

Praise for Engineering a Compiler

“Keith Cooper and Linda Torczon are leading compilers researchers who have
also built several state-of-the-art compilers. This book adeptly spans both
worlds, by explaining both time-tested techniques and new algorithms and
by providing practical advice on engineering and constructing a compiler.
Engineering a Compiler is a rich survey and exposition of the important tech-
niques necessary to build a modern compiler.”

—Jim Larus, Microsoft Research

“A wonderful introduction to the theory, practice, and lore of modern compil-
ers. Cooper and Torczon convey the simple joys of this subject that follow
from the elegant interplay between compilation and the rest of computer sci-
ence. If you’re looking for an end-to-end tour of compiler construction anno-
tated with a broad range of practical experiences, this is the book.”

—Michael D. Smith, Harvard University

“I am delighted to see this comprehensive new book on modern compiler
design. The authors have covered the classical material, as well as the important
techniques developed in the last 15 years, including compilation of object-
oriented languages, static single assignment, region-based register alloca-
tion, and code scheduling. Their approach nicely balances the formal struc-
ture that modern compilers build on with the pragmatic insights that are
necessary for good engineering of a compiler.”

—John Hennessy, Stanford University

“Cooper and Torczon have done a superb job of integrating the principles of
compiler construction with the pragmatic aspects of compiler implementation.
This, along with the excellent coverage of recent advances in the field, make
their book ideal for teaching a modern undergraduate course on compilers.”

—Ken Kennedy, Rice University

FM01-i-viii.qxd 15-Sep-2003 18:28 PM Page i

FM01-i-viii.qxd 15-Sep-2003 18:28 PM Page ii

Engineering a Compiler

FM01-i-viii.qxd 15-Sep-2003 18:28 PM Page iii

About the Authors

Dr. Cooper, Professor, Dept. of Computer Science at Rice University, is the
leader of the Massively Scalar Compiler Project at Rice, which investigates
issues relating to optimization and code generation for modern machines. He
is also a member of the Center for High Performance Software Research, the
Computer and Information Technology Institute, and the Center for Multi-
media Communication—all at Rice. He teaches courses in compiler construc-
tion at the undergraduate and graduate level.

Dr. Torczon, Research Scientist, Dept. of Computer Science at Rice University,
is a principal investigator on the Massively Scalar Compiler Project at Rice
and on the Grid Application Development Software Project sponsored by the
Next Generation Software program of the National Science Foundation. She
also serves as the executive director of the Center for High Performance Soft-
ware Research and of the Los Alamos Computer Science Institute.

FM01-i-viii.qxd 15-Sep-2003 18:28 PM Page iv

Engineering a Compiler

Keith D. Cooper and Linda Torczon
Rice University

FM01-i-viii.qxd 15-Sep-2003 18:28 PM Page v

Senior Editor: Denise E. M. Penrose
Publishing Services Manager: Simon Crump
Project Management: Overton Editorial and Production
Editorial Coordinator: Emilia Thiuri
Cover Design: Ross Carron Design
Cover Image: John Outram
Text Design: Rebecca Evans and Associates
Composition: Integra Software Services Pvt Ltd
Technical Illustration: Dartmouth Publishing, Inc.
Copyeditor: John Hammett
Proofreader: Carol Leyba and Associates
Indexer: Steve Rath
Printer: The Maple-Vail Book Manufacturing Group

Cover Image: “The Landing of the Ark,” a vaulted ceiling-design whose iconography
was narrated, designed, and drawn by John Outram of John Outram Associates, Arch-
itects and City Planners, London, England. To read more visit
www.johnoutram.com/rice.html

Morgan Kaufmann Publishers
An Imprint of Elsevier Science
500 Sansome Street, Suite 400
San Francisco, CA 94111
www.mkp.com

Copyright © 2004 by Elsevier Science (USA)
All rights reserved.
Printed in the United States of America

2008 2007 2006 2005 2004 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted in any form or by any means—electronic, mechanical, photocopying, scanning
or otherwise—without the prior written permission of the publisher.

Library of Congress Cataloging-in-Publication Data Application submitted

ISBN: 1–55860–698-X (hardback)–ISBN 1–55860–699–8 (paperback)

This book is printed on acid-free paper.

FM01-i-viii.qxd 15-Sep-2003 18:28 PM Page vi

We dedicate this volume to

■ our parents, who instilled in us the thirst for knowledge and supported
us as we developed the skills to follow our quest for knowledge;

■ our children, who have shown us again how wonderful the process of
learning and growing can be; and

■ our spouses, without whom this book would never have been written.

FM01-i-viii.qxd 15-Sep-2003 18:28 PM Page vii

About the Cover

The cover of this book features a portion of the drawing, “The Landing of the
Ark,” which decorates the ceiling of Duncan Hall at Rice University (see the
picture below). Both Duncan Hall and its ceiling were designed by British archi-
tect John Outram. Duncan Hall is an outward expression of architectural, dec-
orative, and philosophical themes developed over Outram’s career as an archi-
tect. The decorated ceiling of the ceremonial hall plays a central role in the
building’s decorative scheme. Outram inscribed the ceiling with a set of signif-
icant ideas—a creation myth. By expressing those ideas in an allegorical draw-
ing of vast size and intense color, Outram created a signpost that tells visitors
who wander into the hall that, indeed, this building is not like other buildings.

By using the same signpost on the cover of Engineering a Compiler, the
authors intend to signal that this work contains significant ideas that are at
the core of their discipline. Like Outram’s building, this volume is the culmi-
nation of intellectual themes developed over the authors’ professional careers.
Like Outram’s decorative scheme, this book is a device for communicating
ideas. Like Outram’s ceiling, it presents significant ideas in new ways.

By connecting the design and construction of compilers with the design
and construction of buildings, we intend to convey the many similarities in
these two distinct activities. Our many long discussions with Outram intro-
duced us to the Vitruvian ideals for architecture: commodity, firmness, and
delight. These ideals apply to many kinds of construction. Their analogs for
compiler construction are consistent themes of this text: function, structure,

and elegance. Function matters; a compiler that generates incorrect
code is useless. Structure matters; engineering detail determines
a compiler’s efficiency and robustness. Elegance matters; a well-
designed compiler, in which the algorithms and data structures flow
smoothly from one pass to another, can be a thing of beauty.

We are delighted to have John Outram’s work grace the cover of
this book.

