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PREFACE

Environmental Ergonomics addresses the problems of maintaining human comfort, activity and health in
stressful environments. Its subject areas include thermal environments, illumination, noise and hypo- and
hyperbaric environments. Participants at the International Conference on Environmental Ergonomics
(ICEE) include research scientists, medical doctors, engineers, administrators, technicians, health care
professionals and students from universities, private industry, and governmental research facilities in over
20 countries. The ICEE is currently the world’s most distinguished conference in its field.

Since 1982, the ICEE has been held biennially in Europe and North America. We believe the 10th conference
in Fukuoka, our first meeting in Asia, provided a stimulus for progress in Environmental Ergonomics in
Asian countries.

This book contains papers presented at the 10th International Conference on Environmental Ergonomics
held in Fukuoka, Japan, from September 23rd to 27th 2002. There were many excellent papers outside
the topic of the thermal environment at the ICEE2002. However, given that the major topics were related
to the thermal aspect, we have devoted this book in the Elsevier Ergonomics Book Series to this topic.
The thermal environment is one of the major factors which has affected human comfort, health and
performance from the age of cave-dwellings to our age of skyscrapers.

We would like to take this opportunity to thank the Organizing Committee and International Program
Committee members of ICEE2002 who reviewed the papers. We also thank Shizuka Umezaki, Nobuko
Hashiguchi, and Takako Fukazawa who helped with numerous aspects of this publication. In addition,
we are indebted to the Elsevier staff members who provided editorial assistance to support this
publication successfully.

Fukuoka Yutaka Tochihara

October, 2004 Tadakatsu Ohnaka
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Regulatory processes of the human body during thermal
and work strain

Jürgen Werner*

Center for Biomedical Methods, Medical Faculty, Ruhr-University, Bochum, Germany

Abstract: This chapter focuses on the control processes inherent in the human body when subjected to thermal or exercise stress.

The regulatory processes commonly named ‘thermoregulation’ comprise the interaction, and sometimes the competition, of

various control systems, such as the cardiovascular, metabolic, respiratory, osmoregulatory and thermal control systems.

Understanding these processes correctly is essential for the estimation and evaluation of physiological strain in environmental

ergonomics. Such systems stabilize body temperature in spite of external or internal loads, generally by means of an information

loop with negative feedback. A controller network in the central nervous system activates effector mechanisms (such as

metabolic heat production, sweat production and vasomotoric action) to an extent that is proportional to the deviation of the

controlled variable from its so-called set-point. In hyper- or hypothermia, body temperature deviates substantially from the set-

point, mainly because of insufficient effector capacity. The set-point may change periodically (e.g. circadian rhythm) or

temporarily, due to interference with the regulation of non-thermal variables (e.g. in states of dehydration or starvation, etc.), or

due to pathological, non-thermal influences (e.g. during a fever). The processes of acclimatization may also change the set-point.

Keywords: Thermoregulation, Exercise, Set-point, Control, Feedback

1. The system of temperature regulation

The young man in Fig. 1 is under both thermal

and work strain. He is being subjected to the

influences of air temperature, air humidity, solar

radiation, atmospheric thermal radiation, reflected

solar radiation, ground thermal radiation, and also

to his running speed and the wind. Important factors

affecting the thermal processes are clothing and

posture. The processes in the human body, counter-

acting these stress factors, are evaporation of sweat,

respiratory evaporation, conduction, convection via

the blood, radiation and metabolic storage. Almost
all physiological systems of the body are involved.

In spite of heavy challenges from the environ-
ment, the temperature of the human body is kept
fairly constant. This is due to a complex control
loop, which is presented in schematic form in Fig. 2.

The basic thermoregulatory control loop is
composed of two subsystems The first is the
‘controlled’ system, that is, the human body as a
heat transfer system which has to be actively
controlled by the second ‘controlling’ system
which consists of various components: thermosen-
sors which are heterogeneously distributed over the
body; ascending and descending central information
processing; and spatially distributed effector mech-
anisms which change the net heat gain/loss ratio
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(for a review, see Refs. (1,2)). The effectors are
vasomotor activity, metabolic heat production,
sweat production with subsequent evaporation, and
behavioral mechanisms (i.e. work and clothing).
This system represents a control loop with negative
feedback which can compensate for environmental
influences like temperature, humidity and air
velocity, or cope with the additional heat produced
by muscular work.

