GEORGE G. ROUSSAS

A Course in Wathematical Statistics

SECONDEDITION

A Course in Mathematical Statistics

Second Edition

This Page Intentionally Left Blank

A Course in Mathematical Statistics

Second Edition

George G. Roussas
Intercollege Division of Statistics
University of California
Davis, California

This book is printed on acid-free paper. @

Copyright © 1997 by Academic Press
All rights reserved.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

ACADEMIC PRESS

525 B Street, Suite 1900, San Diego, CA 92101-4495, USA
1300 Boylston Street, Chestnut Hill, MA 02167, USA
http://www.apnet.com

ACADEMIC PRESS LIMITED

24-28 Oval Road, London NW1 7DX, UK
http://www.hbuk.co.uk/ap/

Library of Congress Cataloging-in-Publication Data

Roussas, George G.

A course in mathematical statistics / George G. Roussas.-2nd ed. p. cm.

Rev. ed. of: A first course in mathematical statistics. 1973.
Includes index.
ISBN 0-12-599315-3

1. Mathematical statistics. I. Roussas, George G. First course in mathematical statistics. II. Title.
QA276.R687 1997 96-42115
519.5-dc20

CIP

[^0]To my wife and sons

This Page Intentionally Left Blank

Contents

Preface to the Second Edition xv
Preface to the First Edition xviii
Chapter 1 Basic Concepts of Set Theory 1
1.1 Some Definitions and Notation 1
Exercises 5
1.2* Fields and σ-Fields 8
Chapter 2 Some Probabilistic Concepts and Results 14
2.1 Probability Functions and Some Basic Properties and Results 14
Exercises 20
2.2 Conditional Probability 21
Exercises 25
2.3 Independence 27
Exercises 33
2.4 Combinatorial Results 34
Exercises 40
2.5* Product Probability Spaces 45
Exercises 47
2.6* The Probability of Matchings 47
Exercises 52
Chapter 3 On Random Variables and Their Distributions 53
3.1 Some General Concepts 53
3.2 Discrete Random Variables (and Random Vectors) 55
Exercises 61
3.3 Continuous Random Variables (and Random Vectors) 65
Exercises 76
3.4 The Poisson Distribution as an Approximation to the Binomial Distribution and the Binomial Distribution as an Approximation to the Hypergeometric Distribution 79
Exercises 82
3.5* Random Variables as Measurable Functions and Related Results 82
Exercises 84
Chapter 4 Distribution Functions, Probability Densities, and Their Relationship 85
4.1 The Cumulative Distribution Function (c.d.f. or d.f.) of a Random Vector-Basic Properties of the d.f. of a Random Variable 85 Exercises 89
4.2 The d.f. of a Random Vector and Its Properties-Marginal and Conditional d.f.'s and p.d.f.'s 91
Exercises 97
4.3 Quantiles and Modes of a Distribution 99
Exercises 102
4.4* Justification of Statements 1 and 2 102
Exercises 105
Chapter 5 Moments of Random Variables-Some Moment and Probability Inequalities 106
5.1 Moments of Random Variables 106
Exercises 111
5.2 Expectations and Variances of Some R.V.'s 114
Exercises 119
5.3 Conditional Moments of Random Variables 122
Exercises 124
5.4 Some Important Applications: Probability and Moment Inequalities 125
Exercises 128
5.5 Covariance, Correlation Coefficient and Its Interpretation 129
Exercises 133
5.6* Justification of Relation (2) in Chapter 2 134
Chapter 6 Characteristic Functions, Moment Generating Functions and Related Theorems 138
6.1 Preliminaries 138
6.2 Definitions and Basic Theorems-The One-Dimensional Case 140
Exercises 145
6.3 The Characteristic Functions of Some Random Variables 146
Exercises 149
6.4 Definitions and Basic Theorems-The Multidimensional Case 150
Exercises 152
6.5 The Moment Generating Function and Factorial Moment Generating Function of a Random Variable 153
Exercises 160
Chapter 7 Stochastic Independence with Some Applications 164
7.1 Stochastic Independence: Criteria of Independence 164
Exercises 168
7.2 Proof of Lemma 2 and Related Results 170
Exercises 172
7.3 Some Consequences of Independence 173
Exercises 176
7.4* Independence of Classes of Events and Related Results 177
Exercise 179
Chapter 8 Basic Limit Theorems 180
8.1 Some Modes of Convergence 180
Exercises 182
8.2 Relationships Among the Various Modes of Convergence 182
Exercises 187
8.3 The Central Limit Theorem 187
Exercises 194
8.4 Laws of Large Numbers 196
Exercises 198
8.5 Further Limit Theorems 199
Exercises 206
8.6* Pólya's Lemma and Alternative Proof of the WLLN 206
Exercises 211
Chapter 9 Transformations of Random Variables and Random Vectors 212
9.1 The Univariate Case 212
Exercises 218
9.2 The Multivariate Case 219
Exercises 233
9.3 Linear Transformations of Random Vectors 235
Exercises 240
9.4 The Probability Integral Transform 242
Exercise 244
Chapter 10 Order Statistics and Related Theorems 245
10.1 Order Statistics and Related Distributions 245
Exercises 252
10.2 Further Distribution Theory: Probability of Coverage of a Population Quantile 256
Exercise 258
Chapter 11 Sufficiency and Related Theorems 259
11.1 Sufficiency: Definition and Some Basic Results 260
Exercises 269
11.2 Completeness 271
Exercises 273
11.3 Unbiasedness-Uniqueness 274
Exercises 276
11.4 The Exponential Family of p.d.f.'s: One-Dimensional Parameter Case 276
Exercises 280
11.5 Some Multiparameter Generalizations 281
Exercises 282
Chapter 12 Point Estimation 284
12.1 Introduction 284
Exercise 284
12.2 Criteria for Selecting an Estimator: Unbiasedness, Minimum Variance 285
Exercises 286
12.3 The Case of Availability of Complete Sufficient Statistics 287
Exercises 292