Duncan Hall’s ceiling is an interesting technological artifact.
Outram drew the original design on one sheet of paper. It was pho-
tographed and scanned at 1200 dpi yielding roughly 750 MB of data.
The image was enlarged to form 234 distinct 2 x 8 foot panels, creat-
ing a 52 x 72 foot image. The panels were printed onto oversize
sheets of perforated vinyl using a 12 dpi acrylic-ink printer. These
sheets were precision mounted onto 2 x 8 foot acoustic tiles and
hung on the vault’s aluminum frame.

viii

FM01-i-viii.qxd 15-Sep-2003 18:28 PM Page viii

Contents

About the Authors iv
About the Cover viii
Preface xxi

Chapter 1 Overview of Compilation 1

1.1 Introduction 1
1.2 Why Study Compiler Construction? 3
1.3 The Fundamental Principles of Compilation 4
1.4 Compiler Structure 5
1.5 High-Level View of Translation 8

1.5.1 Understanding the Input 8
1.5.2 Creating and Maintaining the Run-Time Environment 13
1.5.3 Improving the Code 15
1.5.4 Creating the Output Program 16

1.6 Desirable Properties of a Compiler 23
1.7 Summary and Perspective 24

Chapter 2 Scanning 27

2.1 Introduction 27
2.2 Recognizing Words 29

2.2.1 A Formalism for Recognizers 31
2.2.2 Recognizing More-Complex Words 33
2.2.3 Automating Scanner Construction 35

ix

x Contents

2.3 Regular Expressions 36
2.3.1 Formalizing the Notation 37
2.3.2 Examples 39
2.3.3 Properties of REs 42

2.4 From Regular Expression to Scanner and Back 44
2.4.1 Nondeterministic Finite Automata 45
2.4.2 Regular Expression to NFA: Thompson’s Construction 48
2.4.3 NFA to DFA: The Subset Construction 51
2.4.4 DFA to Minimal DFA: Hopcroft’s Algorithm 55
2.4.5 DFA to Regular Expression 59
2.4.6 Using a DFA as a Recognizer 60

2.5 Implementing Scanners 61
2.5.1 Table-Driven Scanners 62
2.5.2 Direct-Coded Scanners 64
2.5.3 Handling Keywords 65
2.5.4 Specifying Actions 65

2.6 Advanced Topics 67
2.7 Summary and Perspective 71

Chapter 3 Parsing 73

3.1 Introduction 73
3.2 Expressing Syntax 74

3.2.1 Context-Free Grammars 75
3.2.2 Constructing Sentences 79
3.2.3 Encoding Meaning into Structure 83
3.2.4 Discovering a Specific Derivation 86
3.2.5 Context-Free Grammars versus Regular Expressions 87

3.3 Top-Down Parsing 89
3.3.1 Example 90
3.3.2 Complications in Top-Down Parsing 94
3.3.3 Eliminating Left Recursion 94
3.3.4 Eliminating the Need to Backtrack 97
3.3.5 Top-Down Recursive-Descent Parsers 101

3.4 Bottom-Up Parsing 107
3.4.1 Shift-Reduce Parsing 108

Contents xi

3.4.2 Finding Handles 112
3.4.3 LR(1) Parsers 115

3.5 Building LR(1) Tables 120
3.5.1 LR(1) Items 121
3.5.2 Constructing the Canonical Collection 122
3.5.3 Filling in the Tables 127
3.5.4 Errors in the Table Construction 129

3.6 Practical Issues 133
3.6.1 Error Recovery 134
3.6.2 Unary Operators 135
3.6.3 Handling Context-Sensitive Ambiguity 136
3.6.4 Left versus Right Recursion 138

3.7 Advanced Topics 140
3.7.1 Optimizing a Grammar 141
3.7.2 Reducing the Size of LR(1) Tables 143

3.8 Summary and Perspective 147

Chapter 4 Context-Sensitive Analysis 151

4.1 Introduction 151
4.2 An Introduction to Type Systems 154

4.2.1 The Purpose of Type Systems 154
4.2.2 Components of a Type System 160

4.3 The Attribute-Grammar Framework 171
4.3.1 Evaluation Methods 175
4.3.2 Circularity 176
4.3.3 Extended Examples 177
4.3.4 Problems with the Attribute-Grammar Approach 185

4.4 Ad Hoc Syntax-Directed Translation 188
4.4.1 Implementing Ad Hoc Syntax-Directed Translation 190
4.4.2 Examples 193

4.5 Advanced Topics 202
4.5.1 Harder Problems in Type Inference 202
4.5.2 Changing Associativity 204

4.6 Summary and Perspective 206

xii Contents

Chapter 5 Intermediate Representations 209

5.1 Introduction 209
5.2 Taxonomy 210
5.3 Graphical IRs 213

5.3.1 Syntax-Related Trees 213
5.3.2 Graphs 218

5.4 Linear IRs 222
5.4.1 Stack-Machine Code 224
5.4.2 Three-Address Code 224
5.4.3 Representing Linear Codes 225

5.5 Static Single-Assignment Form 228
5.6 Mapping Values to Names 231

5.6.1 Naming Temporary Values 233
5.6.2 Memory Models 235

5.7 Symbol Tables 238
5.7.1 Hash Tables 239
5.7.2 Building a Symbol Table 241
5.7.3 Handling Nested Scopes 242
5.7.4 The Many Uses for Symbol Tables 246

5.8 Summary and Perspective 249

Chapter 6 The Procedure Abstraction 251

6.1 Introduction 251
6.2 Control Abstraction 254
6.3 Name Spaces 256

6.3.1 Name Spaces of Algol-like Languages 257
6.3.2 Activation Records 262
6.3.3 Name Spaces of Object-Oriented Languages 268

6.4 Communicating Values between Procedures 275
6.4.1 Passing Parameters 275
6.4.2 Returning Values 279

6.5 Establishing Addressability 280
6.5.1 Trivial Base Addresses 280

Contents xiii

6.5.2 Local Variables of Other Procedures 281

6.6 Standardized Linkages 286
6.7 Managing Memory 290

6.7.1 Memory Layout 290
6.7.2 Algorithms to Manage the Heap 295
6.7.3 Implicit Deallocation 299

6.8 Summary and Perspective 305

Chapter 7 Code Shape 307

7.1 Introduction 307
7.2 Assigning Storage Locations 309

7.2.1 Laying Out Data Areas 310
7.2.2 Keeping a Value in a Register 310
7.2.3 Machine Idiosyncrasies 312

7.3 Arithmetic Operators 313
7.3.1 Reducing Demand for Registers 315
7.3.2 Accessing Parameter Values 318
7.3.3 Function Calls in an Expression 319
7.3.4 Other Arithmetic Operators 319
7.3.5 Mixed-Type Expressions 320
7.3.6 Assignment as an Operator 321
7.3.7 Commutativity, Associativity, and Number Systems 321

7.4 Boolean and Relational Operators 322
7.4.1 Representations 323
7.4.2 Hardware Support for Relational Operations 328
7.4.3 Choosing a Representation 332

7.5 Storing and Accessing Arrays 333
7.5.1 Referencing a Vector Element 333
7.5.2 Array Storage Layout 335
7.5.3 Referencing an Array Element 337
7.5.4 Range Checking 343

7.6 Character Strings 344
7.6.1 String Representations 344
7.6.2 String Assignment 345
7.6.3 String Concatenation 349
7.6.4 String Length 349

xiv Contents

7.7 Structure References 350
7.7.1 Loading and Storing Anonymous Values 351
7.7.2 Understanding Structure Layouts 352
7.7.3 Arrays of Structures 353
7.7.4 Unions and Run-Time Tags 354

7.8 Control-Flow Constructs 355
7.8.1 Conditional Execution 356
7.8.2 Loops and Iteration 359
7.8.3 Case Statements 364
7.8.4 Break Statements 368

7.9 Procedure Calls 368
7.9.1 Evaluating Actual Parameters 369
7.9.2 Procedure-Valued Parameters 370
7.9.3 Saving and Restoring Registers 370
7.9.4 Optimizations for Leaf Procedures 372