2. Mechanism for attaining steady states under
thermal load

The mechanism for attaining a steady state in
the thermoregulatory control loop is explained

below, as is the reason why a higher thermal load,
whether evoked by environmental conditions,
work or clothing, must result in a higher deviation
of body temperature from the set-point in spite of
negative feedback control. For the moment, let us
assume that there is no feedback and thus
consider the properties of the two subsystems,
controlled and controlling, as open loop systems.
The input to the controlled system is net heat
gain, HG, and the output is a change in body
temperature, Tb, as outlined in Fig. 3A, where we
consider only deviations, D; from the thermo-
neutral state, i.e. the state where the effector
activities counteracting alterations of body tem-
perature are minimal, and where body tempera-
ture is at its so-called set-point.

In the open-loop controlled system heat gain
enhances, and heat loss attenuates, body temperature
by an amount that depends on the ambient
temperature, Ta. The unbroken line in Fig. 3A
shows the thermoneutral ambient temperature
(DTa ¼ 0) and the two broken lines represent
examples of higher or lower ambient temperatures,
which, in the passive system, even with DHG ¼ 0,
will increase or decrease DTb, as shown by the
arrows indicated by DT0. Looking at the controlling
system (Fig. 3B) with DTb as the input and DHG as
the output, an increasing DTb will decrease DHG

Fig. 1. Environmental factors and responses of the human body.

Fig. 2. The basic control of thermoregulation.
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in order to counteract disturbances in the controlled
system. DHG (see Fig. 3B) is proportional to 2DTb,
which in the closed control loop (Fig. 3C) is the basis
of ‘proportional control’. In the closed loop, the
controlled and the controlling systems have to
interact. The output of the first is the input of the
second and vice versa, meaning that a steady
state must be compatible with the characteristics of
Fig. 3A and B. These are drawn in a common
diagram in Fig. 3C, demonstrating that only
intersections of the characteristics of the controlled
and controlling systems denote possible steady
states. Fig. 3C shows the three steady states (circles)
for thermoneutral, cold and warm conditions. In the
cold and in the heat, this implies deviations, 1; (‘load
errors’) from the set-point. This is an inherent
property of ‘proportional feedback control’. How-
ever, these deviations, 1; are much smaller than the
deviations, DT0, without any feedback control
(see Fig. 3C).

Only an ‘integrating’ controller, reacting accord-
ing to the temporal integral of the input, would
provide a vanishing load error, 1. However, such a
controller type, frequently applied in technical
systems, is obviously not present in physiological
autonomic control.

3. Interaction and competition in meshed
control loops

It is obvious, e.g. during intense work, that
besides environmental factors, vasomotor action
and hence skin blood flow/volume and sweat rate
determine whether or not a tolerable body tem-
perature is maintained. Fig. 4 presents an overview
of the interactions between the physiological
systems involved.

The ambient temperature acts on the thermo-
regulatory centers by changing body temperature.
This activates one of three autonomic effector

Fig. 3. The mechanism involved in attaining steady states of the

body in heat and cold (see text). Abbreviations: D ¼ deviation of,

Tb ¼ body temperature, Ta ¼ ambient temperature, HG ¼ net heat

gain, DT0 ¼ deviation of body temperature without feedback

control, 1 ¼ deviation of body temperature with feedback control

(‘load error’). (A) The open-loop characteristics of the controlled

system. (B) The open-loop characteristics of the controlling system.

(C) Steady states (circles) for DHG ¼ 0 attained in the closed

control loop for thermoneutral conditions, for cold and heat.
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mechanisms: heat production in the cold, sweat

production in the heat, and, in general, changes in

peripheral circulatory resistance with redistribution

of blood flow (3). On the one hand, the latter effector

mechanism may be used at the same time by other

regulatory ‘centers’ (i.e. respiratory regulation,

blood volume and osmotic regulation, and blood

pressure regulation) and, therefore, may determine
or limit thermoregulatory performance. On the other
hand, thermoregulatory effector mechanisms may
directly disturb the mean arterial pressure and

central venous and central osmotic pressure, which
again interact considerably with the ongoing process
of sweat production.

Fig. 4. Schema of interaction of regulatory processes during work.
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Work interacts directly with at least two effector
mechanisms of thermoregulation, heat production
and vasomotor changes, and thereby with three
regulated variables: body temperature, mean arter-
ial pressure, and central venous pressure (CVP).
Additionally, continuous intense work may disturb
variables regulated by respiration. Furthermore,
work interacts via proprioceptive sensors with the
central control mechanisms of respiration and
blood pressure. It is also highly probable that all
of the regulatory ‘centres’, outlined in Fig. 4,
communicate with one another. Fig. 4, though
extremely schematic and simplified in comparison
to reality, shows a complex network of interactions,
the most critical and multifold processes being
concentrated on the vasomotor activities.