12.4 The Case Where Complete Sufficient Statistics Are Not Available or May Not Exist: Cramér-Rao Inequality 293
Exercises 301
12.5 Criteria for Selecting an Estimator: The Maximum Likelihood Principle 302
Exercises 308
12.6 Criteria for Selecting an Estimator: The Decision- Theoretic Approach 309
12.7 Finding Bayes Estimators 312
Exercises 317
12.8 Finding Minimax Estimators 318
Exercise 320
12.9 Other Methods of Estimation 320
Exercises 322
12.10 Asymptotically Optimal Properties of Estimators 322
Exercise 325
12.11 Closing Remarks 325
Exercises 326
Chapter 13
Testing Hypotheses 327
13.1 General Concepts of the Neyman-Pearson Testing Hypotheses Theory 327
Exercise 329
13.2 Testing a Simple Hypothesis Against a Simple Alternative 329
Exercises 336
13.3 UMP Tests for Testing Certain Composite Hypotheses 337
Exercises 347
13.4 UMPU Tests for Testing Certain Composite Hypotheses 349
Exercises 353
13.5 Testing the Parameters of a Normal Distribution 353
Exercises 356
13.6 Comparing the Parameters of Two Normal Distributions 357
Exercises 360
13.7 Likelihood Ratio Tests 361
Exercises 369
13.8 Applications of LR Tests: Contingency Tables, Goodness-of-Fit Tests 370
Exercises 373
13.9 Decision-Theoretic Viewpoint of Testing Hypotheses 375
Chapter 14 Sequential Procedures 382
14.1 Some Basic Theorems of Sequential Sampling 382
Exercises 388
14.2 Sequential Probability Ratio Test 388
Exercise 392
14.3 Optimality of the SPRT-Expected Sample Size 393
Exercises 394
14.4 Some Examples 394
Chapter 15 Confidence Regions-Tolerance Intervals 397
15.1 Confidence Intervals 397
Exercise 398
15.2 Some Examples 398
Exercises 404
15.3 Confidence Intervals in the Presence of Nuisance Parameters 407
Exercise 410
15.4 Confidence Regions—Approximate Confidence Intervals 410
Exercises 412
15.5 Tolerance Intervals 413
Chapter 16 The General Linear Hypothesis 416
16.1 Introduction of the Model 416
16.2 Least Square Estimators-Normal Equations 418
16.3 Canonical Reduction of the Linear Model-Estimation of σ^{2} 424
Exercises 428
16.4 Testing Hypotheses About $\eta=E(\mathbf{Y})$ 429
Exercises 433
16.5 Derivation of the Distribution of the \mathcal{F} Statistic 433
Exercises 436
Chapter 17
Analysis of Variance 440
17.1 One-way Layout (or One-way Classification) with the Same Number of Observations Per Cell 440
Exercise 446
17.2 Two-way Layout (Classification) with One Observation Per Cell 446
Exercises 451
17.3 Two-way Layout (Classification) with $K(\geq 2)$ Observations Per Cell 452
Exercises 457
17.4 A Multicomparison method 458
Exercises 462
Chapter 18 The Multivariate Normal Distribution 463
18.1 Introduction 463
Exercises 466
18.2 Some Properties of Multivariate Normal Distributions 467
Exercise 469
18.3 Estimation of μ and $\boldsymbol{\Sigma}$ and a Test of Independence 469
Exercises 475
Chapter 19 Quadratic Forms 476
19.1 Introduction 476
19.2 Some Theorems on Quadratic Forms 477
Exercises 483
Chapter 20 Nonparametric Inference 485
20.1 Nonparametric Estimation 485
20.2 Nonparametric Estimation of a p.d.f. 487
Exercise 490
20.3 Some Nonparametric Tests 490
20.4 More About Nonparametric Tests: Rank Tests 493
Exercises 496
20.5 Sign Test 496
20.6 Relative Asymptotic Efficiency of Tests 498
Appendix I Topics from Vector and Matrix Algebra 499
I. 1 Basic Definitions in Vector Spaces 499
I. 2 Some Theorems on Vector Spaces 501
I. 3 Basic Definitions About Matrices 502
I. 4 Some Theorems About Matrices and Quadratic Forms 504
Appendix II Noncentral t-, χ^{2}-, and F-Distributions 508
II. 1 Noncentral t-Distribution 508
II. 2 Noncentral x^{2}-Distribution 508
II. 3 Noncentral F-Distribution 509
Appendix III Tables 511
1 The Cumulative Binomial Distribution 511
2 The Cumulative Poisson Distribution 520
3 The Normal Distribution 523
4 Critical Values for Student's t-Distribution 526
5 Critical Values for the Chi-Square Distribution 529
6 Critical Values for the F-Distribution 532
7 Table of Selected Discrete and Continuous Distributions and Some of Their Characteristics 542
Some Notation and Abbreviations 545
Answers to Selected Exercises 547
Index 561

Preface to the Second Edition

This is the second edition of a book published for the first time in 1973 by Addison-Wesley Publishing Company, Inc., under the title A First Course in Mathematical Statistics. The first edition has been out of print for a number of years now, although its reprint in Taiwan is still available. That issue, however, is meant for circulation only in Taiwan.

The first issue of the book was very well received from an academic viewpoint. I have had the pleasure of hearing colleagues telling me that the book filled an existing gap between a plethora of textbooks of lower mathematical level and others of considerably higher level. A substantial number of colleagues, holding senior academic appointments in North America and elsewhere, have acknowledged to me that they made their entrance into the wonderful world of probability and statistics through my book. I have also heard of the book as being in a class of its own, and also as forming a collector's item, after it went out of print. Finally, throughout the years, I have received numerous inquiries as to the possibility of having the book reprinted. It is in response to these comments and inquiries that I have decided to prepare a second edition of the book.