7.10 Implementing Object-Oriented Languages 373
7.10.1 Single Class, No Inheritance 373
7.10.2 Single Inheritance 375

7.11 Summary and Perspective 381

Chapter 8 Introduction to Code Optimization 383

8.1 Introduction 383
8.2 Background 386

8.2.1 An Example from LINPACK 387
8.2.2 Considerations for Optimization 388
8.2.3 Opportunities for Optimization 392

8.3 Redundant Expressions 393
8.3.1 Building a Directed Acyclic Graph 394
8.3.2 Value Numbering 398
8.3.3 Lessons from Redundancy Elimination 403

8.4 Scope of Optimization 404
8.4.1 Local Methods 404
8.4.2 Superlocal Methods 405
8.4.3 Regional Methods 405
8.4.4 Global Methods 407
8.4.5 Whole-Program Methods 407

Contents xv

8.5 Value Numbering Over Regions Larger Than Basic Blocks 408
8.5.1 Superlocal Value Numbering 408
8.5.2 Dominator-Based Value Numbering 413

8.6 Global Redundancy Elimination 417
8.6.1 Computing Available Expressions 419
8.6.2 Replacing Redundant Computations 421
8.6.3 Putting It Together 423

8.7 Advanced Topics 424
8.7.1 Cloning to Increase Context 425
8.7.2 Inline Substitution 427

8.8 Summary and Perspective 430

Chapter 9 Data-Flow Analysis 433

9.1 Introduction 433
9.2 Iterative Data-Flow Analysis 435

9.2.1 Live Variables 435
9.2.2 Properties of the Iterative LIVEOUT Solver 444
9.2.3 Limitations on Data-Flow Analysis 447
9.2.4 Other Data-Flow Problems 450

9.3 Static Single-Assignment Form 454
9.3.1 A Simple Method for Building SSA Form 456
9.3.2 Dominance 457
9.3.3 Placing φ-Functions 463
9.3.4 Renaming 466
9.3.5 Reconstructing Executable Code from SSA Form 474

9.4 Advanced Topics 479
9.4.1 Structural Data-Flow Algorithms and Reducibility 480
9.4.2 Interprocedural Analysis 483

9.5 Summary and Perspective 488

Chapter 10 Scalar Optimizations 491

10.1 Introduction 491
10.2 A Taxonomy for Transformations 494

10.2.1 Machine-Independent Transformations 494

xvi Contents

10.2.2 Machine-Dependent Transformations 496

10.3 Example Optimizations 498
10.3.1 Eliminating Useless and Unreachable Code 498
10.3.2 Code Motion 505
10.3.3 Specialization 515
10.3.4 Enabling Other Transformations 518
10.3.5 Redundancy Elimination 523

10.4 Advanced Topics 523
10.4.1 Combining Optimizations 523
10.4.2 Strength Reduction 527
10.4.3 Other Objectives for Optimization 538
10.4.4 Choosing an Optimization Sequence 540

10.5 Summary and Perspective 542

Chapter 11 Instruction Selection 545

11.1 Introduction 545
11.1.1 Building Retargetable Compilers 548

11.2 A Simple Tree-Walk Scheme 552
11.3 Instruction Selection via Tree-Pattern Matching 558

11.3.1 Rewrite Rules 559
11.3.2 Finding a Tiling 565
11.3.3 Tools 568

11.4 Instruction Selection via Peephole Optimization 569
11.4.1 Peephole Optimization 570
11.4.2 Peephole Transformers 578

11.5 Advanced Topics 580
11.5.1 Learning Peephole Patterns 580
11.5.2 Generating Instruction Sequences 581

11.6 Summary and Perspective 582

Chapter 12 Instruction Scheduling 585

12.1 Introduction 585
12.2 The Instruction-Scheduling Problem 587

Contents xvii

12.2.1 Other Measures of Schedule Quality 593
12.2.2 What Makes Scheduling Hard? 593

12.3 List Scheduling 595
12.3.1 Efficiency Concerns 598
12.3.2 Other Priority Schemes 599
12.3.3 Forward versus Backward List Scheduling 600
12.3.4 Why Use List Scheduling? 603

12.4 Advanced Topics 605
12.4.1 Regional Scheduling 605
12.4.2 Cloning for Context 614

12.5 Summary and Perspective 617

Chapter 13 Register Allocation 619

13.1 Introduction 619
13.2 Background Issues 620

13.2.1 Memory versus Registers 621
13.2.2 Allocation versus Assignment 622
13.2.3 Register Classes 623

13.3 Local Register Allocation and Assignment 624
13.3.1 Top-Down Local Register Allocation 625
13.3.2 Bottom-Up Local Register Allocation 626

13.4 Moving Beyond Single Blocks 629
13.4.1 Liveness and Live Ranges 630
13.4.2 Complications at Block Boundaries 631

13.5 Global Register Allocation and Assignment 633
13.5.1 Discovering Global Live Ranges 635
13.5.2 Estimating Global Spill Costs 637
13.5.3 Interferences and the Interference Graph 639
13.5.4 Top-Down Coloring 642
13.5.5 Bottom-Up Coloring 644
13.5.6 Coalescing Live Ranges to Reduce Degree 646
13.5.7 Review and Comparison 648
13.5.8 Encoding Machine Constraints in the

Interference Graph 649

xviii Contents

13.6 Advanced Topics 651
13.6.1 Variations on Graph-Coloring Allocation 651
13.6.2 Harder Problems in Register Allocation 654

13.7 Summary and Perspective 657

Appendix A ILOC 659

A.1 Introduction 659
A.2 Naming Conventions 662
A.3 Individual Operations 662

A.3.1 Arithmetic 662
A.3.2 Shifts 663
A.3.3 Memory Operations 664
A.3.4 Register-to-Register Copy Operations 665

A.4 An Example 666
A.5 Control-Flow Operations 667

A.5.1 Alternate Comparison and Branch Syntax 668
A.5.2 Jumps 669

A.6 Representing SSA Form 670

Appendix B Data Structures 673

B.1 Introduction 673
B.2 Representing Sets 674

B.2.1 Representing Sets as Ordered Lists 675
B.2.2 Representing Sets as Bit Vectors 677
B.2.3 Representing Sparse Sets 678

B.3 Implementing Intermediate Representations 679
B.3.1 Graphical Intermediate Representations 679
B.3.2 Linear Intermediate Forms 684

B.4 Implementing Hash Tables 686
B.4.1 Choosing a Hash Function 688
B.4.2 Open Hashing 689
B.4.3 Open Addressing 691

Contents xix

B.4.4 Storing Symbol Records 693
B.4.5 Adding Nested Lexical Scopes 694

B.5 A Flexible Symbol-Table Design 698

Bibliograpy 703
Exercises 725
Index 779

Preface

Over the last twenty years, the practice of compiler construction has changed
dramatically. Front ends have become commodity components; they can be
purchased from a reliable vendor or adapted from one of the many public-
domain systems. At the same time, processors have become more perform-
ance sensitive; the actual performance of compiled code depends heavily on
the compiler’s ability to optimize for specific processor and system features.
These changes affect the way that we build compilers; they should also affect
the way that we teach compiler construction.

