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Preface
Roy Davies; Matthew Turk     Royal Holloway, University of London, London, United Kingdom
Toyota Technological Institute at Chicago, Chicago, IL, United States

It is now close to a decade since the explosive growth in the development and application of deep neural networks (DNNs) came about, and their subsequent progress has been little short of remarkable. True, this progress has been helped considerably by the deployment of special hardware in the form of powerful GPUs; and their progress followed from the realization that CNNs constituted a crucial architectural base, to which features such as ReLUs, pooling, fully connected layers, unpooling and deconvolution could also be included. In fact, all these techniques helped to breathe life into DNNs and to extend their use dramatically, so the initial near-exponential growth in their use has been maintained without break for the whole subsequent period. Not only has the power of the approach been impressive but its application has widened considerably from the initial emphasis on rapid object location and image segmentation—and even semantic segmentation—to aspects pertaining to video rather than mere image analysis.
It would be idle to assert that the whole of the development of computer vision since 2012 has been due solely to the advent of DNNs. Other important techniques such as reinforcement learning, transfer learning, self-supervision, linguistic description of images, label propagation, and applications such as novelty and anomaly detection, image inpainting and tracking have all played a part and contributed to the widening and maturing of computer vision. Nevertheless, many such techniques and application areas have been stimulated, challenged, and enhanced by the extremely rapid take-up of DNNs.
It is the purpose of this volume to explore the way computer vision has advanced since these dramatic changes were instigated. Indeed, we can validly ask where we are now, and how solid is the deep neural and machine learning base on which computer vision has recently embarked. Has this been a coherent movement or a blind opportunistic rush forward in which workers have ignored important possibilities, and can we see further into the future and be sure that we are advancing in the right direction? Or is this a case where each worker can take his or her own viewpoint and for any given application merely attend to what appears to be necessary, and if so, is anything lost by employing a limited approach of this sort?
In fact, there are other highly pertinent questions to be answered, such as the thorny one of the extent to which a deep network can only be as powerful as the dataset it is trained on; this question will presumably apply to any alternative learning-based approach, whether describable as a DNN or not. Employing reinforcement learning or self-supervision or other approaches will surely not affect this likely limitation. And note that human beings are hardly examples of how extensive training can in any way be avoided; their transfer learning capabilities will be a vital aspect of how efficient the learning process can be made.
It is the aim of this volume not only to present advanced vision methodologies but also to elucidate the principles involved: i.e., it aims to be pedagogic, concentrating as much on helping the reader to understand as on presenting the latest research. With this in mind, Chapter 1 sets the scene for the remainder of this volume. It starts by looking closely at the legacy of earlier vision work, covering in turn feature detection, object detection, 3D vision and the advent of DNNs; finally, tracking is taken as an important application area which builds on the material of the earlier sections and shows clearly how deep networks can play a crucial role. This chapter is necessarily quite long, as it has to get from ground zero to a formidable attainment level in relatively few pages; in addition, it has to set the scene for the important developments and methodologies described by eminent experts in the remaining chapters.
As is made clear in Chapter 1, object detection is one of the most challenging tasks in computer vision. In particular, it has to overcome problems such as scale-variance, occlusion, variable lighting, complex backgrounds and all the factors of variability associated with the natural world. Chapter 2 describes the various methods and approaches that have been used in recent advances. These include region-of-interest pooling, multitask losses, region proposal networks, anchors, cascaded detection and regression, multiscale feature representations, data augmentation techniques, loss functions, and more.
Chapter 3 emphasizes that the recent successes in computer vision have largely centered around the huge corpus of intricately labeled data needed for training models. It examines the methods that can be used to learn recognition models from such data, while requiring limited manual supervision. Apart from reducing the amount of manually labeled data required to learn recognition models, it is necessary to reduce the level of supervision from strong to weak—at the same time permitting relevant queries from an oracle. An overview is given of theoretical frameworks and experimental results that help to achieve this.
Chapter 4 tackles the computational problems of deep neural networks, which make it difficult to deploy them on resource-constrained hardware devices. It discusses model compression techniques and hardware-aware neural architecture search techniques with the aim of making deep learning more efficient and making neural networks smaller and faster. To achieve all this, the chapter shows how to use parameter pruning to remove redundant weights, low-rank factorization to reduce complexity, weight quantization to reduce weight precision and model size, and knowledge distillation to transfer dark knowledge from large models to smaller ones.
Chapter 5 discusses how deep generative models attempt to recover the lower dimensional structure of the target visual models. It shows how to leverage deep generative models to achieve more controllable visual pattern synthesis via conditional image generation. The key to achieving this is “disentanglement” of the visual representation, where attempts are made to separate different controlling factors in the hidden embedding space. Three case studies, in style transfer, vision-language generation, and face synthesis, are presented to illustrate how to achieve this in unsupervised or weakly supervised settings.
Chapter 6 concentrates on a topical real-world problem—that of face recognition. It discusses state-of-the-art deep learning-based methods that can be used even with partial facial images. It shows (a) how the necessary deep learning architectures are put together; (b) how such models can be trained and tested; (c) how fine tuning of pretrained networks can be utilized for identifying efficient recognition cues with full and partial facial data; (d) the degree of success achieved by the recent developments in deep learning; (e) the current limitations of deep learning-based techniques used in face recognition. The chapter also presents some of the remaining challenges in this area.
Chapter 7 discusses the crucial question of how to transfer learning from one data domain to another. This involves approaches based on differential geometry, sparse representation and deep neural networks. These fall into the two broad classes—discriminative and generative approaches. The former involve training a classifier model while employing additional losses to make the source and target feature distributions similar. The latter utilize a generative model to perform domain adaptation: typically, a cross-domain generative adversarial network is trained for mapping samples from source domain to target, and a classifier model is trained on the transformed target images. Such approaches are validated on cross-domain recognition and semantic segmentation tasks.