Syncope can occur even in mild heat after
prolonged standing, or abrupt stopping after intense
work; this is due to competition between orthostatic
and thermoregulatory demands impacting upon
blood pressure regulation. It is characterized by
extreme vasodilatation and a drop in arterial
pressure, whilst there may only be a slight increase
in body temperature. Generally, the consequences
of such a heat syncope are not very harmful, but
another heat illness, heat stroke, discussed below,
includes the risk of death or, at least, serious
permanent disability.

Heat stroke usually occurs when extreme heat
stress leads to marked hyperthermia after thermo-
regulation is subordinated to circulatory and meta-
bolic demands. Then the body temperature may rise
beyond tolerable limits, and all regulation will
fail (4). The first stage is a tolerable core and skin
temperature increase, which as a rule, may be
compensated. It is evoked by an increase in heat
production and by the redistribution of blood flow.
In the second stage, as a result of the body
temperature rise, sweat production is enhanced,
which together with dehydration increases fluid
influx into the muscles, and the higher skin blood
flow and volume ultimately leads to a drop of blood
(plasma) volume and of CVP. If these stressors are
sufficient, low CVP can reduce skin blood flow, and
this together with the now lower sweat rate (due to
lower blood volume, higher osmolality, local
processes, and possibly lower skin blood flow),
constitutes a serious impairment of heat loss

mechanisms and causes a further increase in core
temperature. The rise in body temperature, together
with a possible deficiency of substrates in the
muscles, might constitute a drive for muscle blood
flow, further reducing CVP. Any increase in muscle
blood flow, combined with a possible increase in
splanchnic blood flow (5), evokes a further decrease
in the skin blood flow and consequently, in a third
stage, would drive the core temperature to finally
reach an intolerably high level, resulting in red blood
cell sphering, disseminated intravascular coagu-
lation, coagulative necrosis, cerebral hypoxia, gen-
eral central nervous dysfunction and death.

Training and heat acclimatization enable people
to work longer and at lower body temperatures
under conditions of heat stress, if water is available.
However, as shown above, if circulatory control
gains precedence over temperature regulation, even
highly trained workers run the risk of fatal heat
stroke, whereas their less fit counterparts often tend
to stop work at a lower body temperature or
collapse from heat exhaustion.

4. Changes in the set-point of
thermoregulation

In hyper- or hypothermia, body temperature
deviates substantially from the set-point, mainly
because of insufficient effector capacity. The set-
point itself may change periodically (e.g. circadian
rhythm) or temporarily, due to interference with the

Fig. 5. Decrease of sweating thresholds for mean body temperature

evoked either by external heat or by exercise.
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regulation of non-thermal variables, or due to
pathological, non-thermal influences (e.g. during a
fever). Also, the processes of acclimatization
change the set-point. The change of set-point in
these processes is thought to be due to changes in
the thermal controller characteristics, particularly
changes in thresholds and/or changes of thermo-
effector ‘gain’, (i.e. the slope of the controller
characteristic, e.g. Refs. (6,7)). Fig. 5 shows the
threshold for the onset of sweating in terms of mean
body temperature in the course of acclimatization
processes, either evoked by external heat or by
exercise (internal heat). The onset of sweating
shifts to lower body temperatures, no matter
whether the subjects are acclimatized by exercise
or by heat stress. Fig. 6 outlines the change of set-
point, and hence of load error, 1; due to heat
acclimatization that evokes a decrease in the
sweating threshold and thus, if physical conditions
permit evaporation, a decrease in the heat loss
threshold (see broken line, controller character-
istic). This causes a change of set-point (denoted by
the arrow on the DTb-axis). It implies two different
steady states (see circles) for a non-acclimatized
and an acclimatized subject, both with DTa ¼ 0 and
with heat stress. The deviation, DTaccl, from the
neutral state with acclimatization, is smaller than
1non without acclimatization.

5. Conclusions

Thermoregulation uses proportional feedback
control. This implies a ‘load error’, i.e. in the
presence of an external or internal thermal load
there is a permanent deviation of body temperature,
which is much smaller than that which would be
present without feedback control. The set-point is
found when the effector activities that counteract
alterations in body temperature are minimal.