Compiler development today focuses on optimization and on code gener-
ation. A new hire in a compiler group is far more likely to port a code genera-
tor to a new processor or modify an optimization pass than to work on a scan-
ner or parser. Preparing students to enter this environment is a real challenge.
Successful compiler writers must be familiar with current best-practice tech-
niques in optimization and code generation. They must also have the back-
ground and intuition to understand new techniques as they appear during the
coming years. Our goal in writing Engineering a Compiler (EAC) has been to
create a text and a course that exposes students to the critical issues in modern
compilers and provides them with the background to tackle those problems.

Motivation for Studying Compiler Construction
Compiler construction brings together techniques from disparate parts of
computer science. At its simplest, a compiler is just a large computer pro-
gram. A compiler takes a source-language program and translates it for exe-
cution on some target architecture. As part of this translation, the compiler
must perform syntax analysis to determine if the input program is valid. To
map that input program onto the finite resources of a target computer, the
compiler must manipulate several distinct name spaces, allocate several dif-
ferent kinds of resources, and orchestrate the behavior of multiple run-time
data structures. For the output program to have reasonable performance,

xxi

FM03-xxi-xxx.qxd 15-Sep-2003 18:30 PM Page xxi

it must manage hardware latencies in functional units, predict the flow of
execution and the demand for memory, and reason about the independence
and dependence of different machine-level operations in the program.

Open up a modern optimizing compiler and you will find greedy heuristic
searches that explore large solution spaces, deterministic finite automata that
recognize words in the input, fixed-point algorithms that help reason about
program behavior, simple theorem provers and algebraic simplifiers that try
to predict the values of expressions, pattern-matchers that map abstract com-
putations to machine-level operations, solvers for diophantine equations and
Pressburger arithmetic used to analyze array subscripts, and such classic algo-
rithms and data-structures as hash tables, graph algorithms, and sparse set
implementations.

Balance
Our primary goal in writing Engineering a Compiler (EAC) has been to create a
text for use in an introductory course on the design and implementation of
compilers. EAC lays out many of the problems that face compiler writers and
explores some of the techniques used by compiler writers to solve them. EAC

presents a pragmatic selection of practical techniques that you might use to
build a modern compiler.

In selecting material for EAC, we have deliberately rebalanced the curricu-
lum for a first course in compiler construction to cover the material that a stu-
dent will need in the job market. This shift reduces the coverage of front-end
issues in favor of increased coverage of optimization and code generation. In
these latter areas, EAC focuses on best-practice techniques such as static single-
assignment form, list scheduling, and graph-coloring register allocation.
These topics prepare students for the algorithms that they will encounter in a
modern commercial or research compiler.

The book also includes material for the advanced student or the practicing
professional. Most chapters include an Advanced Topics section that discuss-
es issues and techniques that are beyond a typical undergraduate course. In
addition, Chapters 9 and 10 introduce data-flow analysis and scalar optimiza-
tion in greater depth than a typical undergraduate course will cover. Including
this material in EAC makes it available to the more advanced or curious stu-
dent; professionals may also find these chapters useful as they try to imple-
ment some of the techniques.

xxii Preface

FM03-xxi-xxx.qxd 15-Sep-2003 18:30 PM Page xxii

Approach
Compiler construction is an exercise in engineering design. The compiler
writer must choose a path through a design space that is filled with diverse
alternatives, each with distinct costs, advantages, and complexity. Each deci-
sion has an impact on the resulting compiler. The quality of the end product
depends on informed decisions at each step along the way.

Thus, there is no single right answer for many of the design decisions in a
compiler. Even within “well understood” and “solved” problems, nuances in
design and implementation have an impact on both the behavior of the com-
piler and the quality of the code that it produces. Many considerations play
into each decision. As an example, the choice of an intermediate representa-
tion for the compiler has a profound impact on the rest of the compiler, from
time and space requirements through the ease with which different algo-
rithms can be applied. The decision, however, is often given short shrift.
Chapter 5 examines the space of intermediate representations and some of
the issues that should be considered in selecting one. We raise the issue again
at several points in the book—both directly in the text and indirectly in the
exercises.

EAC tries to explore the design space and convey both the depth of the
problems and the breadth of the possible solutions. It presents some of the
ways that problems have been solved, along with the constraints that made
those solutions attractive. A student needs to understand both the parameters
of the problems and their solutions, as well as the impact of those decisions
on other facets of the compiler’s design. Only then can the compiler writer
make informed and intelligent choices.

Philosophy
This text exposes our philosophy for how compilers should be built, devel-
oped in more than twenty years each of research, teaching, and practice. For
example, intermediate representations should expose those details that mat-
ter in the final code; this belief leads to a bias toward low-level representa-
tions. Values should reside in registers until the allocator discovers that it can-
not keep them there; this practice produces examples that use virtual registers
and store values to memory only when it cannot be avoided. It also increases

Preface xxiii

FM03-xxi-xxx.qxd 15-Sep-2003 18:30 PM Page xxiii

the importance of effective algorithms in the compiler’s back end. Every com-
piler should include optimization; it simplifies the rest of the compiler.

EAC departs from some of the accepted conventions for compiler construc-
tion textbooks. For example, we use several different programming languages
in the examples. It makes little sense to describe call-by-name parameter
passing in c, so we use Algol-60. It makes little sense to describe tail-recursion
in FORTRAN, so we use Scheme. This multilingual approach is realistic; over the
course of the reader’s career, the “language of the future” will change several
times.1 Algorithms in EAC are presented at a reasonably high level of abstrac-
tion. We assume that the reader can fill in the details and that those details
might be tailored to the specific environment in which the code will run.

Organizing the Text
In writing EAC, our overriding goal has been to create a textbook that prepares
a student to work on real compilers. We have taught the material in this text
for a decade or more, experimenting with the selection, depth, and order. The
course materials available on the website show how we adapt and teach the
contents of EAC in the undergraduate course at Rice University.

The desire to teach modern code generation techniques complicates the
problem of ordering the material. Modern code generators rely heavily on ideas
from optimization, such as data-flow analysis and static single-assignment
form. This dependence suggests teaching optimization before covering back-
end algorithms. Covering optimization before any discussion of code genera-
tion means that a student may not see the code generated for a case state-
ment, a loop, or an array reference before trying to improve that code.

Since no linear ordering of the material is perfect, EAC presents the mate-
rial, to the extent possible, in the order that the algorithms execute at compile
time. Thus, optimization follows the front end and precedes the back end,
even though the discussion of code shape is part of the back end material. The
chapter opening graphic serves as a reminder of this order. In practice, an
undergraduate course will take some of the material out of order.

xxiv Preface

1. Over the past thirty years, Algol-68, APL, PL/I, Smalltalk, C, Modula-3, C++, Java, and even ADA

have been hailed as the language of the future.

FM03-xxi-xxx.qxd 15-Sep-2003 18:30 PM Page xxiv

Content

After the introduction (Chapter 1), the text divides into four sections.

Front End. Successive chapters in the first section present scanning, parsing,
and context-sensitive analysis. Chapter 2 introduces recognizers, finite auto-
mata, regular expressions, and the algorithms for automating the construc-
tion of a scanner from a regular expression. Chapter 3 describes parsing, with
context-free grammars, top-down recursive-descent parsers, and bottom-up,
table-driven, LR(1) parsers. Chapter 4 introduces type systems as an example
of a practical problem that is too complex to express in a context-free grammar.
It then shows both formal and ad hoc techniques for solving such context-
sensitive problems.

