Wearable Sensing and Intelligent Data Analysis for Respiratory Management
This page intentionally left blank
Wearable Sensing and Intelligent Data Analysis for Respiratory Management

Edited by

Rui Pedro Paiva
Department of Informatics Engineering, Centre for Informatics and Systems of the University of Coimbra, Coimbra, Portugal

Paulo de Carvalho
Department of Informatics Engineering, Centre for Informatics and Systems of the University of Coimbra, Coimbra, Portugal

Vassilis Kilintzis
Senior Researcher at the Aristotle University of Thessaloniki, Greece
Contents

Contributors xiii
Preface xvii
Acknowledgments xix

Part I
Respiratory management: overview

1. Respiration: physiology, pathology, and treatment
 Evangelos Kaimakamis and Georgia Chasapidou
 Introduction 3
 Part A: physiology of respiration 3
 Overview of respiration 3
 The respiratory system (physiology) 4
 Volumes and capacities related to the lung function 5
 Ventilation 5
 Respiratory movements 9
 Perfusion 10
 Diffusion 13
 Neural control of respiration 14
 Pulmonary defense mechanisms 14
 Part B: pathology and treatment of lung diseases 16
 Lung diseases affecting the airways 16
 Lung diseases affecting the air sacs (alveoli) 21
 Lung diseases affecting the interstitium 23
 Lung diseases affecting blood vessels 23
 Lung diseases affecting the pleura 25
 Lung diseases affecting the chest wall 26
 References 27

Part II
Wearable sensing

2. Respiratory management in daily life: needs and gaps
 Alda Marques and Sara Souto-Miranda
 Introduction 31
Table of Contents

- Daily needs of those living with chronic respiratory diseases 32
- Comprehensive assessment for meaningful daily management 34
- Symptoms beyond dyspnea 34
- Functional status 36
- Patient-centric assessment for daily management 37
- **Meaningful daily management** 38
 - Self-management 39
 - Healthy lifestyles and target therapies 40
 - Comprehensive nonpharmacological intervention—pulmonary rehabilitation 41
- **Future avenues for daily assessment and management** 43
- References 47

3. Sensor technologies for mobile and wearable applications in mobile respiratory management

Josias Wacker, Benjamin Bonnal, Fabian Braun, Olivier Chételat, Damien Ferrario, Mathieu Lemay, Michaël Rapin, Philippe Renevey and Gürkan Yilmaz

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>59</td>
</tr>
<tr>
<td>Assessment of respiratory functions through monitoring of the lungs</td>
<td>60</td>
</tr>
<tr>
<td>Optical methods</td>
<td>60</td>
</tr>
<tr>
<td>Methods that measure changes of the circumference of the chest and the abdomen</td>
<td>60</td>
</tr>
<tr>
<td>Impedance-based methods</td>
<td>63</td>
</tr>
<tr>
<td>Assessment of respiratory functions through monitoring of the airways</td>
<td>70</td>
</tr>
<tr>
<td>Acoustic methods</td>
<td>71</td>
</tr>
<tr>
<td>Spirometers</td>
<td>73</td>
</tr>
<tr>
<td>Assessment of respiratory functions through monitoring of the cardiovascular system</td>
<td>77</td>
</tr>
<tr>
<td>Electrocardiogram</td>
<td>77</td>
</tr>
<tr>
<td>Photoplethysmography</td>
<td>79</td>
</tr>
<tr>
<td>Pulse oximetry</td>
<td>80</td>
</tr>
<tr>
<td>Multimodal systems for parallel monitoring of several organs</td>
<td>82</td>
</tr>
<tr>
<td>Conclusion</td>
<td>86</td>
</tr>
<tr>
<td>References</td>
<td>86</td>
</tr>
</tbody>
</table>