This second edition preserves the unique character of the first issue of the book, whereas some adjustments are affected. The changes in this issue consist in correcting some rather minor factual errors and a considerable number of misprints, either kindly brought to my attention by users of the book or located by my students and myself. Also, the reissuing of the book has provided me with an excellent opportunity to incorporate certain rearrangements of the material.

One change occurring throughout the book is the grouping of exercises of each chapter in clusters added at the end of sections. Associating exercises with material discussed in sections clearly makes their assignment easier. In the process of doing this, a handful of exercises were omitted, as being too complicated for the level of the book, and a few new ones were inserted. In

Chapters 1 through 8, some of the materials were pulled out to form separate sections. These sections have also been marked by an asterisk (*) to indicate the fact that their omission does not jeopardize the flow of presentation and understanding of the remaining material.

Specifically, in Chapter 1, the concepts of a field and of a σ-field, and basic results on them, have been grouped together in Section 1.2*. They are still readily available for those who wish to employ them to add elegance and rigor in the discussion, but their inclusion is not indispensable. In Chapter 2, the number of sections has been doubled from three to six. This was done by discussing independence and product probability spaces in separate sections. Also, the solution of the problem of the probability of matching is isolated in a section by itself. The section on the problem of the probability of matching and the section on product probability spaces are also marked by an asterisk for the reason explained above. In Chapter 3, the discussion of random variables as measurable functions and related results is carried out in a separate section, Section 3.5*. In Chapter 4, two new sections have been created by discussing separately marginal and conditional distribution functions and probability density functions, and also by presenting, in Section 4.4^{*}, the proofs of two statements, Statements 1 and 2, formulated in Section 4.1; this last section is also marked by an asterisk. In Chapter 5, the discussion of covariance and correlation coefficient is carried out in a separate section; some additional material is also presented for the purpose of further clarifying the interpretation of correlation coefficient. Also, the justification of relation (2) in Chapter 2 is done in a section by itself, Section 5.6*. In Chapter 6, the number of sections has been expanded from three to five by discussing in separate sections characteristic functions for the one-dimensional and the multidimensional case, and also by isolating in a section by itself definitions and results on momentgenerating functions and factorial moment generating functions. In Chapter 7, the number of sections has been doubled from two to four by presenting the proof of Lemma 2, stated in Section 7.1, and related results in a separate section; also, by grouping together in a section marked by an asterisk definitions and results on independence. Finally, in Chapter 8, a new theorem, Theorem 10, especially useful in estimation, has been added in Section 8.5. Furthermore, the proof of Pólya's lemma and an alternative proof of the Weak Law of Large Numbers, based on truncation, are carried out in a separate section, Section 8.6^{*}, thus increasing the number of sections from five to six.

In the remaining chapters, no changes were deemed necessary, except that in Chapter 13, the proof of Theorem 2 in Section 13.3 has been facilitated by the formulation and proof in the same section of two lemmas, Lemma 1 and Lemma 2. Also, in Chapter 14, the proof of Theorem 1 in Section 14.1 has been somewhat simplified by the formulation and proof of Lemma 1 in the same section.

Finally, a table of some commonly met distributions, along with their means, variances and other characteristics, has been added. The value of such a table for reference purposes is obvious, and needs no elaboration.

This book contains enough material for a year course in probability and statistics at the advanced undergraduate level, or for first-year graduate students not having been exposed before to a serious course on the subject matter. Some of the material can actually be omitted without disrupting the continuity of presentation. This includes the sections marked by asterisks, perhaps, Sections 13.4-13.6 in Chapter 13, and all of Chapter 14. The instructor can also be selective regarding Chapters 11 and 18. As for Chapter 19, it has been included in the book for completeness only.

The book can also be used independently for a one-semester (or even one quarter) course in probability alone. In such a case, one would strive to cover the material in Chapters 1 through 10 with the exclusion, perhaps, of the sections marked by an asterisk. One may also be selective in covering the material in Chapter 9.

In either case, presentation of results involving characteristic functions may be perfunctory only, with emphasis placed on moment-generating functions. One should mention, however, why characteristic functions are introduced in the first place, and therefore what one may be missing by not utilizing this valuable tool.

In closing, it is to be mentioned that this author is fully aware of the fact that the audience for a book of this level has diminished rather than increased since the time of its first edition. He is also cognizant of the trend of having recipes of probability and statistical results parading in textbooks, depriving the reader of the challenge of thinking and reasoning instead delegating the "thinking" to a computer. It is hoped that there is still room for a book of the nature and scope of the one at hand. Indeed, the trend and practices just described should make the availability of a textbook such as this one exceedingly useful if not imperative.

G. G. Roussas
Davis, California
May 1996

Preface to the First Edition

This book is designed for a first-year course in mathematical statistics at the undergraduate level, as well as for first-year graduate students in statistics-or graduate students, in general-with no prior knowledge of statistics. A typical three-semester course in calculus and some familiarity with linear algebra should suffice for the understanding of most of the mathematical aspects of this book. Some advanced calculus-perhaps taken concurrently-would be helpful for the complete appreciation of some fine points.

There are basically two streams of textbooks on mathematical statistics that are currently on the market. One category is the advanced level texts which demonstrate the statistical theories in their full generality and mathematical rigor; for that purpose, they require a high level, mathematical background of the reader (for example, measure theory, real and complex analysis). The other category consists of intermediate level texts, where the concepts are demonstrated in terms of intuitive reasoning, and results are often stated without proofs or with partial proofs that fail to satisfy an inquisitive mind. Thus, readers with a modest background in mathematics and a strong motivation to understand statistical concepts are left somewhere in between. The advanced texts are inaccessible to them, whereas the intermediate texts deliver much less than they hope to learn in a course of mathematical statistics. The present book attempts to bridge the gap between the two categories, so that students without a sophisticated mathematical background can assimilate a fairly broad spectrum of the theorems and results from mathematical statistics. This has been made possible by developing the fundamentals of modern probability theory and the accompanying mathematical ideas at the beginning of this book so as to prepare the reader for an understanding of the material presented in the later chapters.