Chapter 8 returns to the domain adaptation task, in the context of semantic segmentation, where deep networks are plagued by the need for huge amounts of labeled data for training. The chapter starts by discussing the different levels at which the adaptation can be performed and the strategies for achieving them. It then moves on to discuss the task of continual learning in semantic segmentation. Although the latter is a relatively new research field, interest in it is rapidly growing, and many different scenarios have been introduced. These are described in detail along with the approaches needed to tackle them.
Following on from Chapter 1, Chapter 9 reemphasizes the importance of visual tracking as one of the prime, classical problems in computer vision. The purpose of this chapter is to give an overview of the development of the field, starting from the Lucas-Kanade and matched filter approaches and concluding with deep learning-based approaches as well as the transition to video segmentation. The overview is limited to holistic models for generic tracking in the image plane, and a particular focus is given to discriminative models, the MOSSE (minimum output sum of squared errors) tracker, and DCFs (discriminative correlation filters).
Chapter 10 takes the concept of visual object tracking one stage further and concentrates on long-term tracking. To be successful at this task, object tracking must address significant challenges that relate to model decay—that is, the worsening of the model due to added bias, and target disappearance and reappearance. The success of deep learning has strongly influenced visual object tracking, as offline learning of Siamese trackers helps to eliminate model decay. However, to avoid the possibility of losing track in cases where the appearance of the target changes significantly, Siamese trackers can benefit from built-in invariances and equivariances, allowing for appearance variations without exacerbating model decay.
If computer vision is to be successful in the dynamic world of videos and action, it seems vital that human cognitive concepts will be required, a message that is amply confirmed by the following two chapters. Chapter 11 outlines an action-centric framework which spans multiple time scales and levels of abstraction. The lower level details object characteristics which afford themselves to different actions; the mid-level models individual actions, and higher levels model activities. By emphasizing the use of grasp characteristics, geometry, ontologies, and physics-based constraints, over-training on appearance characteristics is avoided. To integrate signal-based perception with symbolic knowledge, vectorized knowledge is aligned with visual features. The chapter also includes a discussion on action and activity understanding.
Chapter 12 considers the temporal event segmentation problem. Cognitive science research indicates how to design highly effective computer vision algorithms for spatio-temporal segmentation of events in videos without the need for any annotated data. First, an event segmentation theory model permits event boundaries to be computed: then, temporal segmentation using a perceptual prediction framework, temporal segmentation along with event working models based on attention maps, and spatio-temporal localization of events follow. This approach gives state-of-the-art performance in unsupervised temporal segmentation and spatial-temporal action localization with competitive performance on fully supervised baselines that require extensive amounts of annotation.
Anomaly detection techniques constitute a fundamental resource in many applications such as medical image analysis, fraud detection or video surveillance. These techniques also represent an essential step for artificial self-aware systems that can continually learn from new situations. Chapter 13 presents a semi-supervised method for the detection of anomalies for this type of self-aware agent. It leverages the message-passing capability of generalized dynamic Bayesian networks to provide anomalies at different abstraction levels for diverse types of time-series data. Consequently, detected anomalies could be employed to enable the system to evolve by integrating the new acquired knowledge. A case study is proposed for the description of the anomaly detection method, which will use multisensory data from a semi-autonomous vehicle performing different tasks in a closed environment.
Model- and learning-based methods have been the two dominant strategies for solving various image restoration problems in low-level vision. Typically, those two kinds of method have their respective merits and drawbacks; e.g., model-based methods are flexible for handling different image restoration problems but are usually time-consuming with sophisticated priors for the purpose of good performance; meanwhile, learning-based methods show superior effectiveness and efficiency over traditional model-based methods, largely due to the end-to-end training, but generally lack the flexibility to handle different image restoration tasks. Chapter 14 introduces deep plug-and-play methods and deep unfolding methods, which have shown great promise by leveraging both learning-based and model-based methods: the main idea of deep plug-and-play methods is that a learning-based denoiser can implicitly serve as the image prior for model-based image restoration methods, while the main idea of deep unfolding methods is that, by unfolding the model-based methods via variable splitting algorithms, an end-to-end trainable, iterative network can be obtained by replacing the corresponding subproblems with neural modules. Hence, deep plug-and-play methods and deep unfolding methods can inherit the flexibility of model-based methods, while maintaining the advantages of learning-based methods.
Visual adversarial examples are images and videos purposefully perturbed to mislead machine learning models. Chapter 15 presents an overview of methods that craft adversarial perturbations to generate visual adversarial examples for image classification, object detection, motion estimation and video recognition tasks. The key properties of an adversarial attack and the types of perturbation that an attack generates are first defined; then the main design choices for methods that craft adversarial attacks for images and videos are analyzed and the knowledge they use of the target model is examined. Finally, defense mechanisms that increase the robustness of machine learning models to adversarial attacks or to detect manipulated input data are reviewed.
Together, these chapters provide the interested reader—whether student, researcher, or practitioner—with both breadth and depth with respect to advanced computer vision methodology and state-of-the-art approaches.
Finally, we would like to extend our thanks to all the authors for the huge degree of commitment and dedication they have devoted to producing their chapters, thereby contributing in no small way to making this volume a successful venture for advancing the subject in what is after all a rapidly changing era. Lastly, we are especially indebted to Tim Pitts of Elsevier Science for his constant advice and encouragement, not only from the outset but also while we were in the throes of putting together this volume.
May 2021