4. Textiles and smart materials for wearable monitoring systems

Rita Paradiso and Laura Caldani

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>95</td>
</tr>
<tr>
<td>Fabric sensing functionality, a combination of conductivity and elasticity</td>
<td>95</td>
</tr>
<tr>
<td>Textile materials for sensing</td>
<td>96</td>
</tr>
</tbody>
</table>
Respiratory monitoring, measurement methodologies compatible with wearable applications 97
Fabric sensors and electrodes for respiratory monitoring 99
Textile platforms for cardiopulmonary monitoring based on fabric sensor components 102
From Wealthy to HealthWear platforms 102
Garment design improvement 104
Textile platform for cardiopulmonary monitoring based on hardware components 105
From WELCOME to WELMO monitoring system 105
Vest design 106
Differences between the male and the female models 107
Conductive interconnections 107
Interconnection through snap buttons 110
Standard textile tests 111
WELMO 111
The concept of the vest 111
Vest design 113
Conclusions 118
References 119

Part III
Data analysis and management
5. Automated respiratory sound analysis
 Diogo Pessoa, Bruno Machado Rocha, Paulo de Carvalho and Rui Pedro Paiva

 Introduction 123
 Description of respiratory sounds 124
 Breath sounds 125
 Adventitious sounds 126
 Lung sounds 126
 Normal respiratory sounds 126
 Adventitious respiratory sounds 128
 Diagnostic value of respiratory sounds 135
 Respiratory sound acquisition 137
 Sensors and placement 138
 Challenges in data collection and future perspectives 142
 Respiratory sound databases 142
 Current methods 144
 Pioneering works in respiratory sound analysis 145
 Preprocessing 145
 Time–frequency representations 146
 Feature extraction 151
 Classifiers 153
6. Respiratory image analysis

Introduction

Primary image reconstruction
Forward model
Inverse model
EIT image reconstruction for wearable sensors

Functional EIT images and measures
Ventilation distribution during tidal breathing — volume changes
Ventilation distribution during tidal breathing — time (phase) shift
Ventilation distribution during tidal breathing — regional compliance
Combination of amplitude and time
Summarizing fEITs — various measures
Assumptions and limitations of the fEIT imaging and EIT measures

Challenges of data acquisition and analysis using wearable EIT
Electrode plane location
Electrode contact
Body movement
Missing/faulty electrodes
Posture
Type of ventilation
Ventilation type detection

Current experience with wearable EIT for ventilation monitoring

Use of wearable EIT beyond ventilation monitoring
Cardiovascular parameter estimation
Challenges of cardiovascular monitoring using wearable EIT devices
The future of EIT-based cardiovascular monitoring
Integration of EIT findings with other biosignals
Conclusions
References
7. Respiratory data management

Vassilis Kilintzis and Nikolaos Beredimas

Introduction 213
What can go wrong? 213
Ambiguity of concepts 214
Loss of data integrity 214
Unstable or poor performance 215
Inefficiency of interfaces 216
Inadequate data security 216
Lack of sustainability 216
Respiratory disease management data 217
Modeling respiratory data 218
A semantic data model for respiratory data management 224
Overview 224
Semantic data model implementation steps 225
Representing primitive data types 225
Representing HL7 FHIR complex data types 227
Representing HL7 FHIR resources 228
Adding the semantics for data integrity 228
Transition to SHACL 230
Persistent storage and data integrity 231
Achieving compliance to regulations 233
Conclusions 234
Abbreviations 234
References 235

Part IV

Current challenges in respiratory management systems

8. The edge-cloud continuum in wearable sensing for respiratory analysis

Anaxagoras Fotopoulos, Pantelis Z. Lappas and Alexis Melitsiotis

Introduction 241
The P4 health-care revolution 242
Edge-cloud continuum 245
Cloud computing 246
Data and information fusion 255
Edge computing 257
Recent artificial intelligence trends for the edge-cloud continuum 258
Trustworthy and explainable artificial intelligence 258
Artificial intelligence in adversarial environments 259
Artificial intelligence for blockchain 261
ML-based fusion engine 262
Tiny machine learning and energy-efficient artificial intelligence algorithms 264
AI-based solutions for respiratory analysis 265
Conclusions 266
References 266
9. Strategies for long-term adherence
Laura Romero Jaque and Vicente Traver Salcedo