This book consists of two parts, although it is not formally so divided. Part 1 (Chapters 1-10) deals with probability and distribution theory, whereas Part

2 (Chapters 11-20) is devoted to statistical inference. More precisely, in Part 1 the concepts of a field and σ-field, and also the definition of a random variable as a measurable function, are introduced. This allows us to state and prove fundamental results in their full generality that would otherwise be presented vaguely using statements such as "it may be shown that . . .," "it can be proved that...," etc. This we consider to be one of the distinctive characteristics of this part. Other important features are as follows: a detailed and systematic discussion of the most useful distributions along with figures and various approximations for several of them; the establishment of several moment and probability inequalities; the systematic employment of characteristic func-tions-rather than moment generating functions-with all the well-known advantages of the former over the latter; an extensive chapter on limit theorems, including all common modes of convergence and their relationship; a complete statement and proof of the Central Limit Theorem (in its classical form); statements of the Laws of Large Numbers and several proofs of the Weak Law of Large Numbers, and further useful limit theorems; and also an extensive chapter on transformations of random variables with numerous illustrative examples discussed in detail.

The second part of the book opens with an extensive chapter on sufficiency. The concept of sufficiency is usually treated only in conjunction with estimation and testing hypotheses problems. In our opinion, this does not do justice to such an important concept as that of sufficiency. Next, the point estimation problem is taken up and is discussed in great detail and as large a generality as is allowed by the level of this book. Special attention is given to estimators derived by the principles of unbiasedness, uniform minimum variance and the maximum likelihood and minimax principles. An abundance of examples is also found in this chapter. The following chapter is devoted to testing hypotheses problems. Here, along with the examples (most of them numerical) and the illustrative figures, the reader finds a discussion of families of probability density functions which have the monotone likelihood ratio property and, in particular, a discussion of exponential families. These latter topics are available only in more advanced texts. Other features are a complete formulation and treatment of the general Linear Hypothesis and the discussion of the Analysis of Variance as an application of it. In many textbooks of about the same level of sophistication as the present book, the above two topics are approached either separately or in the reverse order from the one used here, which is pedagogically unsound, although historically logical. Finally, there are special chapters on sequential procedures, confidence regions-tolerance intervals, the Multivariate Normal distribution, quadratic forms, and nonparametric inference.

A few of the proofs of theorems and some exercises have been drawn from recent publications in journals.

For the convenience of the reader, the book also includes an appendix summarizing all necessary results from vector and matrix algebra.

There are more than 120 examples and applications discussed in detail in
the text. Also, there are more than 530 exercises, appearing at the end of the chapters, which are of both theoretical and practical importance.

The careful selection of the material, the inclusion of a large variety of topics, the abundance of examples, and the existence of a host of exercises of both theoretical and applied nature will, we hope, satisfy people of both theoretical and applied inclinations. All the application-oriented reader has to do is to skip some fine points of some of the proofs (or some of the proofs altogether!) when studying the book. On the other hand, the careful handling of these same fine points should offer some satisfaction to the more mathematically inclined readers.

The material of this book has been presented several times to classes of the composition mentioned earlier; that is, classes consisting of relatively mathematically immature, eager, and adventurous sophomores, as well as juniors and seniors, and statistically unsophisticated graduate students. These classes met three hours a week over the academic year, and most of the material was covered in the order in which it is presented with the occasional exception of Chapters 14 and 20, Section 5 of Chapter 5, and Section 3 of Chapter 9. We feel that there is enough material in this book for a threequarter session if the classes meet three or even four hours a week.

At various stages and times during the organization of this book several students and colleagues helped improve it by their comments. In connection with this, special thanks are due to G. K. Bhattacharyya. His meticulous reading of the manuscripts resulted in many comments and suggestions that helped improve the quality of the text. Also thanks go to B. Lind, K. G. Mehrotra, A. Agresti, and a host of others, too many to be mentioned here. Of course, the responsibility in this book lies with this author alone for all omissions and errors which may still be found.

As the teaching of statistics becomes more widespread and its level of sophistication and mathematical rigor (even among those with limited mathematical training but yet wishing to know "why" and "how") more demanding, we hope that this book will fill a gap and satisfy an existing need.

G. G. R.
Madison, Wisconsin
November 1972

Chapter 1

Basic Concepts of Set Theory

1.1 Some Definitions and Notation

A set S is a (well defined) collection of distinct objects which we denote by s. The fact that s is a member of S, an element of S, or that it belongs to S is expressed by writing $s \in S$. The negation of the statement is expressed by writing $s \notin S$. We say that S^{\prime} is a subset of S, or that S^{\prime} is contained in S, and write $S^{\prime} \subseteq S$, if for every $s \in S^{\prime}$, we have $s \in S$. S^{\prime} is said to be a proper subset of S, and we write $S^{\prime} \subset S$, if $S^{\prime} \subseteq S$ and there exists $s \in S$ such that $s \notin S^{\prime}$. Sets are denoted by capital letters, while lower case letters are used for elements of sets.

Figure $1.1 S^{\prime} \subseteq S$; in fact, $S^{\prime} \subset S$, since $S_{2} \in S$, but $s_{2} \notin S^{\prime}$.

These concepts can be illustrated pictorially by a drawing called a Venn diagram (Fig. 1.1). From now on a basic, or universal set, or space (which may be different from situation to situation), to be denoted by S, will be considered and all other sets in question will be subsets of S.