Chapter 1: The dramatically changing face of computer vision
E.R. Davies    Royal Holloway, University of London, Egham, Surrey, United Kingdom

Abstract
This chapter aims to explain the concepts leading up to the recently evolved deep learning milieu, covering aspects such as image processing, feature detection, object recognition, segmentation, and tracking: by providing a useful level of background theory, and an introduction to deep learning, the chapter aims to help prepare readers for the advanced chapters that are to follow.
The text is divided into seven parts: Part A, providing an understanding of low-level image processing operators and their use for feature detection; Parts B and C, respectively covering 2-D and 3-D object location and recognition—in the latter case demonstrating the importance of invariance and the achievements of multiple view vision; Part D, discussing the difficulties involved in the tracking of moving objects; Part E, covering texture analysis; Part F, outlining the evolution of artificial neural networks, the explosive development of deep learning methods, and demonstrating how the latter became capable not only of object recognition but also of semantic segmentation and object tracking. Part G summarizes the overall situation.

Keywords
Image processing; Feature detection; Object detection; Location and recognition; Segmentation; Tracking; Deep learning
Chapter points

	•  Studies of legacy methods in computer vision, including low-level image processing operators, 2-D and 3-D object detection, location and recognition, tracking and segmentation.
	•  Examination of the development of deep learning methods from artificial neural networks, including the deep learning explosion.
	•  Studies of the application of deep learning methods to feature detection, object detection, location and recognition, object tracking, texture classification, and semantic segmentation of images.
	•  The impact of deep learning methods on preexisting computer vision methodology.
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1.1 Introduction – computer vision and its origins
During the last three or four decades, computer vision has gradually emerged as a fully-fledged subject with its own methodology and area of application. Indeed, it has so many areas of application that it would be difficult to list them all. Amongst the most prominent are object recognition, surveillance (including people counting and numberplate recognition), robotic control (including automatic vehicle guidance), segmentation and interpretation of medical images, automatic inspection and assembly in factory situations, fingerprint and face recognition, interpretation of hand signals, and many more. To achieve all this, measurements have to be made from a variety of image sources, including visible and infrared channels, 3-D sensors, and a number of vital medical imaging devices such as CT and MRI scanners. And the measurements have to include position, pose, distances between objects, movement, shape, texture, color, and many more aspects. With this plethora of activities and of the methods used to achieve them, it will be difficult to encapsulate the overall situation within the scope of a single chapter: hence the selection of material will necessarily be restricted; nevertheless, we will aim to provide a sound base and a didactic approach to the subject matter.
In the 2020s one can hardly introduce computer vision without acknowledging the enormous advances made during the 2010s, and specifically the ‘deep learning explosion’, which took place around 2012. This dramatically changed the shape of the subject and resulted in advances and applications that are not only impressive but are also in many cases well beyond what people dreamed about even in 2010. As a result, this volume is aimed particularly at these modern advanced developments: it is the role of this chapter to outline the legacy methodology, to explore the new deep learning methods, and to show how the latter have impacted and improved upon the earlier (legacy) approaches.
At this point it will be useful to consider the origins of computer vision, which can be considered to have started life during the 1960s and 1970s, largely as an offshoot of image processing. At that time it became practical to capture whole images and to store and process them conveniently on digital computers. Initially, images tended to be captured in binary or grey-scale form, though later it became possible to capture them in color. Early on, workers dreamed of emulating the human eye by recognizing objects and interpreting scenes, but with the less powerful computers then available, such dreams were restricted. In practice, image processing was used to ‘tidy up’ images and to locate object features, while image recognition was carried out using statistical pattern recognition techniques such as the nearest neighbor algorithm. Another of the motivations underlying the development of computer vision was AI and yet another was biological vision. Space will prevent further discussion of these aspects here, except to remark that they sowed the seeds for artificial neural networks and deep learning (for details, see Part F below).
Tidying up images is probably better described as preprocessing: this can include a number of functions, noise elimination being amongst the most important. It was soon discovered that the use of smoothing algorithms, in which the mean value of the intensities in a window around each input pixel is calculated and used to form a separate smoothed image, not only results in reduced levels of noise but also affects the signals themselves (this process can also be imagined as reducing the input bandwidth to exclude much of the noise, with the additional effect of eliminating high spatial frequency components of the input signal). However, by applying median rather than mean filtering, this problem was largely overcome, as it worked by eliminating the outliers at each end of the local intensity distribution—the median being the value least influenced by noise.
Typical mean filtering kernels include the following, the second approximating more closely to the ideal Gaussian form:
19[111111111]116[121242121]
[image: Image](1.1) 


Both of these are linear convolution kernels, which by definition are spatially invariant over the image space. A general 3 × 3 convolution mask is given by
[c4c3c2c5c0c1c6c7c8]
[image: Image](1.2) 

 where the local pixels are assigned labels 0–8. Next, we take the intensity values in a local 3×3[image: Image] image neighborhood as
[image: Image](1.3) 


If we now use a notation based approximately on C ++, we can write the complete convolution procedure in the form:
for all pixels in image do { Q0=P0⁎c0+P1⁎c1+P2⁎c2+P3⁎c3+P4⁎c4+P5⁎c5+P6⁎c6+P7⁎c7+P8⁎c8;}
[image: Image](1.4) 

 So far we have concentrated on convolution masks, which are linear combinations of input intensities: these contrast with nonlinear procedures such as thresholding, which cannot be expressed as convolutions. In fact, thresholding is a very widely used technique, and can be written in the form:
for all pixels in image do{if(P0<thresh)A0=1;elseA0=0;}
[image: Image](1.5) 

 This procedure converts a grey scale image in P-space into a binary image in A-space. Here it is used to identify dark objects by expressing them as 1s on a background of 0s.
We end this section by presenting a complete procedure for median filtering within a 3×3[image: Image] neighborhood:
for(i=0;i<=255;i++)hist[i]=0;for all pixels in image do{for(m=0;m<=8;m++)hist[P[m]]++;i=0;sum=0;while(sum<5){sum=sum+hist[i];i=i+l;}Q0=i−1;for(m=0;m<=8;m++)hist[P[m]]=0;}
[image: Image](1.6) 


The notation P[0] is intended to denote P0, and so on for P[1] to P[8]. Note that the median operation is computation intensive, so time is saved by only reinitializing the particular histogram elements that have actually been used.
An important point about the procedures covered by Eqs. (1.4)–(1.6) is that they take their input from one image space and output it to another image space—a process often described as parallel processing—thereby eliminating problems relating to the order in which the individual pixel computations are carried out.
Finally, the image smoothing algorithms given by Eqs. (1.1)–(1.4) all use 3 × 3 convolution kernels, though much larger kernels can obviously be used: indeed, they can alternatively be implemented by first converting to the spatial frequency domain and then systematically eliminating high spatial frequencies, albeit with an additional computational burden. On the other hand, nonlinear operations such as median filtering cannot be tackled in this way.
For convenience, the remainder of this chapter has been split into a number of parts, as follows:
	Part A – Understanding low-level image processing perators
	Part B – 2-D object location and recognition
	Part C – 3-D object location and the importance of invariance
	Part D – Tracking moving objects
	Part E – Texture analysis
	Part F – From artificial neural networks to deep learning methods
	Part G – Summary.


 Overall, the purpose of this chapter is to summarize vital parts of the early—or ‘legacy’—work on computer vision, and to remind readers of their significance, so that they can more confidently get to grips with recent advanced developments in the subject. However, the need to make this sort of selection means that many other important topics have had to be excluded.
1.2 Part A – Understanding low-level image processing operators
1.2.1 The basics of edge detection
No imaging operation is more important or more widely used than edge detection. There are important reasons for this, but ultimately, describing object shapes by their boundaries and internal contours reduces the amount of data required to hold an N×N[image: Image] image from O(N2[image: Image]) to O(N), thereby making subsequent storage and processing more efficient. Furthermore, there is much evidence that humans can recognize objects highly effectively, or even with increased efficiency, from their boundaries: the quick responses humans can make from 2-D sketches and cartoons support this idea.
In the 1960s and 1970s, a considerable number of edge detection operators were developed, many of them intuitively, which meant that their optimality was in question. A number of the operators applied 8 or 12 template masks to ensure that edges of different orientations could be detected. Oddly, it was some time before it was fully realized that as edges are vectors, just two masks should be sufficient to detect them. However, this did not immediately eliminate the problem of deciding what mask coefficients should be used in edge detectors—even in the case of 3 × 3 neighborhoods—and we next proceed to explore this further.
In what follows we initially assume that 8 masks are to be used, with angles differing by 45°. However, 4 of the masks differ from the others only in sign, which makes it unnecessary to apply them separately. At this point, symmetry arguments lead to the following respective masks for 0° and 45°:
[−A0A−B0B−A0A][0CD−C0C−D−C0]
[image: Image](1.7) 


It is clearly of great importance to design masks so that they give consistent responses in different directions. To find how this affects the mask coefficients, we make use of the fact that intensity gradients must follow the rules of vector addition. If the pixel intensity values within a 3 × 3 neighborhood are
[image: Image](1.8) 

 the above masks will lead to the following estimates of gradient in the 0°, 90° and 45° directions:
g0=A(c+i−a−g)+B(f−d)g90=A(a+c−g−i)+B(b−h)g45=C(b+f−d−h)+D(c−g)
[image: Image](1.9) 