- Introduction 273
- Materials and methods 276
- Results 279
- Applications/websites with integrated tools 280
- Messaging services 281
- Informative Videos/Text 281
- Medication taking schedule/schedule 281
- Social media 281
- **Discussion** 283
- Recommendations 283
- Use cases 286
- **Use case 1: young person** 287
 - Strategy 287
 - Step 1: activation 288
 - Step 2: take over 288
 - Step 3: participation 289
- **Use case 2: adult** 289
 - Strategy 289
 - Step 1: activation 290
 - Step 2: take over 291
 - Step 3: participation 291
- **Use case 3: elderly person** 292
 - Strategy 292
 - Step 1: activation 294
 - Step 2: take over 294
 - Step 3: participation 294
- Conclusions 295
- References 296

10. Respiratory decision support systems
Ioanna Chouvarda, Eleni Perantoni and Paschalis Steiropoulos

- Introduction 299
- Overview of the RDSS domain 301
- Emergency and intensive care 301
- Chronic care 303
- **Methods for respiratory DSS** 305
 - Biomedical data for respiratory DSS 305
 - RDSS enabling technologies 308
 - DSS technology 310
- A detailed RDSS example 314
- Discussion: unmet needs and challenges for the future 315
- References 317
11. Integrated care in respiratory function management

Iman Hesso, Reem Kayyali and Shereen Nabhani-Gebara

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>An overview of integrated care</td>
<td>323</td>
</tr>
<tr>
<td>Understanding integrated care versus fragmented care</td>
<td>323</td>
</tr>
<tr>
<td>Rationale for integrated care</td>
<td>324</td>
</tr>
<tr>
<td>Types, levels, and forms of integrated care</td>
<td>326</td>
</tr>
<tr>
<td>Importance and benefits of integrated care in chronic respiratory conditions: Chronic Obstructive Pulmonary Disease</td>
<td>327</td>
</tr>
<tr>
<td>Respiratory disease management: current state of care and care pathways</td>
<td>330</td>
</tr>
<tr>
<td>COPD care pathways</td>
<td>330</td>
</tr>
<tr>
<td>Current state of COPD care</td>
<td>333</td>
</tr>
<tr>
<td>Information and communication technology to support integrated care</td>
<td>334</td>
</tr>
<tr>
<td>Perceptions of different stakeholders toward technology enabled care</td>
<td>338</td>
</tr>
<tr>
<td>Barriers for technology enabled care</td>
<td>343</td>
</tr>
<tr>
<td>Conclusion</td>
<td>347</td>
</tr>
<tr>
<td>References</td>
<td>348</td>
</tr>
</tbody>
</table>

Index 355
This page intentionally left blank
Contributors

Andy Adler, Systems and Computer Engineering, Carleton University, Ottawa, Canada

Nikolaos Beredimas, Laboratory of Computing, Medical Informatics and Biomedical Imaging Technologies, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece

Benjamin Bonnal, Swiss Center for Electronics and Microtechnology (CSEM, Centre Suisse d’Electronique et de Microtechnique), Neuchâtel, Switzerland

Fabian Braun, Swiss Center for Electronics and Microtechnology (CSEM, Centre Suisse d’Electronique et de Microtechnique), Neuchâtel, Switzerland

Laura Caldani, Smartex srl, Prato, PO, Italy

Georgia Chasapidou, Pulmonology Department, “G. Papanikolaou” General Hospital, Thessaloniki, Greece

Aris Cheimariotis, Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, Aristotle University of Thessaloniki, Thessaloniki, Greece

Ioanna Chouvarda, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece

Olivier Chételat, Swiss Center for Electronics and Microtechnology (CSEM, Centre Suisse d’Electronique et de Microtechnique), Neuchâtel, Switzerland

Meng Dai, Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China

Paulo de Carvalho, Department of Informatics Engineering, Centre for Informatics and Systems of the University of Coimbra, Coimbra, Portugal