1.1.1 Set Operations

1. The complement (with respect to S) of the set A, denoted by A^{c}, is defined by $A^{c}=\{s \in S ; s \notin A\}$. (See Fig. 1.2.)

Figure $1.2 A^{c}$ is the shaded region.
2. The union of the sets $A_{j}, j=1,2, \ldots, n$, to be denoted by

$$
A_{1} \cup A_{2} \cup \cdots \cup A_{n} \quad \text { or } \quad \bigcup_{j=1}^{n} A_{j},
$$

is defined by

$$
\bigcup_{j=1}^{n} A_{j}=\left\{s \in S ; s \in A_{j} \text { for at least one } j=1,2, \ldots, n\right\} .
$$

For $n=2$, this is pictorially illustrated in Fig. 1.3. The definition extends to an infinite number of sets. Thus for denumerably many sets, one has

$$
\bigcup_{j=1}^{\infty} A_{j}=\left\{s \in S ; s \in A_{j} \text { for at least one } j=1,2, \ldots\right\} .
$$

Figure $1.3 A_{1} \cup A_{2}$ is the shaded region.
3. The intersection of the sets $A_{i}, j=1,2, \ldots, n$, to be denoted by

$$
A_{1} \cap A_{2} \cap \cdots \cap A_{n} \quad \text { or } \quad \bigcap_{j=1}^{n} A_{j},
$$

is defined by

$$
\bigcap_{j=1}^{n} A_{j}=\left\{s \in S ; s \in A_{j} \text { for all } j=1,2, \ldots, n\right\} .
$$

For $n=2$, this is pictorially illustrated in Fig. 1.4. This definition extends to an infinite number of sets. Thus for denumerably many sets, one has

$$
\bigcap_{j=1}^{\infty} A_{j}=\left\{s \in S ; s \in A_{j} \text { for all } j=1,2, \ldots\right\} .
$$

Figure $1.4 A_{1} \cap A_{2}$ is the shaded region.
4. The difference $A_{1}-A_{2}$ is defined by

$$
A_{1}-A_{2}=\left\{s \in S ; s \in A_{1}, s \notin A_{2}\right\} .
$$

Symmetrically,

$$
A_{2}-A_{1}=\left\{s \in S ; s \in A_{2}, s \notin A_{1}\right\} .
$$

Note that $A_{1}-A_{2}=A_{1} \cap A_{2}^{c}, A_{2}-A_{1}=A_{2} \cap A_{1}^{c}$, and that, in general, $A_{1}-A_{2}$ $\neq A_{2}-A_{1}$. (See Fig. 1.5.)

Figure $1.5 A_{1}-A_{2}$ is ////. $A_{2}-A_{1}$ is \III.
5. The symmetric difference $A_{1} \Delta A_{2}$ is defined by

$$
A_{1} \Delta A_{2}=\left(A_{1}-A_{2}\right) \cup\left(A_{2}-A_{1}\right) .
$$

Note that

$$
A_{1} \Delta A_{2}=\left(A_{1} \cup A_{2}\right)-\left(A_{1} \cap A_{2}\right) .
$$

Pictorially, this is shown in Fig. 1.6. It is worthwhile to observe that operations (4) and (5) can be expressed in terms of operations (1), (2), and (3).

Figure 1.6 $A_{1} \Delta A_{2}$ is the shaded area.

1.1.2 Further Definitions and Notation

A set which contains no elements is called the empty set and is denoted by \varnothing. Two sets A_{1}, A_{2} are said to be disjoint if $A_{1} \cap A_{2}=\varnothing$. Two sets A_{1}, A_{2} are said to be equal, and we write $A_{1}=A_{2}$, if both $A_{1} \subseteq A_{2}$ and $A_{2} \subseteq A_{1}$. The sets A_{j}, $j=1,2, \ldots$ are said to be pairwise or mutually disjoint if $A_{i} \cap A_{j}=\varnothing$ for all $i \neq j$ (Fig. 1.7). In such a case, it is customary to write

$$
A_{1}+A_{2}, A_{1}+\cdots+A_{n}=\sum_{j=1}^{n} A_{j} \quad \text { and } \quad A_{1}+A_{2}+\cdots=\sum_{j=1}^{\infty} A_{j}
$$

instead of $A_{1} \cup A_{2}, \bigcup_{j=1}^{n} A_{j}$, and $\bigcup_{j=1}^{\infty} A_{j}$, respectively. We will write $\bigcup_{j} A_{j}, \sum_{j} A_{j}, \bigcap_{j} A_{j}$, where we do not wish to specify the range of j, which
will usually be either the (finite) set $\{1,2, \ldots, n\}$, or the (infinite) set $\{1,2, \ldots\}$.

Figure $1.7 A_{1}$ and A_{2} are disjoint; that is, $A_{1} \cap A_{2}=\varnothing$. Also $A_{1} \cup A_{2}=A_{1}+A_{2}$ for the same reason.

1.1.3 Properties of the Operations on Sets

1. $S^{c}=\varnothing, \varnothing^{c}=S,\left(A^{c}\right)^{c}=A$.
2. $S \cup A=S, \varnothing \cup A=A, A \cup A^{c}=S, A \cup A=A$.
3. $S \cap A=A, \varnothing \cap A=\varnothing, A \cap A^{c}=\varnothing, A \cap A=A$.