If vector addition is to be valid, we also have:
g45=(g0+g90)/2
[image: Image](1.10) 


Equating coefficients of a, b, …, i leads to the self-consistent pair of conditions:
C=B/2D=A2
[image: Image](1.11) 


Next, notice the further requirement—that the 0° and 45° masks should give equal responses at 22.5°. In fact, a rather tedious algebraic manipulation (Davies, 1986) shows that
B/A=(132−4)/7=2.055
[image: Image](1.12) 

 If we approximate this value as 2 we immediately arrive at the Sobel operator masks
Sx=[−101−202−101]Sy=[121000−1−2−1]
[image: Image](1.13) 

 application of which yields maps of the gx[image: Image], gy[image: Image] components of intensity gradient. As edges are vectors, we can compute the local edge magnitude g and direction θ using the standard vector-based formulae:
g=[gx2+gy2]1/2θ=arctan⁡(gy/gx)
[image: Image](1.14) 


Notice that whole-image calculations of g and θ will not be convolutions as they involve nonlinear operations.
In summary, in Sections 1.1 and 1.2.1 we have described various categories of image processing operator, including linear, nonlinear and convolution operators. Examples of (linear) convolutions are mean and Gaussian smoothing and edge gradient component estimation. Examples of nonlinear operations are thresholding, edge gradient and edge orientation computations. Above all, it should be noted that the Sobel mask coefficients have been arrived at in a principled (non ad hoc) way. In fact, they were designed to optimize accuracy of edge orientation. Note also that, as we shall see later, orientation accuracy is of paramount importance when edge information is passed to object location schemes such as the Hough transform.
1.2.2 The Canny operator
The aim of the Canny edge detector was to be far more accurate than basic edge detectors such as the Sobel, and it caused quite a stir when it was published in 1986 (Canny, 1986). To achieve such increases in accuracy, a number of processes are applied in turn:
	1.  The image is smoothed using a 2-D Gaussian to ensure that the intensity field is a mathematically well-behaved function.
	2.  The image is differentiated using two 1-D derivative functions, such as those of the Sobel, and the gradient magnitude field is computed.
	3.  Nonmaximum suppression is employed along the local edge normal direction to thin the edges: this takes place in two stages (1) finding the two noncentral red points shown in Fig. 1.1, which involves gradient magnitude interpolation between two pairs of pixels; (2) performing quadratic interpolation between the intensity gradients at the three red points to determine the position of the peak edge signal to subpixel precision.

[image: Image]
Figure 1.1 Using quadratic interpolation to determine the exact position of the gradient magnitude peak.

	
	4.  ‘Hysteresis’ thresholding is performed: this involves applying two thresholds t1[image: Image] and t2[image: Image] (t2>t1[image: Image]) to the intensity gradient field; the result is ‘nonedge’ if g<t1[image: Image], ‘edge’ if g>t2[image: Image], and otherwise is only ‘edge’ if next to ‘edge’. (Note that the ‘edge’ property can be propagated from pixel to pixel under the above rules.)


 As noted in item 3, quadratic interpolation can be used to locate the position of the gradient magnitude peak. A few lines of algebra shows that, for the g-values g1[image: Image], g2[image: Image], g3[image: Image] of the three red points, the displacement of the peak from the central red point is equal to (g3−g1)sec⁡θ/[2(2g2−g1−g3)][image: Image]: here, sec θ is the factor by which θ increases the distance between the outermost red points.
1.2.3 Line segment detection
In Section 1.2.1 we saw the considerable advantage of edge detectors in requiring only two masks to compute the magnitude and orientation of an edge feature. It is worth considering whether the same vector approach might also be used in other cases. In fact, it is also possible to use a modified vector approach for detecting line segment features. This is seen by considering the following pair of masks:
L1=A[0−101010−10]L2=B[−10100010−1]
[image: Image](1.15) 


Clearly, two other masks of this form can be constructed, though they differ from the above two only in sign and can be ignored. Thus, this set of masks contains just the number required for a vectorial computation. In fact, if we are looking for dark bars on a light background, the 1 s can usefully denote the bars and the −1 s can represent the light background. (0 s can be taken as ‘don't care’ coefficients, as they will be ignored in any convolution.) Hence L1 represents a 0° bar and L2 a 45° bar. (The term ‘bar’ is used here to denote a line segment of significant width.) Applying the same method as in Section 1.2.1 and defining the pixel intensity values as in Eq. (1.8), we find
l0=A(d+f−b−h)l45=B(c+g−a−i)
[image: Image](1.16) 


However, in this instance there is insufficient information to determine the ratio of A to B, so this must depend on the practicalities of the situation. In fact, given that this computation is being carried out in a 3 × 3 neighborhood, it will not be surprising if the optimum bar width for detection using the above masks is ∼1.0; experimental tests (Davies, 1997) showed that matching the masks to the bar width w (or vice versa) gave optimum orientation accuracy for w≈[image: Image] 1.4, which occurred when B/A≈[image: Image] 0.86. This resulted in a maximum orientation error ∼0.4°, which compares favorably with ∼0.8° for the Sobel operator.
We now proceed to use formulae similar to those in Section 1.2.1 for pseudo-vectorial computation of the line strength coefficient l and line segment orientation θ:
l=[l02+l452]1/2θ=12arctan⁡(l45/l0)
[image: Image](1.17) 

 Here we have been forced to include a factor of one half in front of the arctan: this is because a line segment exhibits 180° rotation symmetry compared with the usual 360° for ordinary angles.
Note that this is again a case in which optimization is aimed at achieving high orientation accuracy rather than, for example, sensitivity of detection.
It is worth remarking here on two applications of line segment detection. One is the inspection of bulk wheat grains to locate small dark insects which approximate to dark bar-like features: 7 × 7 masks devised on the above model have been used to achieve this (Davies et al., 2003). Another is the location of artefacts such as telegraph wires in the sky, or wires supporting film actors which can then be removed systematically.
1.2.4 Optimizing detection sensitivity
Optimization of detection sensitivity is a task that is well known in radar applications and has been very effectively applied for this purpose since World War II. Essentially, efficient detection of aircraft by radar systems involves optimization of the signal-to-noise-ratio (SNR). Of course, in radar, detection is a 1-D problem whereas in imaging we need to optimally detect 2-D objects against a background of noise. However, image noise is not necessarily Gaussian white noise, as can normally be assumed in radar, though it is convenient to start with that assumption.
In radar the signals can be regarded as positive peaks (or ‘bleeps’) against a background of noise which is normally close to zero. Under these conditions there is a well-known theorem that says that the optimum detection of a bleep of given shape is obtained using a ‘matched filter’ which has the same shape as the idealized input signal. The same applies in imaging, and in that case the spatial matched filter has to have the same intensity profile as that of an ideal form of the 2-D object to be detected.
We shall now outline the mathematical basis of this approach. First, we assume a set of pixels at which signals are sampled, giving values Si[image: Image]. Next, we express the desired filter as an n-element weighting template with coefficients wi[image: Image]. Finally, we assume that the noise levels at each pixel are independent and are subject to local distributions with standard deviations Ni[image: Image].
Clearly, the total signal received from the weighting template will be
S=∑i=1nwiSi
[image: Image](1.18) 

 whereas the total noise received from the weighting template will be characterized by its variance:
N2=∑i=1nwi2Ni2
[image: Image](1.19) 