Damien Ferrario, Swiss Center for Electronics and Microtechnology (CSEM, Centre Suisse d’Electronique et de Microtechnique), Neuchâtel, Switzerland

Anaxagoras Fotopoulos, EXUS AI Labs, Athens, Attika, Greece

Inéz Frerichs, Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany

Kostas Haris, Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, Aristotle University of Thessaloniki, Thessaloniki, Greece; Department of Informatics and Computer Engineering, University of West Attica, Athens, Greece

Iman Hesso, Kingston University London, KT, United Kingdom

Laura Romero Jaque, Universitat Politecnica de Valencia, Valencia, Spain

Evangelos Kaimakamis, 1st Intensive Care Unit, “G. Papanikolaou” General Hospital, Thessaloniki, Greece
Contributors

Reem Kayyali, Kingston University London, KT, United Kingdom

Vassilis Kilintzis, Laboratory of Computing, Medical Informatics and Biomedical Imaging Technologies, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece

Pantelis Z. Lappas, EXUS AI Labs, Athens, Attika, Greece

Livía Lasarow, Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany

Irini Lekka, Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, Aristotle University of Thessaloniki, Thessaloniki, Greece

Mathieu Lemay, Swiss Center for Electronics and Microtechnology (CSEM, Centre Suisse d’Electronique et de Microtechnique), Neuchâtel, Switzerland

Bruno Machado Rocha, Department of Informatics Engineering, Centre for Informatics and Systems of the University of Coimbra, Coimbra, Portugal

Nicos Maglaveras, Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, Aristotle University of Thessaloniki, Thessaloniki, Greece

Alda Marques, Lab3R-Respiratory Research and Rehabilitation Laboratory, School of Health Sciences (ESSUA), Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal

Alexis Melitsiotis, EXODUS SA, Athens, Attika, Greece

Shereen Nabhani-Gebara, Kingston University London, KT, United Kingdom

Rui Pedro Paiva, Department of Informatics Engineering, Centre for Informatics and Systems of the University of Coimbra, Coimbra, Portugal

Rita Paradiso, Smartex srl, Prato, PO, Italy

Eleni Perantoni, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece

Diogo Pessoa, Department of Informatics Engineering, Centre for Informatics and Systems of the University of Coimbra, Coimbra, Portugal

Georgios Petmezas, Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, Aristotle University of Thessaloniki, Thessaloniki, Greece

Martin Proença, Swiss Center for Electronics and Microtechnology (CSEM, Centre Suisse d’Electronique et de Microtechnique), Neuchâtel, Switzerland

Michaël Rapin, Swiss Center for Electronics and Microtechnology (CSEM, Centre Suisse d’Electronique et de Microtechnique), Neuchâtel, Switzerland

Philippe Renevey, Swiss Center for Electronics and Microtechnology (CSEM, Centre Suisse d’Electronique et de Microtechnique), Neuchâtel, Switzerland

Vicente Traver Salcedo, ITACA – Universitat Politecnica de Valencia, Valencia, Spain

Sara Souto-Miranda, Lab3R-Respiratory Research and Rehabilitation Laboratory, School of Health Sciences (ESSUA), Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
Paschalis Steiropoulos, Medical School, Democritus University of Thrace, Alexandroupolis, Greece

Claas Strodthoff, Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany

Barbara Vogt, Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany

Josias Wacker, Swiss Center for Electronics and Microtechnology (CSEM, Centre Suisse d’Electronique et de Microtechnique), Neuchâtel, Switzerland

Norbert Weiler, Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany

Gürkan Yilmaz, Swiss Center for Electronics and Microtechnology (CSEM, Centre Suisse d’Electronique et de Microtechnique), Neuchâtel, Switzerland

Zhanqi Zhao, Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany; Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
This page intentionally left blank
Preface

Respiratory diseases, such as chronic obstructive pulmonary disease (COPD), lower respiratory tract infections, or asthma, have significant impact on patient’s health-related quality of life, health-care systems, and society in general. Recent studies estimate that, worldwide, around 339 million people suffer from asthma and that, by 2030, COPD will become the third leading cause of death. This poses severe burdens to health-care systems in terms of outpatient and inpatient care, as well as pharmaceutical costs, which are highly correlated with the severity of exacerbation episodes.

