quick look at two of them.  

  The  <script>  Container in the Website  

 The connection of a JavaScript with a website can take place, for example, via a direct nota-
tion of the JavaScript in the website. The JavaScript statements are simply written as plain 
text into the corresponding (X)HTML file. The beginning of a script is marked via a separate 
control statement that is still part of HTML and forms with its matching end tag a container 
for the script instructions. Via the  <script>  element, you can specify that anything within the 
enclosed container is a script. So inside such a container, you are executing JavaScript.  

 Take a look at the following code snippet.  

  Listing 3.1   A Code Snippet with the Direct Notation of JavaScript in a Website  

<body>

...

 <script>
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 ... script statements

 </script>

...

</body>

 If you do not specify a language in the script tag, all known browsers use JavaScript as default—
or in the case of Internet Explorer, its clone JScript. But you are then exploiting the very high 
tolerance level of browsers because really you should specify the script language you are using. 
You can use the parameter  language  or  type  to indicate which script language this is.  2     

 Here you can see two alternative examples.  

  Listing 3.2   Alternative Specifications of Script Language  

<script language="JavaScript">

<script type="text/javascript"> 

 Although uppercase and lowercase is irrelevant when specifying the value of  language , you 
need to use lowercase for specifying the MIME type  3   via  type . For  language , you can also 
specify the version of JavaScript—for example, as  JavaScript1.3  or  JavaScript1.5 . You 
simply add the appropriate version number to the token  JavaScript —not separated by a 
space. This causes any browsers that do not yet master this version to ignore the script block.   

  Caution 

 Avoid using  type  and  language  in parallel. If you specify the  type  as well as the  language , 
the  language  data will be ignored. This means that any version you may want to specify via 
 language  has no effect.   

 In the past, we used to write HTML comments into the script container ( <!-- ... -->  or 
even  <!-- ... //--> ) to prevent browsers that do not know JavaScript from simply display-
ing the instructions. Today, this is completely unnecessary because such browsers last came 
on the market in around 1996 and are therefore no longer existent in practice. Note that this 
comment does not refer to browsers where JavaScript is simply disabled.  

 When integrating a  <script>  element into a website, the question arises where it should go. 
There is no clear answer to this question. Basically, the element belongs in the header of a 
website.  

 But in practice, you will find  <script>  elements in any place within a website. In principle, 
such an element can even stand after the website itself. The script statements are simply 
processed by a browser when the website is loaded into the browser and parsed from top 

 2.   Officially, the specification of the MIME type is required. 

 3.   A MIME type determines the type of content. It first specifies a main category such as  text  or  image  

and then (separated by a slash) a subcategory such as  html ,  css , or  javascript . 