The previous statements are all obvious as is the following: $\varnothing \subseteq A$ for every subset A of S. Also
4. $\left.\begin{array}{rl}A_{1} \cup\left(A_{2} \cup A_{3}\right)=\left(A_{1} \cup A_{2}\right) \cup A_{3} \\ A_{1} \cap\left(A_{2} \cap A_{3}\right) & =\left(A_{1} \cap A_{2}\right) \cap A_{3}\end{array}\right\}$
(Associative laws)
5. $\left.\begin{array}{rl}A_{1} \cup A_{2}=A_{2} \cup A_{1} \\ A_{1} \cap A_{2}=A_{2} \cap A_{1}\end{array}\right\}$
(Commutative laws)
6. $A \cap\left(\cup_{j} A_{j}\right)=\cup_{j}\left(A \cap A_{j}\right)$ $\left.A \cup\left(\cap_{j} A_{j}\right)=\cap_{j}\left(A \cup A_{j}\right)\right\}$
(Distributive laws)
are easily seen to be true.
The following identity is a useful tool in writing a union of sets as a sum of disjoint sets.

An identity:

$$
\bigcup_{j} A_{j}=A_{1}+A_{1}^{c} \cap A_{2}+A_{1}^{c} \cap A_{2}^{c} \cap A_{3}+\cdots .
$$

There are two more important properties of the operation on sets which relate complementation to union and intersection. They are known as De Morgan's laws:

$$
\begin{aligned}
& \text { i) }\left(\bigcup_{j} A_{j}\right)^{c}=\bigcap_{j} A_{j}^{c}, \\
& \text { ii) }\left(\bigcap_{j} A_{j}\right)^{c}=\bigcup_{j} A_{j}^{c} .
\end{aligned}
$$

As an example of a set theoretic proof, we prove (i).
PROOF OF (i) We wish to establish
a) $\left(\bigcup_{j} A_{j}\right)^{c} \subseteq \bigcap_{j} A_{j}^{c}$
and
b) $\bigcap_{j} A_{j}^{c} \subseteq\left(\bigcup_{j} A_{j}\right)^{c}$.

We will then, by definition, have verified the desired equality of the two sets.
a) Let $s \in\left(\bigcup_{j} A_{j}\right)^{c}$. Then $s \notin \bigcup_{j} A_{i}$, hence $s \notin A_{j}$ for any j. Thus $s \in A_{j}^{c}$ for every j and therefore $s \in \bigcap_{j} A_{j}^{c}$.
b) Let $s \in \bigcap_{j} A_{j}^{c}$. Then $s \in A_{j}^{c}$ for every j and hence $s \notin A_{j}$ for any j. Then $s \notin \bigcup_{j} A_{j}$ and therefore $s \in\left(\cup_{j} A_{j}\right)^{c}$.
The proof of (ii) is quite similar.
This section is concluded with the following:
DEFINITION 1 The sequence $\left\{A_{n}\right\}, n=1,2, \ldots$, is said to be a monotone sequence of sets if:
i) $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \cdots$ (that is, A_{n} is increasing, to be denoted by $A_{n} \uparrow$), or
ii) $A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \cdots$ (that is, A_{n} is decreasing, to be denoted by $A_{n} \downarrow$).

The limit of a monotone sequence is defined as follows:
i) If $A_{n} \uparrow$, then $\lim _{n \rightarrow \infty} A_{n}=\bigcup_{n=1}^{\infty} A_{n}$, and
ii) If $A_{n} \downarrow$, then $\lim _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} A_{n}$.

More generally, for any sequence $\left\{A_{n}\right\}, n=1,2, \ldots$, we define

$$
\underline{A}=\liminf _{n \rightarrow \infty} A_{n}=\bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} A_{j},
$$

and

$$
\bar{A}=\limsup _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} A_{j} .
$$

The sets \underline{A} and \bar{A} are called the inferior limit and superior limit, respectively, of the sequence $\left\{A_{n}\right\}$. The sequence $\left\{A_{n}\right\}$ has a limit if $\underline{A}=\bar{A}$.

Exercises

1.1.1 Let $A_{j}, j=1,2,3$ be arbitrary subsets of S. Determine whether each of the following statements is correct or incorrect.
i) $\left(A_{1}-A_{2}\right) \cup A_{2}=A_{2}$;
ii) $\left(A_{1} \cup A_{2}\right)-A_{1}=A_{2}$;
iii) $\left(A_{1} \cap A_{2}\right) \cap\left(A_{1}-A_{2}\right)=\varnothing$;
iv) $\left(A_{1} \cup A_{2}\right) \cap\left(A_{2} \cup A_{3}\right) \cap\left(A_{3} \cup A_{1}\right)=\left(A_{1} \cap A_{2}\right) \cup\left(A_{2} \cap A_{3}\right) \cup\left(A_{3} \cap A_{1}\right)$.
1.1.2 Let $S=\left\{(x, y)^{\prime} \in \mathbb{R}^{2} ;-5 \leq x \leq 5,0 \leq y \leq 5, x, y=\right.$ integers $\}$, where prime denotes transpose, and define the subsets $A_{j}, j=1, \ldots, 7$ of S as follows:

$$
\begin{array}{ll}
A_{1}=\left\{(x, y)^{\prime} \in S ; x=y\right\} ; & A_{2}=\left\{(x, y)^{\prime} \in S ; x=-y\right\} ; \\
A_{3}=\left\{(x, y)^{\prime} \in S ; x^{2}=y^{2}\right\} ; & A_{4}=\left\{(x, y)^{\prime} \in S ; x^{2} \leq y^{2}\right\} ; \\
A_{5}=\left\{(x, y)^{\prime} \in S ; x^{2}+y^{2} \leq 4\right\} ; & A_{6}=\left\{(x, y)^{\prime} \in S ; x \leq y^{2}\right\} ; \\
A_{7}=\left\{(x, y)^{\prime} \in S ; x^{2} \geq y\right\} .
\end{array}
$$