In this scenario, the use of wearable sensing and intelligent data analysis algorithms for respiratory management assumes particular relevance, offering several potential clinical benefits. Namely, it allows for the early detection of respiratory exacerbations in patients with chronic respiratory diseases, allowing earlier and, therefore, more effective treatment. Early intervention in exacerbations of these conditions has been shown to decrease hospitalization rates and improve long-term outcomes, including survival.

As such, presently, the problem of continuous, noninvasive, remote, and real-time monitoring of such patients is deserving increasing attention from the scientific community. Wearable and portable systems with sensing technology and automated analysis of respiratory sounds and pulmonary images are some of the problems that are the subject of current research efforts. Such systems have the potential for substantial clinical benefits, promoting the so-called P4 medicine (personalized, participative, predictive, and preventive).

To this end, this book covers the most recent research and development on wearable technologies for respiratory management. The book, organized into 4 parts and 11 chapters, starts with an introductory overview of the process of respiration, its physiology, pathologies, and treatment, followed by the current needs and gaps of respiratory management in daily life. The second part addresses the aspects involved on wearable sensing, namely portable and noninvasive sensor technologies for mobile and wearable applications, and textiles and smart materials. Part III covers the data analysis and management pipeline, from data acquisition, transmission, storage, and representation, to feature engineering and machine learning for respiratory sound and image analysis. Finally, Part
IV addresses the current key challenges of respiratory management systems, namely the edge-cloud continuum in wearable sensing, strategies for long-term patient adherence, decision support systems, and integrated care in respiratory management.

We believe this book offers three main distinctive features: (i) an integrated, unified, and holistic coverage of the main topics and trends in wearable sensing and intelligent data analysis for respiratory management; (ii) an up-to-date review of the current trends and hot topics in the different subfields (e.g., wearable technologies, respiratory sound analysis, and pulmonary image analysis, particularly electrical impedance tomography); (iii) a comprehensive guide for starting researchers, namely, PhD students, offering them the necessary tools to start performing cutting-edge research in their area of interest.

Hence, this book will best suit the needs of researchers, particularly PhD students, working on different aspects of engineering issues for respiratory function management, namely in the areas of biomedical engineering, informatics engineering, electrical engineering, and data science and engineering. It will also work as an integrated and comprehensive entry point for any researcher who needs a holistic overview of the field. Health-care professionals will also benefit from the topics covered in the book, which aim at the active promotion of P4 medicine.

As such, the reader will be able to make use of the book mainly in two ways: (i) as someone with a broad interest in the whole process of technology use for respiratory management, where the whole book will offer the reader a broad and deep understanding of the area; (ii) as a researcher aiming to acquire specific knowledge in some of the identified subtopics, in which case the reader might be interested in the chapters setting the big picture of the whole field and then focusing on a specific subtopic.

Rui Pedro Paiva
Paulo de Carvalho
Vassilis Kilintzis
Acknowledgments

First and foremost, we would like to express our utmost gratitude to all the contributors of this book, who have offered their expertise and generous hard work to make this project a reality. It has been a pleasure working with you throughout the years in different projects that served as the catalyst to this book. In particular, we would like to acknowledge European projects WELCOME (Wearable Sensing and Smart Cloud Computing for Integrated Care to COPD Patients with Comorbidities—FP7-611223) and WELMO (Wearable Electronics for Effective Lung Monitoring—H2020-825572).

We also would like to express our great appreciation to the staff at Academic Press for their guidance and support during this process.

Finally, our gratitude goes to our host institutions, namely the Centre for Informatics and Systems of the University of Coimbra, Portugal, and the Aristotle University of Thessaloniki, Greece.

Rui Pedro Paiva
Paulo de Carvalho
Vassilis Kilintzis