These chapters show a progression. In scanning, automation has replaced
hand coding. In parsing, automation has dramatically reduced the program-
mer’s effort. In context-sensitive analysis, automation has not replaced ad hoc,
hand-coded methods. However, those ad hoc techniques mimic some of the
intuitions behind one of the formal techniques, the use of attribute grammars.

Infrastructure. The second section brings together material that is often scat-
tered throughout the course. It provides background knowledge needed to
generate intermediate code in the front end, to optimize that code, and to
transform it into code for a target machine.

Chapter 5 describes a variety of intermediate representations that compilers
use, including trees, graphs, linear codes, and symbol tables. Chapter 6 intro-
duces the run-time abstractions that a compiler must implement with the
code that it generates, including procedures, name spaces, linkage conven-
tions, and memory management. Chapter 7 provides a prelude to code gen-
eration, focusing on what kind of code the compiler should generate for vari-
ous language constructs rather than on the algorithms to generate that code.

Optimization. The third section covers issues that arise in building an opti-
mizer, a compiler’s middle section. Chapter 8 provides an overview of the
problems and techniques of optimization by working one problem at several
different scopes. Chapter 9 introduces iterative data-flow analysis and pres-
ents the construction of static single-assignment form. Chapter 10 shows an
effects-based taxonomy for scalar optimization and then populates the tax-
onomy with selected examples.

Preface xxv

FM03-xxi-xxx.qxd 15-Sep-2003 18:30 PM Page xxv

This division reflects the fact that a full treatment of analysis and optimiza-
tion may not fit into a single-semester course, while making the material
available in the book for the more advanced or curious student. In teaching
this material, we cover Chapter 8 and then move on to code generation. During
code generation, we refer back to specific sections in Chapters 9 and 10 as the
need or interest arises. We also use this section of the book, augmented with a
selection of papers, to teach a second course on scalar optimization.

Code Generation. The final section looks at the three primary problems in
code generation. Chapter 11 covers instruction selection; it begins with tree-
pattern matching and then delves into peephole-style matchers. Chapter 12
examines instruction scheduling; it focuses on list scheduling and its variants.
Chapter 13 presents register allocation; it gives an in-depth treatment of algo-
rithms for both local and global allocation. The algorithms that EAC presents
are techniques that a student might find used inside a modern compiler.

For some students, these chapters are the first time that they must approx-
imate the solution to an NP-complete problem rather than prove it equivalent
to three-satisfiability. The chapters emphasize best-practice approximation
algorithms. The exercises give students the opportunity to work tractable
examples.

Crosscutting Ideas. Compiler construction is a complex, multifaceted disci-
pline. Due to the sequential flow of information in a compiler, solutions cho-
sen for one problem determine the input that later phases see and the oppor-
tunities that those phases have to improve the code. Small changes made in
the front end can hide opportunities for optimization; the results of optimiza-
tion have a direct impact on the code generator (changing, for example, the
demand for registers). The complex, interrelated nature of design decisions in
a compiler are one reason that this material is often used in a capstone course
for undergraduates.

These complex relationships also arise in a compiler construction course.
Solution techniques appear again and again in the course. Fixed-point algo-
rithms play a critical role in the construction of scanners and parsers. They are
a primary tool for the analyses that support optimization and code genera-
tion. Finite automata arise in scanning. They play a key role in the LR(1) table
construction and, again, in pattern matchers for instruction selection. By
identifying and emphasizing these common techniques, EAC makes them
familiar. Thus, when a student encounters the iterative data-flow algorithm in

xxvi Preface

FM03-xxi-xxx.qxd 15-Sep-2003 18:30 PM Page xxvi

Chapter 8, it is just another fixed-point algorithm and, thus, familiar. Similarly,
the discussion on the scope of optimization in Chapter 8 is reinforced by the
transition from local algorithms to regional or global algorithms in Chapters
12 and 13.

Organizing the Course
A class in compiler construction offers both student and teacher the opportu-
nity to explore all these issues in the context of a concrete application—one
whose basic functions are well understood by any student with the back-
ground for a compiler construction course. In some curricula, the course
serves as a capstone course for seniors, tying together concepts from many
other courses in a practice-oriented project course. Students in such a class
might write a complete compiler for a simple language or add support for a
new language feature to an existing compiler such as GCC or the ORC compiler
for the IA-64. This class might present the material in a linear order that close-
ly follows the text’s organization.

If other courses in the curriculum give students the experience of large
projects, the teacher can focus the compiler construction course more nar-
rowly on algorithms and their implementation. In such a class, the labs can
focus on abstracted instances of truly hard problems, such as register allo-
cation and scheduling. This class might skip around in the text, adjusting
the order of presentation to meet the needs of the labs. For example, any stu-
dent who has done assembly-language programming can write a register allo-
cator for straightline code. We have often used a simple register allocator as
the first lab.

In either scenario, the course should draw material from other classes.
Obvious connections exist to computer organization and assembly-language
programming, operating systems, computer architecture, algorithms, and
formal languages. Although the connections from compiler construction to
other courses may be less obvious, they are no less important. Character
copying, as discussed in Chapter 7, plays a critical role in the performance of
applications that include network protocols, file servers, and web servers. The
techniques developed in Chapter 2 for scanning have applications that range
from text editing through URL-filtering. The bottom-up local register allocator
in Chapter 13 is recognizable as a cousin of the optimal offline page replace-
ment algorithm.

Preface xxvii

FM03-xxi-xxx.qxd 15-Sep-2003 18:30 PM Page xxvii

Supporting Materials

Morgan Kaufmann’s website for the book contains a variety of resources that
should help you adapt the material presented in EAC to your course. The web
site includes

1. a complete set of lectures for the course as taught at Rice University;

2. example lab assignments from a capstone-project version of the course;

3. example lab assignments from the course as taught at Rice;

4. an instructor’s manual that contains solutions for the exercises;

5. a glossary of abbreviations, acronyms, and terms defined in EAC;

6. single-page copies of the line art from the book; and

7. the syllabus and lectures for a course on scalar optimization taught
from the optimization section of EAC and a selection of recent papers.

The Art and Science of Compiler Construction
The lore of compiler construction includes both amazing success stories
about the application of theory to practice and humbling stories about the
limits of what we can do. On the success side, modern scanners are built by
applying the theory of regular languages to automatic construction of recog-
nizers. LR parsers use the same techniques to perform the handle-recognition
that drives a shift-reduce parser. Data-flow analysis (and its cousins) apply
lattice theory to the analysis of programs in ways that are both useful and
clever. The approximation algorithms used in code generation produce good
solutions to many instances of truly hard problems.

On the other side, compiler construction exposes some complex problems
that defy good solutions. The back end of a compiler for a modern superscalar
machine must approximate the solution to two or more interacting NP-
complete problems (instruction scheduling, register allocation, and, perhaps,
instruction and data placement). These NP-complete problems, however, look
easy next to problems such as algebraic reassociation of expressions (see, for
example, Figure 7.1). This problem admits a huge number of solutions; to make
matters worse, the desired solution depends on the other transformations

xxviii Preface

FM03-xxi-xxx.qxd 15-Sep-2003 18:30 PM Page xxviii

that the compiler applies. While the compiler attempts to solve these prob-
lems (or approximate their solutions), it must run in a reasonable amount of
time and consume a modest amount of space. Thus, a good compiler for a
modern superscalar machine must artfully blend theory, practical knowledge,
engineering, and experience.