Thermoregulation is embedded in the main regu-
latory systems, i.e. respiration, circulation, fluid and
osmotic balance, and metabolism. An essential
feature of this interaction is the use of common effe-
ctor mechanisms, particularly vasomotor activity.

This interaction, as well as other important
processes, like fever or acclimatization, may
involve changes in the set-point of thermoregula-
tion. For example, as a rule, acclimatization reduces
the ‘load error’.
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The interrelation of thermal and nonthermal reflexes in the control
of postexercise heat loss responsesq

Glen P. Kenny*, Dwayne N. Jackson

Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, Ont., Canada

Abstract: The role of baroreceptor modulation on the postexercise esophageal temperature threshold for cutaneous vasodilation

(ThVD) and sweating (ThSW) was investigated. Five subjects, fitted with a water-perfused, upper body suit, performed a total of

four experimental trials that were carried out in a random order. Each of the four experimental trials commenced with a 15-min

baseline rest period, after which subjects either exercised (Exercise) or remained resting (No-Exercise) in a temperature-

controlled chamber (258C). For the Exercise condition the subjects performed 15 min of upright cycling at 70% of their

predetermined V̇O2max. For the No-Exercise condition the subjects were instructed to rest in a semi-seated, upright position for

15 min. Immediately following both the No-Exercise and Exercise conditions subjects were placed in a semi-seated, upright

position within a specially designed pressure chamber sealed at the level of the iliac crest. They were then exposed to either

50 mmHg lower body positive pressure (LBPP) or no lower body positive pressure (No-LBPP). During this time cool water

(,208C) was circulated through the water-perfused suit until forearm cutaneous vasoconstriction was noted. Mean skin

temperature was then progressively increased to 478C by increasing the temperature of the water circulating through the suit at a

rate of 4.2 ^ 0.88C h21 and cutaneous vasodilation and sweating was noted (,80 min). To compare thresholds between

conditions in which both esophageal and mean skin temperatures were changing, the following equation was used to correct the

Tes [Tes(calculated)] for a designated skin temperature [ �TskðdesignatedÞ]: Tes(calculated) ¼ Tes þ [b/(1 2 b)][ �Tsk 2 �TskðdesignatedÞ], whereb

is the fractional contribution of the skin to the vasodilation ðb ¼ 0:2Þ and sweating response ðb ¼ 0:1Þ:ThVD and ThSW increased

by 0.42 and 0.258C, respectively, postexercise from the No-Exercise/No-LBPP condition to the Exercise/No-LBPP condition

ð p , 0:05Þ: The postexercise increase in ThVD and ThSW was abolished in the Exercise/LBPP ð p , 0:05Þ: The parallel response

observed in ThVD and ThSW postexercise, with and without the application of LBPP, may support a possible functional link

between sweating and active vasodilation. More importantly, these data support the hypothesis that the elevated postexercise

ThVD and ThSW observed are the result of baroreceptor unloading.

Keywords: Skin blood flow, Sweating, Blood pressure, Hypotension, Baroreceptor

1. Introduction

Dynamic exercise is known to cause postexercise
hypotension (1). Although the exact mechanism(s)
responsible for postexercise hypotension remain(s)
undetermined, it has been shown that acute
reductions in central venous pressure delay or
decrease the rise in skin blood flow (SkBF) (2) and
sweating during heat stress (3). Thus, it is possible
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that the postexercise increase in ThVD and ThSW (4)
is related to the fact that the control of SkBF and
sudomotor activity following exercise is subject to
significant modulation by nonthermoregulatory
baroreceptor reflex. In a recent study, it was
shown that the nonthermal baroreceptor response
to postexercise venous blood pooling, by means of
head-down tilt, significantly influences cutaneous
vasomotor control during exercise recovery (sweat-
ing response was not measured) (5). However, due
to the fact that mild head-down tilt does not seem to
modify arterial blood pressure, it is thought that in
this case only cardiopulmonary baroreceptors are
loaded. On the other hand, typical hypotension
associated with postexercise venous pooling tends
to unload both cardiopulmonary and sinoaortic
baroreceptors. Furthermore, the postural manipu-
lation model may stimulate several other reflexes
(i.e. vestibular, etc.) that may tend to distort the
primary baroreceptor response. Thus, using a
specially designed upright lower body positive
pressure (LBPP) chamber, we evaluated the
hypothesis that reversing postexercise venous
pooling with LBPP would result in a relative
lowering of the resting threshold for ThVD and
ThSW. Since postexercise hypotension is most
commonly reported after a bout of upright dynamic
exercise, we felt that this upright model would be
most suitable.