List the members of the sets just defined.
1.1.3 Refer to Exercise 1.1.2 and show that:
i) $A_{1} \cap\left(\bigcup_{j=2}^{7} A_{j}\right)=\bigcup_{j=2}^{7}\left(A_{1} \cap A_{j}\right)$;
ii) $A_{1} \cup\left(\bigcap_{j=2}^{7} A_{j}\right)=\bigcap_{j=2}^{7}\left(A_{1} \cup A_{j}\right)$;
iii) $\left(\bigcup_{j=1}^{7} A_{j}\right)^{c}=\bigcap_{j=1}^{7} A_{j}^{c}$;
iv) $\left(\bigcap_{j=1}^{7} A_{j}\right)^{c}=\bigcup_{j=1}^{7} A_{j}^{c}$
by listing the members of each one of the eight sets appearing on either side of each one of the relations (i)-(iv).
1.1.4 Let A, B and C be subsets of S and suppose that $A \subseteq B$ and $B \subseteq C$. Then show that $A \subseteq C$; that is, the subset relationship is transitive. Verify it by taking $A=A_{1}, B=A_{3}$ and $C=A_{4}$, where A_{1}, A_{3} and A_{4} are defined in Exercise 1.1.2.
1.1.5 Establish the distributive laws stated on page 4.
1.1.6 In terms of the acts A_{1}, A_{2}, A_{3}, and perhaps their complements, express each one of the following acts:
i) $B_{i}=\left\{s \in S\right.$; s belongs to exactly i of A_{1}, A_{2}, A_{3}, where $\left.i=0,1,2,3\right\}$;
ii) $C=\left\{s \in S\right.$; s belongs to all of $\left.A_{1}, A_{2}, A_{3}\right\}$;
iii) $D=\left\{s \in S\right.$; s belongs to none of $\left.A_{1}, A_{2}, A_{3}\right\}$;
iv) $E=\left\{s \in S\right.$; s belongs to at most 2 of $\left.A_{1}, A_{2}, A_{3}\right\}$;
v) $F=\left\{s \in S\right.$; s belongs to at least 1 of $\left.A_{1}, A_{2}, A_{3}\right\}$.
1.1.7 Establish the identity stated on page 4.
1.1.8 Give a detailed proof of the second identity in De Morgan's laws; that is, show that

$$
\left(\bigcap_{j} A_{j}\right)^{c}=\bigcup_{j} A_{j}^{c}
$$

1.1.9 Refer to Definition 1 and show that
i) $\underline{A}=\{s \in S$; s belongs to all but finitely many A 's $\}$;
ii) $\bar{A}=\{s \in S$; s belongs to infinitely many A 's $\}$;
iii) $\underline{A} \subseteq \bar{A}$;
iv) If $\left\{A_{n}\right\}$ is a monotone sequence, then $\underline{A}=\bar{A}=\lim _{n \rightarrow \infty} A_{n}$.
1.1.10 Let $S=\mathbb{R}^{2}$ and define the subsets $A_{n}, B_{n}, n=1,2, \ldots$ of S as follows:

$$
\begin{aligned}
& A_{n}=\left\{(x, y)^{\prime} \in \mathbb{R}^{2} ; 3+\frac{1}{n} \leq x<6-\frac{2}{n}, 0 \leq y \leq 2-\frac{1}{n^{2}}\right\}, \\
& B_{n}=\left\{(x, y)^{\prime} \in \mathbb{R}^{2} ; x^{2}+y^{2} \leq \frac{1}{n^{3}}\right\} .
\end{aligned}
$$

Then show that $A_{n} \uparrow A, B_{n} \downarrow B$ and identify A and B.
1.1.11 Let $S=\mathbb{R}$ and define the subsets $A_{n}, B_{n}, n=1,2, \ldots$ of S as follows:

$$
A_{n}=\left\{x \in \mathbb{R} ;-5+\frac{1}{n}<x<20-\frac{1}{n}\right\}, \quad B_{n}=\left\{x \in \mathbb{R} ; 0<x<7+\frac{3}{n}\right\} .
$$

Then show that $A_{n} \uparrow$ and $B_{n} \downarrow$, so that $\lim _{n \rightarrow \infty} A_{n}=A$ and $\lim _{n \rightarrow \infty} B_{n}=B$ exist (by Exercise 1.1.9(iv)). Also identify the sets A and B.
1.1.12 Let A and B be subsets of S and for $n=1,2, \ldots$, define the sets A_{n} as follows: $A_{2 n-1}=A, A_{2 n}=B$. Then show that

$$
\liminf _{n \rightarrow \infty} A_{n}=A \cap B, \quad \limsup _{n \rightarrow \infty} A_{n}=A \cup B .
$$

1.2* Fields and σ-Fields

In this section, we introduce the concepts of a field and of a σ-field, present a number of examples, and derive some basic results.
DEFINITION 2 A class (set) of subsets of S is said to be a field, and is denoted by \mathcal{F}, if
$(\mathcal{F} 1) \mathcal{F}$ is a non-empty class.
(F2) $A \in \mathcal{F}$ implies that $A^{c} \in \mathcal{F}$ (that is, \mathcal{F} is closed under complementation).
$(\mathcal{F} 3) A_{1}, A_{2} \in \mathcal{F}$ implies that $A_{1} \cup A_{2} \in \mathcal{F}$ (that is, \mathcal{F} is closed under pairwise unions).