 Hence the (power) SNR is
ρ2=S2/N2=(∑i=1nwiSi)2/∑i=1nwi2Ni2
[image: Image](1.20) 

 For optimum SNR, we compute the derivative
∂ρ2/∂wi=(1/N4)[N2(2SSi)−S2(2wiNi2)]=(2S/N4)[N2Si−S(wiNi2)]
[image: Image](1.21) 

 and then set ∂ρ2/∂wi=0[image: Image]. This immediately gives:
wi=SiNi2×N2S
[image: Image](1.22) 

 which can more simply be expressed as:
wi∝SiNi2
[image: Image](1.23) 

 though with no loss of generality, we can replace the proportionality sign by an equality.
Note that if Ni[image: Image] is independent of i (i.e., the noise level does not vary over the image), wi=Si[image: Image]: this proves the theorem mentioned above—that the spatial matched filter needs to have the same intensity profile as that of the 2-D object to be detected.
1.2.5 Dealing with variations in the background intensity
Apart from the obvious difference in dimensionality, there is a further important way in which vision differs from radar: for the latter, in the absence of a signal, the system output hovers around, and averages to, zero. However, in vision, the background level will typically vary with the ambient illumination and will also vary over the input image. Basically, the solution to this problem is to employ zero-sum (or zero-mean) masks. Thus, for a mask such as that in Eq. (1.2), we merely subtract the mean value c¯[image: Image] of all the mask components from each component to ensure that the overall mask is zero-mean.
To confirm that using the zero-mean strategy works, imagine applying an unmodified mask to the image neighborhood shown in Eq. (1.3): let us assume we obtain a value K. Now add B to the intensity of each pixel in the neighborhood: this will add ∑nBci=B∑nci=Bnc¯[image: Image] to the value K; but if we make c¯=0[image: Image], we end up with the original mask output K.
Overall, we should note that the zero-mean strategy is only an approximation, as there will be places in an image where the background varies between high and low level, so that zero-mean cancellation cannot occur exactly (i.e., B cannot be regarded as constant over the region of the mask). Nevertheless, assuming that the background variation occurs on a scale significantly larger than that of the mask size, this should work adequately.
It should be remarked that the zero-mean approximation is already widely used—as indeed we have already seen from the edge and line-segment masks in Eqs. (1.7) and (1.15). It must also apply for other detectors we could devise, such as corner and hole detectors.
1.2.6 A theory combining the matched filter and zero-mean constructs
At first sight, the zero-mean construct is so simple that it might appear to integrate easily with the matched filter formalism of Section 1.2.4. However, applying it reduces the number of degrees of freedom of the matched filter by one, so a change is needed to the matched filter formalism to ensure that the latter continues to be an ideal detector. To proceed, we represent the zero-mean and matched filter cases as follows:
(wi)z-m=Si−S¯(wi)m-f=Si/Ni2
[image: Image](1.24) 

 Next, we combine these into the form
wi=(Si−S˜)/Ni2
[image: Image](1.25) 

 where we have avoided an impasse by trying a hypothetical (i.e., as yet unknown) type of mean for S, which we call S˜[image: Image]. [Of course, if this hypothesis in the end results in a contradiction, a fresh approach will naturally be required.] Applying the zero-mean condition ∑iwi=0[image: Image] now yields the following:
∑iwi=∑iSi/Ni2−∑iS˜/Ni2=0
[image: Image](1.26) 


∴S˜∑i(1/Ni2)=∑iSi/Ni2
[image: Image](1.27) 


∴S˜=∑i(Si/Ni2)/∑i(1/Ni2)
[image: Image](1.28) 

 From this, we deduce that S˜[image: Image] has to be a weighted mean, and in particular the noise-weighted mean S˜[image: Image]. On the other hand, if the noise is uniform, S˜[image: Image] will revert to the usual unweighted mean S¯[image: Image]. Also, if we do not apply the zero-mean condition (which we can achieve by setting S˜=0[image: Image]), Eq. (1.25) reverts immediately to the standard matched filter condition.
The formula for S˜[image: Image] may seem to be unduly general, in that Ni[image: Image] should normally be almost independent of i. However, if an ideal profile were to be derived by averaging real object profiles, then away from its center, the noise variance could be more substantial. Indeed, for large objects this would be a distinct limiting factor on such an approach. But for fairly small objects and features, noise variance should not vary excessively and useful matched filter profiles should be obtainable.
On a personal note, the main result proven in this section (cf. Eqs. (1.25) and (1.28)) took me so much time and effort to resolve the various issues that I was never convinced I would solve it. Hence I came to think of it as ‘Davies's last theorem’.
1.2.7 Mask design—other considerations
Although the matched filter formalism and the now fully integrated zero-mean condition might seem to be sufficiently general to provide for unambiguous mask design, there are a number of aspects that remain to be considered. For example, how large should the masks be made? And how should they be optimally placed around any notable objects or features? We shall take the following example of a fairly complex object feature to help us answer this. Here region 2 is the object being detected, region 1 is the background, and M is the feature mask region.

[image: Image]
 © IET 1999.
On this model we have to calculate optimal values for the mask weighting factors w1[image: Image] and w2[image: Image] and for the region areas A1[image: Image] and A2[image: Image]. We can write the total signal and noise power from a template mask as:
S=w1A1S1+w2A2S2N2=w12A1N12+w22A2N22
[image: Image](1.29) 

 Thus, we obtain a power signal-to-noise-ratio (SNR):
ρ2=S2N2=(w1A1S1+w2A2S2)2w12A1N12+w22A2N22
[image: Image](1.30) 

 It is easy to see that if both mask regions are increased in area by the same factor η, ρ2[image: Image] will also be increased by this factor. This makes it interesting to optimize the mask by adjusting the relative values of A1[image: Image], A2[image: Image], leaving the total area A unchanged. Let us first eliminate w2[image: Image] using the zero-mean condition (which is commonly applied to prevent changes in background intensity level from affecting the result):
w1A1+w2A2=0
[image: Image](1.31) 