2. Methods

With approval from the Faculty of Health
Sciences Human Ethics Committee, five healthy
men participated in the study. Although all
participants were physically active, none was
engaged in regimented physical training of any
type. Subjects were (mean ^ SD) 26 ^ 5 years
of age, 185.5 ^ 6.38 cm tall, and weighed
84.1 ^ 7.8 kg.

Esophageal temperature (Tes) was measured by
means of inserting an esophageal thermocouple,
through one nostril, to the level of the heart. Skin
temperature was measured at seven sites by heat
flow sensors and the area-weighted mean �Tsk was
calculated by assigning the following regional
percentages: head 6%, upper arm 9%, forearm 6%,

finger 2%, chest 19%, upper back 19%, anterior
thigh 21%, and posterior calf 18%.

SkBF was measured from the left mid-anterior
forearm at two sites, separated by a distance of
approximately 10 cm, by laser-Doppler flowmetry
(Perimed, PeriFlux System 5000). Sweat rate
was measured using a ventilated capsule
(<5.0 £ 3.5 cm) placed on the upper back. Sweat
rate was the product of the difference in water
content between effluent and influent air, and the
flow rate.

Mean arterial pressure (MAP) was continuously
recorded from the electrical integration of the
pulsatile blood pressure signal obtained from the
middle digit (Ohmeda, Finapres 2300). Heart rate
(HR) was measured, beat-by-beat, using a Polar
coded transmitter and recorded continuously with a
Polar Advantage interface (Polar Electro, Finland).

Subjects performed one incremental maximal
oxygen consumption (V̇O2max) test on a cycle
ergometer on the first day. These data were used to
select the workload for the submaximal experimen-
tal exercise trials. Each subject performed a total of
four experimental trials that were carried out in a
random order and commenced between 7:00 and
8:00 am. Upon arrival at the laboratory, subjects
were clothed in shorts and athletic shoes and
instrumented appropriately. They were then fitted
with an upper body water-perfused suit (covering
the torso, arms, and head). Subjects were then
placed into the LBPP chamber, in an upright, semi-
seated position, sealed at the iliac crest.

Each of the four experimental trials commenced
with a 15-min baseline resting period after which
subjects either exercised (Exercise) or remained
resting (No-Exercise) in a thermally controlled room
(258C). For the Exercise treatment the subjects
performed 15 min of upright cycling at 70% of their
predetermined V̇O2max. For the No-Exercise treat-
ment the subjects were instructed to rest in a semi-
seated, upright position for 15 min. To measure the
effect of postexercise venous pooling on the resting
postexercise Tes threshold for cutaneous vasodila-
tion (ThVD) and sweating (ThSW), post-treatment
resting measurements of ThVD and ThSW were
conducted. Immediately following both the No-
Exercise and Exercise treatments, subjects either
remained (No-Exercise treatment) or were placed
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(Exercise treatment) in a semi-seated upright
position within the pressure chamber sealed at the
level of the iliac crest. They were then exposed to
either 50 mmHg LBPP or no lower body positive
pressure (No-LBPP). During this time cool water
(,208C) was circulated through the water-perfused
suit until forearm cutaneous vasoconstriction was
noted (No-Exercise ,69 min, Exercise ,95 min).
Mean skin temperature was then increased at a rate
of 4.2 ^ 0.88C h21 as the water circulating through
the suit was progressively increased to 478C and
cutaneous vasodilation and sweating were noted
(,80 min).

To compare thresholds between conditions in
which both esophageal and mean skin temperatures
were changing, the following equation was used to
correct the Tes [Tes(calculated)] for a designated

skin temperature [ �TskðdesignatedÞ]: Tes(calculated) ¼

Tes þ [b/(1 2 b)] [ �Tsk 2 �TskðdesignatedÞ] (4,6). b ¼

fractional contribution of the skin to the vasodilation
ðb ¼ 0:2Þ (7) and sweating response ðb ¼ 0:1Þ (8).
For the purpose of comparison, the thermoregula-
tory response thresholds for cutaneous vasodilation
and sweating were identified for each condition as
follows: (a) Exercise/LBPP; (b) Exercise/No-LBPP;
(c) No-Exercise/LBPP; and (d) No-Exercise/
No-LBPP.