1.2.1 Consequences of the Definition of a Field

1. $S, \varnothing \in \mathcal{F}$.
2. If $A_{j} \in \mathcal{F}, j=1,2, \ldots, n$, then $\bigcup_{j=1}^{n} A_{j} \in \mathcal{F}, \bigcap_{j=1}^{n} A_{j} \in \mathcal{F}$ for any finite n.
(That is, \mathcal{F} is closed under finite unions and intersections. Notice, however, that $A_{j} \in \mathcal{F}, j=1,2, \ldots$ need not imply that their union or intersection is in \mathcal{F}; for a counterexample, see consequence 2 on page 10.)
PROOF OF (1) AND (2) (1) $(\mathcal{F} 1)$ implies that there exists $A \in \mathcal{F}$ and (F2) implies that $A^{c} \in \mathcal{F}$. By ($\left.\mathcal{F} 3\right), A \cup A^{c}=S \in \mathcal{F}$. By $(\mathcal{F} 2), S^{c}=\varnothing \in \mathcal{F}$.
(2) The proof will be by induction on n and by one of the De Morgan's laws. By $(\mathcal{F} 3)$, if $A_{1}, A_{2} \in \mathcal{F}$, then $A_{1} \cup A_{2} \in \mathcal{F}$; hence the statement for unions is true for $n=2$. (It is trivially true for $n=1$.) Now assume the statement for unions is true for $n=k-1$; that is, if

$$
A_{1}, A_{2}, \ldots, A_{k-1} \in \mathcal{F}, \quad \text { then } \bigcup_{j=1}^{k-1} A_{j} \in \mathcal{F}
$$

Consider $A_{1}, A_{2}, \ldots, A_{k} \in \mathcal{F}$. By the associative law for unions of sets,

$$
\bigcup_{j=1}^{k} A_{j}=\left(\bigcup_{j=1}^{k-1} A_{j}\right) \cup A_{k} .
$$

By the induction hypothesis, $\bigcup_{j=1}^{k-1} A_{j} \in \mathcal{F}$. Since $A_{k} \in \mathcal{F},(\mathcal{F} 3)$ implies that

$$
\left(\bigcup_{j=1}^{k-1} A_{j}\right) \cup A_{k}=\bigcup_{j=1}^{k} A_{j} \in \mathcal{F}
$$

and by induction, the statement for unions is true for any finite n. By observing that

$$
\bigcap_{j=1}^{n} A_{j}=\left(\bigcup_{j=1}^{n} A_{j}^{c}\right)^{c}
$$

[^1]we see that ($\mathcal{F} 2$) and the above statement for unions imply that if A_{1}, \ldots, A_{n} $\in \mathcal{F}$, then $\bigcap_{j=1}^{n} A_{j} \in \mathcal{F}$ for any finite n.

1.2.2 Examples of Fields

1. $C_{1}=\{\varnothing, S\}$ is a field (trivial field).
2. $C_{2}=\{$ all subsets of $S\}$ is a field (discrete field).
3. $C_{3}=\left\{\varnothing, S, A, A^{c}\right\}$, for some $\varnothing \subset A \subset S$, is a field.
4. Let S be infinite (countably so or not) and let C_{4} be the class of subsets of S which are finite, or whose complements are finite; that is, $C_{4}=\{A \subset S ; A$ or A^{c} is finite\}.
As an example, we shall verify that C_{4} is a field.

PROOF THAT C C_{4} IS A FIELD

i) Since $S^{c}=\varnothing$ is finite, $S \in C_{4}$, so that C_{4} is non-empty.
ii) Suppose that $A \in C_{4}$. Then A or A^{c} is finite. If A is finite, then $\left(A^{c}\right)^{c}=A$ is finite and hence $A^{c} \in C_{4}$ also. If A^{c} is finite, then $A^{c} \in C_{4}$.
iii) Suppose that $A_{1}, A_{2} \in C_{4}$. Then A_{1} or A_{1}^{c} is finite and A_{2} or A_{2}^{c} is finite.
a) Suppose that A_{1}, A_{2} are both finite. Then $A_{1} \cup A_{2}$ is finite, so that A_{1} $\cup A_{2} \in C_{4}$.
b) Suppose that A_{1}^{c}, A_{2} are finite. Then $\left(A_{1} \cup A_{2}\right)^{c}=A_{1}^{c} \cap A_{2}^{c}$ is finite since A_{1}^{c} is. Hence $A_{1} \cup A_{2} \in C_{4}$.
The other two possibilities follow just as in (b). Hence $(\mathcal{F} 1),(\mathcal{F} 2),(\mathcal{F} 3)$ are satisfied.

We now formulate and prove the following theorems about fields.
THEOREM 1 Let I be any non-empty index set (finite, or countably infinite, or uncountable), and let $\mathcal{F}_{j}, j \in I$ be fields of subsets of S. Define \mathcal{F} by $\mathcal{F}=\bigcap_{j \in I} \mathcal{F}_{j}=$ $\left\{A ; A \in \mathcal{F}_{j}\right.$ for all $\left.j \in I\right\}$. Then \mathcal{F} is a field.

PROOF

i) $S, \varnothing \in \mathcal{F}_{j}$ for every $j \in I$, so that $S, \varnothing \in \mathcal{F}$ and hence \mathcal{F} is non-empty.
ii) If $A \in \mathcal{F}$, then $A \in \mathcal{F}_{j}$ for every $j \in I$. Thus $A^{c} \in \mathcal{F}_{j}$ for every $j \in I$, so that $A^{c} \in \mathcal{F}$.
iii) If $A_{1}, A_{2} \in \mathcal{F}$, then $A_{1}, A_{2} \in \mathcal{F}_{j}$ for every $j \in I$. Then $A_{1} \cup A_{2} \in \mathcal{F}_{j}$ for every $j \in I$, and hence $A_{1} \cup A_{2} \in \mathcal{F}$.
THEOREM 2 Let C be an arbitrary class of subsets of S. Then there is a unique minimal field \mathcal{F} containing C. (We say that \mathcal{F} is generated by C and write $\mathcal{F}=\mathcal{F}(C)$.)

PROOF Clearly, C is contained in the discrete field. Next, let $\left\{\mathcal{F}_{j}, j \in I\right\}$ be the class of all fields containing C and define $\mathcal{F}(C)$ by

$$
\mathcal{F}(C)=\bigcap_{j \in I} \mathcal{F}_{j}
$$

[^0]: Printed in the United States of America
 9697989900 EB 987654321

[^1]: * The reader is reminded that sections marked by an asterisk may be omitted without jeopardizing the understanding of the remaining material.