Clearly, the power SNR no longer depends on the mask weights:
ρ2=S2N2=(S1−S2)2N12/A1+N22/A2
[image: Image](1.32) 


Next, because the total mask area A is predetermined, we have:
A2=A−A1
[image: Image](1.33) 


Substituting for A2[image: Image] quickly leads to a simple optimization condition:
A1/A2=N1/N2
[image: Image](1.34) 


Taking N1=N2[image: Image], we obtain an important result—the equal area rule (Davies, 1999):
A1=A2=A/2
[image: Image](1.35) 


Finally, when the equal area rule applies, the zero-mean rule takes the form:
w1=−w2
[image: Image](1.36) 


Note that many cases, such as those arising when the foreground and background have different textures, can be modeled by taking N1≠N2[image: Image]. In that case the equal area rule does not apply, but we can still use Eq. (1.34).
1.2.8 Corner detection
In Sections 1.2.1 and 1.2.3 we found that only two types of feature have vector (or pseudo-vector) forms—edge and line segments. Hence, whereas these features can be detected using just two component masks, all other features would be expected to require matching to many more templates in order to cope with varying orientations. Corner detectors appear to fall into this category, typical 3 × 3 corner templates being the following:
[−455−455−4−4−4][555−45−4−4−4−4]
[image: Image](1.37) 

 (Note that these masks have been adjusted to zero-mean form to eliminate the effects of varying lighting conditions.)
To overcome the evident problems of template matching—not the least amongst which is the need to use limited numbers of digital masks to approximate the underlying analogue intensity variations, which themselves vary markedly from instance to instance—many efforts have been made to obtain a more principled approach. In particular, as edges depend on the first derivatives of the image intensity field, it seemed logical to move to a second-order derivative approach. One of the first such investigations was the Beaudet (1978) approach, which employed the Laplacian and Hessian operators:
Laplacian=Ixx+IyyHessian=IxxIyy−Ixy2
[image: Image](1.38) 


These were particularly attractive as they are defined in terms of the determinant and trace of the symmetric matrix of second derivatives, and thus are invariant under rotation.
In fact, the Laplacian operator gives significant responses along lines and edges and hence is not particularly suitable as a corner detector. On the other hand, Beaudet's ‘DET’ (Hessian) operator does not respond to lines and edges but gives significant signals in the vicinity of corners and should therefore form a useful corner detector—though it responds with one sign on one side of a corner and with the opposite sign on the other side of the corner: on the corner itself it gives a null response. Furthermore, other workers criticized the specific responses of the DET operator and found they needed quite complex analyzes to deduce the presence and exact position of each corner (Dreschler and Nagel, 1981; Nagel, 1983).
However, Kitchen and Rosenfeld (1982) found they were able to overcome these problems by estimating the rate of change of the gradient direction vector along the horizontal edge tangent direction, and relating it to the horizontal curvature κ of the intensity function I. To obtain a realistic indication of the strength of a corner they multiplied κ by the magnitude of the local intensity gradient g:
C=κg=κ(Ix2+Iy2)1/2=IxxIy2−2IxyIxIy+IyyIx2Ix2+Iy2
[image: Image](1.39) 

 Finally, they used the heuristic of nonmaximum suppression along the edge normal direction to localize the corner positions further.
Interestingly, Nagel (1983) and Shah and Jain (1984) came to the view that the Kitchen and Rosenfeld, Dreschler and Nagel, and Zuniga and Haralick (1983) corner detectors were all essentially equivalent. This should not be overly surprising, since in the end the different methods would be expected to reflect the same underlying physical phenomena (Davies, 1988c)—reflecting a second-order derivative formulation interpretable as a horizontal curvature multiplied by an intensity gradient.
1.2.9 The Harris ‘interest point’ operator
At this point in Harris and Stephens (1988) developed an entirely new operator capable of detecting corner-like features—based not on second-order but on first-order derivatives. As we shall see below, this simplified the mathematics, including the difficulties of applying digital masks to intrinsically analogue functions. In fact, the new operator was able to perform a second-order derivative function by applying first-order operations. It is intriguing how it could acquire the relevant second-order derivative information in this way. To understand this we need to examine its quite simple mathematical definition.
The Harris operator is defined in terms of the local components of intensity gradient Ix[image: Image], Iy[image: Image] in an image. The definition requires a window region to be defined and averages 〈.〉[image: Image] to be taken over this whole window. We start by computing the following matrix:
Δ=[〈Ix2〉〈IxIy〉〈IxIy〉〈Iy2〉]
[image: Image](1.40) 


We then use the determinant and trace to estimate the corner signal:
C=det⁡Δ/traceΔ
[image: Image](1.41) 

 (Again, as for the Beaudet operators, the significance of using only the determinant and trace is that the resulting signal will be invariant to corner orientation.)
Before proceeding to analyze the form of C, note that if averaging were not undertaken, det Δ would be identically equal to zero: clearly, it is only the smoothing intrinsic in the averaging operation that permits the spread of first-derivative values and thereby allows the result to depend partly on second derivatives.
To understand the operation of the detector in more detail, first consider its response for a single edge (Fig. 1.2a). In fact:
det⁡Δ=0
[image: Image](1.42) 

 because Ix[image: Image] is zero over the whole window region.
[image: Image]
Figure 1.2 Geometry for calculating line and corner responses in a circular window. (a) straight edge, (b) general corner. © IET 2005.

Next consider the situation in a corner region (Fig. 1.2b). Here:
Δ=[l2g2sin2⁡θl2g2sin⁡θcos⁡θl2g2sin⁡θcos⁡θl2g2cos2⁡θ+l1g2]
[image: Image](1.43) 

 where l1[image: Image], l2[image: Image] are the lengths of the two edges bounding the corner, and g is the edge contrast, assumed constant over the whole window. We now find (Davies, 2005):
det⁡Δ=l1l2g4sin2⁡θ
[image: Image](1.44) 

 and
traceΔ=(l1+l2)g2
[image: Image](1.45) 


∴C=l1l2l1+l2g2sin2⁡θ
[image: Image](1.46) 