In this book, we have tried to convey both the art and the science of com-
piler construction. EAC includes a sufficiently broad selection of material to
show the reader that real tradeoffs exist and that the impact of those choices
can be both subtle and far-reaching. EAC omits techniques that have been ren-
dered less important by changes in the marketplace, in the technology of lan-
guages and compilers, or in the availability of tools. Instead, EAC provides a
deeper treatment of optimization and code generation.

Acknowledgments
Many people have provided us with useful feedback on the form, content, and
exposition of EAC. Among these are L. Almagor, Saman Amarasinghe, Thomas
Ball, Preston Briggs, Corky Cartwright, Carolyn Cooper, Christine Cooper,
Anshuman Das Gupta, Jason Eckhardt, Stephan Ellner, Mike Fagan, Matthias
Felleisen, Alex Grosul, John Greiner, Dan Grossman, Timothy Harvey, James
Larus, Ken Kennedy, Shriram Krishnamurthy, Ursula Kuterbach, Robert
Morgan, Guilherme Ottoni, Vishal Patel, Norm Ramsey, Steve Reeves, Martin
Rinard, L. Taylor Simpson, Reid Tatge, Dan Wallach, Todd Waterman, and
Christian Westbrook.

Steve Carr served as exercise editor; he coordinated a team that produced
the exercises. His team included Chen Ding, Rodolfo Jardim de Azevedo,
Zhiyuan Li, Guilherme Ottoni, and Sandra Rigo. Aaron Smith, Ben Hardekopf,
and Paul A. Navratil checked the exercise solutions. The manuscript went
through many rounds of review and revision; Saman Amarasinghe, Guido
Araujo, Preston Briggs, Steve Carr, James Larus, Gloria Melara, Kathryn
McKinley, Robert Morgan, Thomas Murtagh, Gordon Novak, Santosh Pande,
Allan Porterfield, Martin Rinard, Mark Roberts, Michael Smith, and Hongwei
Xi all served as reviewers. Wilson Hsieh, Jurek Jaromczyk, Tevfik Bultan, Chau-
Wen Tseng, Mahmut Kandemir, and Zhiyuan Li all tested the book in their
classrooms, as did several members of the exercise team and the reviewing
team. Their work improved this volume, changing its style and its contents
and improving its accuracy.

Preface xxix

FM03-xxi-xxx.qxd 15-Sep-2003 18:30 PM Page xxix

Michael Scott and Steve Muchnick each reviewed the complete manu-
script several times. Their attention to detail, their patience, and their sugges-
tions substantially improved this book.

The editorial and production team that Morgan Kaufmann put together
for this book has been wonderful. The team, led by Denise Penrose and Yonie
Overton, includes John Hammet, Carol Leyba, Rebecca Evans, Steve Rath,
Emilia Thiuri, and Lauren Wheelock. The illustrations were redrawn by a team
at Dartmouth Publishing; the composition work was done by a team at
Integra. As authors, we could not ask for a more flexible, skilled, or patient
group of people. Their suggestions and insights improved the book; their pro-
fessionalism made the process of producing it substantially easier.

Finally, many people have provided us with intellectual and emotional
support over the last five years. First and foremost, our families and our col-
leagues at Rice have encouraged us at every step of the way. In addition,
Regina Brooks and Janice Bordeaux encouraged us to start this effort. Denise
Penrose and Yonie Overton made it possible for us to finish it. We are deeply
indebted to Kathryn O’Brien for undertaking the many administrative tasks
that arise in a project of this size and for keeping a sense of humor through it
all. Finally, Ken Kennedy and Scott Warren have both shaped the way that we
think about programming, about language issues, and about compilation.

xxx Preface

FM03-xxi-xxx.qxd 15-Sep-2003 18:30 PM Page xxx

Chapter 1

Overview of Compilation

1.1 Introduction
The role of computers in daily life is growing each year. Modern microproces-
sors are found in cars, microwave ovens, dishwashers, mobile telephones, gps
navigation systems, video games, and personal computers. These computers
perform their jobs by executing programs—sequences of operations written
in a “programming language.” The programming language is a formal lan-
guage with mathematical properties and well-defined meanings, as opposed
to a natural language with evolved properties and ambiguities. Programming
languages are designed for expressiveness, conciseness, and clarity. Program-
ming languages are designed to specify computations—to record a sequence
of actions that perform a particular computational task or produce a specific
computational result.

Before a program can execute, it must be translated into a set of opera-
tions that are defined on the target computer. This translation is done by a
specialized program called a compiler. The compiler takes as input the specifi-
cation for an executable program and produces as output the specification for
another, equivalent executable program. Of course, if it finds errors in the input
program, the compiler should produce an appropriate set of error messages.
Viewed as a black box, a compiler might look like this:

1

2 Chapter 1 Overview of Compilation

Compiler
Target
Program

Sour ce
Program

Typically, the “source” language that the compiler accepts is a programming
language, such as fortran, C, C++, Ada, Java, or ml. The “target” language is
usually the instruction set of some computer system.

Some compilers produce a target program written in a full-fledged pro-
gramming language rather than the assembly language of some computer.
The programs that these compilers produce require further translation before
they can execute directly on a computer. Many research compilers produce
C programs as their output. Because compilers for C are available on most
computers, this makes the target program executable on all those systems, at
the cost of an extra compilation for the final target. Compilers that target pro-
gramming languages rather than the instruction set of a computer are often
called source-to-source translators.

Many other systems qualify as compilers. For example, a typesetting pro-
gram that produces PostScript can be considered a compiler. It takes as input a
specification for how the document should look on the printed page and it pro-
duces as output a PostScript file. PostScript is simply a language for describing
images. Since the typesetting program takes an executable specification and
produces another executable specification, it is a compiler.

The code that turns PostScript into pixels is typically an interpreter, not a
compiler. An interpreter takes as input an executable specification and pro-
duces as output the result of executing the specification.

Interpreter
ResultsSource

Program

Interpreters can be used to implement programming languages as well. For
some languages, such as Perl, Scheme, andapl, interpreters are more common
than compilers.

Interpreters and compilers have much in common. They perform many
of the same tasks. Both examine the input program and determine whether
or not it is a valid program. Both build an internal model of the structure and
meaning of the program. Both determine where to store values
during execution. However, interpreting the code to produce a result is quite
different from emitting a translated program that can be executed to
produce the result. This book focuses on the problems that arise in

1.2 Why Study Compiler Construction? 3

building compilers. However, an implementor of interpreters may find
much of the material relevant.

1.2 Why Study Compiler Construction?
A compiler is a large, complex program. Compilers often include hundreds of
thousands, if not millions, of lines of code. Their many parts have complex
interactions. Design decisions made for one part of the compiler have impor-
tant ramifications for other parts. Thus, the design and implementation of a
compiler is a substantial exercise in software engineering.