This may be interpreted as the product of (1) a strength factor λ, which depends on the edge lengths within the window, (2) a contrast factor g2[image: Image], and (3) a shape factor sinθ2[image: Image], which depends on the edge ‘sharpness’ θ. Clearly, C is zero for θ=0[image: Image] and θ=π[image: Image], and is a maximum for θ=π[image: Image]/2—all these results being intuitively correct and appropriate.
A good many of the properties of the operator can be determined from this formula, including the fact that the peak signal occurs not at the corner itself but at the center of the window used to compute the corner signal—though the shift is reduced as the sharpness of the corner decreases.
1.3 Part B – 2-D object location and recognition
1.3.1 The centroidal profile approach to shape analysis
2-D objects are commonly characterized by their boundary shapes. In this section we examine what can be achieved by tracking around object boundaries and analyzing the resulting shape profiles. Amongst the commonest type of profile used for this purpose is the centroidal profile—in which the object boundary is mapped out using an (r,θ)[image: Image] polar plot, taking the centroid C of the boundary as the origin of coordinates.
In the case of a circle of radius R, the centroidal profile is a straight line a distance R above the θ-axis. Fig. 1.3 clarifies the situation and also shows two examples of broken circular objects. In case (a), the circle is only slightly distorted and thus its centroid C remains virtually unchanged; hence, much of the centroidal plot remains at a distance R above the θ-axis. However, in case (b), even the part of the boundary that is not broken or distorted is far from being a constant distance from the θ-axis: this means that the object is unrecognizable from its profile, though in case (a) there is no difficulty in recognizing it as a slightly damaged circle. In fact, we can trace the relative seriousness of the two cases as being due largely to the fact that in case (b) the centroid has moved so much that even the unmodified part of the shape is not instantly recognizable. Of course, we could attempt to rectify the situation by trying to move the centroid back to its old position, but it would be difficult to do this reliably: in any case, if the original shape turned out not to be a circle, a lot of processing would be wasted before the true nature of the problem was revealed.
[image: Image]
Figure 1.3 Problems with the centroidal profile descriptor. (a) shows a circular object with a minor defect on its boundary; its centroidal profile appears beneath it. (b) shows the same object, this time with a gross defect: because the centroid is shifted to Ć, the whole of the centroidal profile is grossly distorted.

Overall, we can conclude that the centroidal profile approach is nonrobust, and is not to be recommended. In fact, this does not mean that it should not be used in practice. For example, on a cheese or biscuit conveyor, any object that is not instantly recognizable by its constant R profile should immediately be rejected from the product line; then other objects can be examined to be sure that their R values are acceptable and show an appropriate degree of constancy.

Robustness and its importance
It is not an accident that the idea of robustness has arisen here. It is actually core to much of the discussion on algorithm value and effectiveness that runs right through computer vision. The underlying problem is that of variability of objects or indeed of any entities that appear in computer images. This variability can arise simply from noise, or from varying shapes of even the same types of object, or from variations in size or placement, or from distortions due to poor manufacture, or cracks or breakage, or the fact that objects can be viewed from a variety of positions and directions under various viewing regimes—which tend to be most extreme for full perspective projection. In addition, one object may be partly obscured by another or even only partly situated within a specific image (giving effects that are not dissimilar to the result of breakage).
While noise is well known to affect accuracy of measurement, it might be thought less likely to affect robustness. However, we need to distinguish the ‘usual’ sort of noise, which we can typify as Gaussian noise, from spike or impulse noise. The latter are commonly described as outlying points or ‘outliers’ on the noise distribution. (Note that we have already seen that the median filter is significantly better than the mean filter at coping with outliers.) The subject of robust statistics studies the topics of inliers and outliers and how best to cope with various types of noise. It underlies the optimization of accuracy of measurement and reliability of interpretation in the presence of outliers and gross disturbances to object appearance.


Next, it should be remarked that there are other types of boundary plot that can be used instead of the centroidal profile. One is the (s, ψ) plot and another is the derived (s, κ) profile. Here, ψ is the boundary orientation angle, and κ(s), which is equal to dψ/ds, is the local curvature function. Importantly, these formulations make no reference to the position of the centroid, and its position need not be calculated or even estimated. In spite of this advantage, all such boundary profile representations suffer from a significant further problem—that if any part of the boundary is occluded, distorted or broken, comparison of the object shape with templates of known shape is rendered quite difficult, because of the different boundary lengths.
In spite of these problems, when it can be employed, the centroidal profile method has certain advantages, in that it contributes ease of measurement of circular radii, ease of identification of squares and other shapes with prominent corners, and straightforward orientation measurement—particularly for shapes with prominent corners.
It now remains to find a method that can replace the centroidal profile method in instances where gross distortions or occlusions can occur. For such a method we need to move on to the following section which introduces the Hough transform approach.
1.3.2 Hough-based schemes for object detection
In Section 1.3.1 we explored how circular objects might be identified from their boundaries using the centroidal profile approach to shape analysis. The approach was found to be nonrobust because of its incapability for coping with gross shape distortions and occlusions. In this section we show that the Hough transform provides a simple but neat way of solving this problem. The method used is to take each edge point in the image, move a distance R inwards along the local edge normal, and accumulate a point in a separate image called the parameter space: R is taken to be the expected radius of the circles to be located. The result of this will be a preponderance of points (often called ‘votes’) around the locations of circle centers. Indeed, to obtain accurate estimates of center locations, it is only necessary to find significant peaks in parameter space.
The process is illustrated in Fig. 1.4, making it clear that the method ignores noncircular parts of the boundary and only identifies genuine circle centers: thus the approach focuses on data that correspond to the chosen model and is not confused by irrelevant data that would otherwise lead to nonrobust solutions. Clearly, it relies on edge normal directions being estimated accurately. Fortunately, the Sobel operator is able to estimate edge orientation to within ∼1° and is straightforward to apply. In fact, Fig. 1.5 shows that the results can be quite impressive.
[image: Image]
Figure 1.4 Robustness of the Hough transform when locating the center of a circular object. The circular part of the boundary gives candidate center points that focus on the true center, whereas the irregular broken boundary gives candidate center points at random positions. In this case the boundary is approximately that of the broken biscuit shown in Fig. 1.5.

[image: Image]
Figure 1.5 Location of broken and overlapping biscuits, showing the robustness of the center location technique. Accuracy is indicated by the black dots which are each within 1/2 pixel of the radial distance from the center. © IFS 1984.

A disadvantage of the approach as outlined above is that it requires R to be known in advance. The general solution to this problem is to use a 3-D parameter space, with the third dimension representing possible values of R, and then searching for the most significant peaks in this space. However, a simpler solution involves accumulating the results for a range of likely values of R in the same 2-D parameter space—a procedure that results in substantial savings in storage and computation (Davies, 1988a). Fig. 1.6 shows the result of applying this strategy, which works with both positive and negative values of R. On the other hand, note that the information on radial distance has been lost by accumulating all the votes in a single parameter plane. Hence a further iteration of the procedure would be required to identify the radius corresponding to each peak location.
[image: Image]
Figure 1.6 Simultaneous detection of objects with different radii. (a) Detection of a lens cap and a wing nut when radii are assumed to lie in the range 4–17 pixels; (b) hole detection in the same image when radii are assumed to fall in the range −26 to −9 pixels (negative radii are used since holes are taken to be objects of negative contrast): clearly, in this image a smaller range of negative radii could have been employed.