A good compiler contains a microcosm of computer science. It makes prac-
tical application of greedy algorithms (register allocation), heuristic search
techniques (list scheduling), graph algorithms (dead-code elimination),
dynamic programming (instruction selection), finite automata and push-down
automata (scanning and parsing), and fixed-point algorithms (data-flow anal-
ysis). It deals with problems such as dynamic allocation, synchronization,
naming, locality, memory hierarchy management, and pipeline scheduling.
Few software systems make as many complex and diverse components work
together to achieve a single purpose. Working inside a compiler provides prac-
tical experience in software engineering that is hard to obtain with smaller,
less intricate systems.

Compilers play a fundamental role in the central activity of computer sci-
ence: preparing problems for solution by computer. Most software is compiled;
the correctness of that process and the efficiency of the resulting code have a
direct impact on our ability to build large systems. Most students are not sat-
isfied with reading about these ideas; many of the ideas must be implemented
to be appreciated. Thus, the study of compiler construction is an important
component of a computer science education.

The lore of compiler construction includes many success stories. Formal
language theory has led to tools that automate the production of scanners and
parsers. These same tools and techniques find application in text searching,
website filtering, word processing, and command-language interpreters. Type
checking and static analysis apply results from lattice theory, number theory,
and other branches of mathematics to understand and improve programs.
Code generators uses algorithms for tree-pattern matching, parsing, dynamic
programming, and text matching to automate the selection of instructions.

At the same time, the history of compiler construction includes its share
of humbling experiences. Compilation includes problems that are truly hard.
Attempts to design a high-level, universal, intermediate representation
have foundered on complexity. Several parts of the process have resisted

4 Chapter 1 Overview of Compilation

automation—at least, automatic techniques have not yet replaced hand-coded
solutions. In many cases, we have had to resort to ad hoc methods. The dom-
inant method for instruction scheduling is a greedy algorithm with several
layers of tie-breaking heuristics. While it is obvious that the compiler can use
commutativity and associativity to improve the code, most compilers that try
to do so simply rearrange the expression into some canonical order.

Building a successful compiler requires a blend of algorithms, engineering
insights, and careful planning. Good compilers approximate the solutions to
hard problems.They emphasize efficiency—in their own implementations and
in the code they generate. They have internal data structures and knowledge
representations that expose the right level of detail—enough to allow strong
optimization, but not enough to force the compiler to wallow in detail.

1.3 The Fundamental Principles of Compilation
Compilers are engineered objects—large software systems built with distinct
goals. Building a compiler requires myriad design decisions, each of which
has an impact on the resulting compiler. While many issues in compiler design
are amenable to several different solutions, there are two principles that
should not be compromised. The first principle that a compiler must observe
is inviolable.

The compiler must preserve the meaning of the program being compiled.

Correctness is a fundamental issue in programming. The compiler must pre-
serve correctness by faithfully implementing the “meaning” of its input
program.This principle lies at the heart of the social contract between the com-
piler writer and compiler user. If the compiler can take liberties with meaning,
then why not simply generate a nop or a return? If an incorrect translation is
acceptable, why expend the effort to get it right?

The second principle that a compiler must observe is practical.

The compiler must improve the input program in some discernible way.

A traditional compiler improves upon the input program by making it directly
executable on some target machine. Other “compilers” improve their input in
different ways. For example, tpic is a program that takes the specification for

1.4 Compiler Structure 5

a drawing written in the graphics language pic and converts it into LATEX; the
“improvement” lies in LATEX’s greater availability and generality. Some compil-
ers produce output programs in the same language as their input; we call these
source-to-source translators. In general, these systems rewrite a program in a
way that will lead to an improvement when the program is finally translated
into code for some target machine. If the compiler does not improve the code
in some way, why should anyone invoke it?

1.4 Compiler Structure
A compiler is a large and complex software system. The compiler community
has been building compilers since 1955; over those years, we have learned
many lessons about how to structure a compiler. Earlier, we depicted a com-
piler as a single box that translates a source program into a target program.
Reality, of course, is more complex than that simple picture.

As this single-box model suggests, a compiler must both understand the
source program presented for compilation and map its functionality to the tar-
get machine. The distinct nature of these two tasks suggests a division of labor
and leads to a design that decomposes compilation into two major pieces:
a front end and a back end.

Target
Program

Source
Program

Front End IR Back End

Compiler

The front end focuses on understanding the source-language program. The
back end focuses on mapping programs to the target machine. This separation
of concerns has several important implications for the design and implemen-
tation of compilers.

The front end must encode its knowledge of the source program in some
structure for later use by the back end. This intermediate representation (ir)
becomes the compiler’s definitive representation for the code it is translating.
At each point in compilation, the compiler will have a definitive representation.
It may, in fact, use several different irs as compilation progresses, but at each
point, one representation will be the definitive ir. We think of the definitive
ir as the version of the program passed between independent phases of the

6 Chapter 1 Overview of Compilation

compiler, like the ir passed from the front end to the back end in the preceding
drawing.

In a two-phase compiler, the front end must ensure that the source program
is well formed, and it must map that code into the ir. The back end must map
the ir program into the instruction set and the finite resources of the target
machine. Since the back end only processes ir created by the front end, it can
assume that the ir contains no syntactic or semantic errors.

The compiler can make multiple passes over the ir form of the code before
emitting the target program. This should lead to better code; the compiler can,
in effect, study the code in its first phase and record relevant details. Then,
in the second phase, it can use these recorded facts to improve the quality of
translation. (This idea is not new. The original fortran compiler made several
passes over the code.) This strategy requires that knowledge derived in the first
pass be recorded in the ir where the second pass can find and use it.

Finally, the two-phase structure may simplify the process of retargeting the
compiler. We can easily envision constructing multiple back ends for a single
front end to produce compilers that accept the same language but target dif-
ferent machines. Similarly, we can envision front ends for different languages
producing the same ir and using a common back end. Both scenarios assume
that one ir can serve for several combinations of source and target; in prac-
tice, both language-specific and machine-specific details usually find their
way into the ir.

Introducing an ir makes it possible to add more phases to compilation. The
compiler writer can insert a third phase between the front end and the back
end. This middle section, or optimizer, takes an ir program as its input and
produces an equivalent ir program as its output. By using the ir as an interface,
the compiler writer can insert this third phase with minimal disruption to the
front end and the back end. This leads to the following compiler structure,
termed a three-phase compiler.

Target
Program

Source
Program

Front End IR Optimizer IR Back End

Compiler

The optimizer is an ir-to-ir transformer that tries to improve the ir pro-
gram in some way. (Notice that these transformers are, themselves, compil-
ers according to our definition in Section 1.1.) The optimizer can make one
or more passes over the ir, analyze the ir, and rewrite the ir. The optimizer
may rewrite the ir in a way that is likely to produce a faster target program
from the back end or a smaller target program from the back end. It may have

1.4 Compiler Structure 7

other objectives, such as a program that produces fewer page faults or uses
less power.

Conceptually, this three-phase structure represents the classic optimiz-
ing compiler. In practice, the phases are divided internally into a series of
passes. The front end consists of two or three passes that handle the details
of recognizing valid source-language programs and producing the initial ir
form of the program. The middle section contains several passes that perform
different optimizations. The number and purpose of these passes vary from
compiler to compiler. The back end consists of a series of passes, each of which
takes the ir program one step closer to the target machine’s instruction set.
The three phases and their individual passes share a common infrastructure.
This structure is shown in Figure 1.1.

In practice, the conceptual division of a compiler into three phases, a front
end, a middle section, and a back end, is useful. The problems addressed by
these phases are different. The front end is concerned with understanding
the source program and recording the results of its analysis into ir form. The
middle section focuses on improving the ir form. The back end must map the
transformed ir program onto the bounded resources of the target machine in
a way that leads to efficient use of those resources.

Of these three phases, the middle section has the murkiest description.
The term optimization implies that the compiler discovers an optimal solu-
tion to some problem. The issues and problems that arise in optimization
are so complex and so interrelated that they cannot, in practice, be solved

Figure 1.1 Structure of a Typical Compiler

8 Chapter 1 Overview of Compilation

optimally. Furthermore, the actual behavior of the compiled code depends
on interactions among all of the techniques applied in the optimizer and the
back end. Thus, even if a single technique can be proved optimal, its interac-
tions with other techniques may produce less than optimal results. As a result,
a good optimizing compiler can improve the quality of the code, relative to an
unoptimized version. It will almost always fail to produce optimal code.

The middle section can be a single monolithic pass that applies one or more
optimizations to improve the code, or it can be structured as a series of smaller
passes with each pass reading and writing ir. The monolithic structure may be
more efficient. The multipass structure may lend itself to a less complex imple-
mentation and a simpler approach to debugging the compiler. It also creates
the flexibility to employ different sets of optimization in different situations.
The choice between these two approaches depends on the constraints under
which the compiler is built and operates.

1.5 High-Level View of Translation
To gain a better understanding of the tasks that arise in compilation, consider
what must be done to generate executable code for the following expression:

w ← w × 2 × x × y × z

where w, x, y, and z are variables, ← indicates an assignment, and × is the
operator for multiplication. To learn what facts the compiler must discover
and what questions it must answer, we will trace the path that a compiler takes
to turn such a simple program into executable code.

1.5.1 Understanding the Input

The first step in compiling w ← w × 2 × x × y × z is to determine whether
or not these characters form a legal sentence in the programming language.
This job falls to the compiler’s front end. It involves both form, or syntax, and
meaning, or semantics. If the program is well formed in both these respects, the
compiler can continue with translation, optimization, and code generation.
If it is not well formed, the compiler should report back to the user with a
clear error message that isolates the problems with the sentence, to the extent
possible.

1.5 High-Level View of Translation 9

Notation

Compiler books are, in essence, about notation. After all, a compiler
translates a program written in one notation into an equivalent program
written in another notation. A number of notational issues will arise in
your reading of this book. In some cases, these issues will directly affect
your understanding of the material.

Expressing Algorithms We have tried to keep the algorithms concise.
Algorithms are written at a relatively high level, assuming that the reader
can supply implementation details. They are written in a slanted, sans-
serif font. Indentation is both deliberate and significant; this matters
most in an if-then-else construct. Indented code after a then or an else
forms a block. In the following code fragment

if Action [s,word] = “shift si” then
push word
push si

word ← NextWord()
else if · · ·

all the statements between the then and the else are part of the then
clause of the if-then-else construct. When a clause in an if-then-else con-
struct contains just one statement, we write the keyword then or else on
the same line as the statement.

Writing Code In some examples, we show actual program text writ-
ten in some language chosen to demonstrate a particular point. Actual
program text is written in a typewriter font.

Arithmetic Operators Finally, we have forsaken the traditional use of ∗
for × and of / for ÷ , except in actual program text. The meaning should
be clear to the reader.

Checking Syntax

To check the syntax of the input program, the compiler must compare the
program’s structure against a definition for the language. This requires an
appropriate formal definition, an efficient mechanism for testing whether or
not the input meets that definition, and a plan for how to proceed on an illegal
input.

10 Chapter 1 Overview of Compilation

Mathematically, the source language is a set, usually infinite, of strings
defined by some finite set of rules, called a grammar. In a compiler’s front end,
the scanner and the parser determine whether the input program is, in fact,
an element of that set of valid strings. The engineering challenge is to make
this membership test efficient.

Grammars for programming languages usually refer to words by their parts
of speech, or syntactic categories. Basing the grammar rules on parts of speech
lets a single rule describe many sentences. For example, in English, many
sentences have the form

Sentence→ Subject verb Object endmark

where verb and endmark are parts of speech, and Sentence, Subject, and Object
are syntactic variables. Sentence represents any string with the form described
by this rule. The symbol “→” reads “derives” and means that an instance of the
right-hand side can be abstracted to the syntactic variable on the left-hand
side.

To apply this rule, the user must map words to their parts of speech. For
example,verb represents the set of all English-language verbs, andendmark rep-
resents all sentence-ending punctuation marks, such as a period, a question
mark, or an exclamation point. For English, the reader generally recognizes
several thousand words and knows the possible parts of speech that each can
fulfill. For an unfamiliar word, the reader consults a dictionary. Thus, the syn-
tax of this example is described with a set of rules, or grammar, and a system
for finding words and classifying them into syntactic categories.

This specification-based approach to defining syntax is critical to compi-
lation. We cannot build a front end that contains an infinite set of rules or an
infinite set of sentences. Instead, we need a finite set of rules that generate or
specify the sentences in our language. As we shall see in Chapters 2 and 3, the
finite nature of a grammar does not limit the expressiveness of the language.

To understand whether the sentence “Compilers are engineered objects.”
is, in fact, a valid English sentence, we first establish that each word exists in
English with a dictionary lookup. Next, each word is replaced by its syntactic
category to create a somewhat more abstract representation of the sentence:

noun verb adjective noun endmark

Finally, we try to fit this sequence of abstracted words into the rules for an
English sentence. A working knowledge of English grammar might include the
following rules:

1.5 High-Level View of Translation 11

1 Sentence → Subject verb Object endmark

2 Subject → noun

3 Subject → Modifier noun

4 Object → noun

5 Object → Modifier noun

6 Modifier → adjective

. . .

By inspection, we can discover the following derivation for our example sen-
tence:

Rule Prototype Sentence

— Sentence

1 Subject verb Object endmark

2 noun verb Object endmark

5 noun verb Modifier noun endmark

6 noun verb adjective noun endmark

The derivation starts with the syntactic variable Sentence. At each step, it
rewrites one term in the prototype sentence, replacing the term with a right-
hand side that can be derived from that rule. The first step uses Rule 1 to replace
Sentence. The second uses Rule 2 to replace Subject. The third replaces Object
using Rule 5, while the final step rewrites Modifier with adjective according
to Rule 6. At this point, the prototype sentence generated by the derivation
matches the abstract representation of our input sentence.

This derivation proves that “Compilers are engineered objects.” belongs
to the language described by Rules 1 through 6. The process of discovering
words in a string of characters and classifying them according to their parts
of speech is called scanning. Discovering whether a stream of classified words
has a derivation in some set of grammatical rules is called parsing. Scanning
and parsing are the first two steps in compiling a program.

Of course, the scanner and parser might discover that the input is not a
valid sentence. In this case, the compiler must report the error back to the
user. It should provide concise and useful feedback that lets the user isolate
and correct the syntactic error.