The Hough transform approach can also be used for ellipse detection: two simple methods for achieving this are presented in Fig. 1.7. Both of these embody an indirect approach in which pairs of edge points are employed. Whereas the diameter-bisection method involves considerably less computation than the chord–tangent method, it is more prone to false detections—for example, when two ellipses lie near to each other in an image.
[image: Image]
Figure 1.7 The geometry of two ellipse detection methods. (a) In the diameter-bisection method, a pair of points is located for which the edge orientations are antiparallel. The midpoints of such pairs are accumulated and the resulting peaks are taken to correspond to ellipse centers. (b) In the chord–tangent method, the tangents at P1 and P2 meet at T and the midpoint of P1P2 is M. The center C of the ellipse lies on the line TM produced.

To prove the validity of the chord–tangent method, note that symmetry ensures that the method works for circles: projective properties then ensure that it also works for ellipses, because under orthographic projection, straight lines project into straight lines, midpoints into midpoints, tangents into tangents, and circles into ellipses; in addition, it is always possible to find a viewpoint such that a circle can be projected into a given ellipse.
We now move on to the so-called generalized Hough transform (GHT), which employs a more direct procedure for performing ellipse detection than the other two methods outlined above.
To understand how the standard Hough technique is generalized so that it can detect arbitrary shapes, we first need to select a localization point L within a template of the idealized shape. Then, we need to arrange so that, instead of moving from an edge point a fixed distance R directly along the local edge normal to arrive at the center, as for circles, we move an appropriate variable distance R in a variable direction φ so as to arrive at L: R and φ are now functions of the local edge normal direction θ (Fig. 1.8). Under these circumstances votes will peak at the preselected object localization point L. The functions R(θ)andϕ(θ)[image: Image] can be stored analytically in the computer algorithm, or for completely arbitrary shapes they may be stored as lookup tables. In either case the scheme is beautifully simple in principle but an important complication arises because we are going from an isotropic shape (a circle) to an anisotropic shape which may be in a completely arbitrary orientation.
[image: Image]
Figure 1.8 Computation of the generalized Hough transform.

This means adding an extra dimension in parameter space (Ballard, 1981). Each edge point then contributes a set of votes in each orientation plane in parameter space. Finally, the whole of parameter space is searched for peaks, the highest points indicating both the locations of objects and their orientations. Interestingly, ellipses can be detected by the GHT using a single plane in parameter space, by applying a point spread function (PSF) to each edge point, which takes all possible orientations of the ellipse into account: note that the PSF is applied at some distance from the edge point, so that the center of the PSF can pass through the center of the ellipse (Fig. 1.9). Lack of space prevents details of the computations from being presented here (e.g., see Davies, 2017, Chapter 11).
[image: Image]
Figure 1.9 Use of a PSF shape that takes into account all possible orientations of an ellipse. The PSF is positioned by the grey construction lines so that it passes through the center of the ellipse (see the black dot).

1.3.3 Application of the Hough transform to line detection
The Hough transform (HT) can also be applied to line detection. Early on, it was found best to avoid the usual slope–intercept equation, y=mx+c[image: Image], because near-vertical lines require near-infinite values of m and c. Instead, the ‘normal’ (θ,ρ)[image: Image] form for the straight line (Fig. 1.10) was employed:
ρ=xcos⁡θ+ysin⁡θ
[image: Image](1.47) 


[image: Image]
Figure 1.10 Normal (θ,ρ) parametrization of a straight line.

To apply the method using this form, the set of lines passing through each point Pi[image: Image] is represented as a set of sine curves in (θ,ρ)[image: Image] space: e.g., for point P1(x1,y1)[image: Image] the sine curve has equation:
ρ=x1cos⁡θ+y1sin⁡θ
[image: Image](1.48) 


After vote accumulation in (θ,ρ)[image: Image] space, peaks indicate the presence of lines in the original image.
A lot of work has been carried out (e.g., see Dudani and Luk, 1978) to limit the inaccuracies involved in line location, which arise from several sources—noise, quantization, the effects of line fragmentation, the effects of slight line curvature, and the difficulty of estimating the exact peak positions in parameter space. In addition, the problem of longitudinal line localization is important. For the last of these processes, Dudani and Luk (1978) developed the method of ‘xy–grouping’, which involved carrying out connectivity analysis for each line. Segments of a line would then be merged if they were separated by gaps of less than ∼5 pixels. Finally, segments shorter than a certain minimum length (also typically ∼5 pixels) would be ignored as too insignificant to help with image interpretation.
Overall, we see that all the forms of the HT described above gain considerably by accumulating evidence using a voting scheme. This is the source of the method's high degree of robustness. The computation processes used by the HT can be described as inductive rather than deductive as the peaks lead to hypotheses about the presence of objects, that need in principle to be confirmed by other evidence, whereas deduction would lead to immediate proof of the presence of objects.
1.3.4 Using RANSAC for line detection
RANSAC is an alternative model-based search schema that can often be used instead of the HT. In fact, it is highly effective when used for line detection, which is why the method is introduced here. The strategy can be construed as a voting scheme, but it is used in a different way from that in the HT. It operates by making a sequence of hypotheses about the target objects, and determines the support for each of them by counting how many data points agree with them within reasonable (e.g., ±3σ) limits (see Fig. 1.11). As might be expected, for any potential target object, only the hypotheses with the maximum support are retained at each stage.
[image: Image]
Figure 1.11 The RANSAC technique. Here the + signs indicate data points to be fitted, and two instances of pairs of data points (indicated by ⊕ signs) leading to hypothesized lines are also shown. Each hypothesized line has a region of influence of tolerance ±t within which the support of maximal numbers of data points is sought. The line with the most support is taken to lead to the best fit.

We next explain how RANSAC is used for line detection. As in the case of the HT, we start by applying an edge detector and locating all the edge points in the image. As we shall see, RANSAC operates best with a limited number of points, so it is useful to find the edge points that are local maxima of the intensity gradient image. Next, to form a straight line hypothesis, all that is necessary is to take any pair of edge points. For each hypothesis we run through the list of N edge points finding how many points M support the hypothesis. Then we take more hypotheses (more pairs of edge points) and at each stage retain only the one giving maximum support Mmax. This process is shown in Table 1.1.
Table 1.1
Basic RANSAC algorithm for finding the line with greatest support. This algorithm only returns one line: in fact it returns the specific line model that has greatest support. Lines with less support are in the end ignored.	Mmax=0;
	for all pairs of edge points do {
	 find equation of line defined by the two points i, j;
	 M = 0;
	 for all N points in list do
	  if (point k is within threshold distance d of line) M ++;
	 if (M > Mmax) {
	  Mmax = M;
	  imax = i;
	  jmax = j;
	  // this records the hypothesis giving the maximum support so far
	 }
	}
	/* if Mmax > 0, (x[imax], y[imax]) and (x[jmax], y[jmax]) will be the coordinates of the points defining the line having greatest support */


The algorithm in Table 1.1 corresponds to finding the center of the highest peak in parameter space, as in the case of the HT.
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