3. Results

Resting Tes and �Tsk were similar for all conditions
and remained stable and consistent during the
15-min baseline resting period. The Tes required to
elicit cutaneous vasodilation (ThVD) and sweating

(ThSW) for Exercise/No-LBPP was significantly
elevated from the No-Exercise/No-LBPP by
0.42 ^ 0.158C and 0.25 ^ 0.128C, respectively
ð p , 0:05Þ (Tables 1 and 2). The application of
LBPP following exercise resulted in a relative
lowering of ThVD and ThSW by 0.44 ^ 0.108C and
0.23 ^ 0.098C, respectively. No differences were
measured between the two No-Exercise conditions
for either ThVD or ThSW.

Resting MAP and HR were similar for all
conditions. Postexercise MAP (80 ^ 2 mmHg)
was significantly lower than baseline resting MAP
(85 ^ 2 mmHg) in the Exercise/No-LBPP condition
ð p , 0:05Þ; while no differences were noted for the
No-Exercise/No-LBPP conditions (i.e. 85 and
84 mmHg for resting and post-treatment, respect-
ively). MAP was significantly elevated with LBPP
application in the No-Exercise (82–93 mmHg) and
Exercise (83–95 mmHg) conditions ð p , 0:05Þ:
The mean exercise heart rate was the same for
both Exercise conditions (166 ^ 6 beats·min21).
Postexercise heart rate remained elevated (^ 20
beats·min21) in the Exercise/No-LBPP condition for
the duration of the experimental trial ð p , 0:05Þ:
Heart rate returned to baseline resting values within
30 min postexercise with the application of LBPP
(70 ^ 3 beats·min21). In the No-Exercise condition
heart rate was significantly lowered below baseline
values (12 ^ 1 beats·min21) with LBPP application
ð p , 0:05Þ:

4. Discussion

The postexercise increase in ThVD (0.428C) and
ThSW (0.258C) observed here is similar to previous

Table 1

Mean (^SE) threshold values for cutaneous vasodilation.

No-Exercise Exercise

Tsk (8C) Tes (8C) Tes(calculated) (8C) Tsk (8C) Tes (8C) Tes(calculated) (8C)

No-LBPP 33.77 (0.14) 36.49 (0.09) 36.40 (0.12) 34.64 (0.35) 36.69a (0.10) 36.82a (0.15)

LBPP 33.84 (0.40) 36.33 (0.11) 36.26 (0.18) 34.07 (0.33) 36.38b (0.07) 36.38b (0.10)

Note: �TskðdesignatedÞ was set as the average �Tsk at rest for all conditions (34.18C).
aSignificant difference from the No-Exercise/No-LBPP condition ð p , 0:05Þ:
bSignificant difference from No-LBPP for the respective treatment conditions ð p , 0:05Þ:
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findings of a postexercise increase in warm
response thresholds (4). The most important finding
within the present investigation is that postexercise
upright LBPP application resulted in a decrease of
ThVD (0.448C) and ThSW (0.238C) compared to that
observed during normal resting conditions. The
observed decrease in ThVD of 0.168C (n.s.) in the
No-Exercise trial with the application of LBPP is
consistent with the decrease (,0.1–0.28C) in ThVD

in response to postural changes (i.e. an upright to
supine position) (9). No differences were measured
in ThSW.

Cutaneous circulation is considered to be primar-
ily an efferent arm of thermoregulatory reflexes, but
it is also known to respond to several nonthermor-
egulatory demands (10), including baroreceptor
control (3,11). Several studies have documented
increases in ThVD associated with baroreceptor
unloading in resting conditions. Early research
involving head-up tilt has proven to evoke cutaneous
vasoconstrictor activity (12). Other studies demon-
strated similar results with the application of lower-
body negative pressure (LBNP) (3,13). As the
results presented here demonstrate, modification of
postexercise venous pooling by LBPP results in a
relative lowering of the resting postexercise ThVD.
Thus, it would seem that SkBF control during and
following exercise are subject to significant baror-
eceptor-mediated modifications. Because acute
reductions in central venous pressure have been
shown to delay or decrease the rise in SkBF during
heat stress (2), it is reasonable to postulate that
baroreceptors are involved in postexercise
cutaneous vasoconstriction during postexercise
recovery in an attempt to maintain normal
postexercise blood pressure. This baroreceptor

response on cutaneous vascular tone would be
manifested either as an activation of sympathetic
adrenergic vasoconstrictor nerves or as a withdrawal
of active vasodilator activity (14).

Sympathetic nerve recordings from sudomotor
fibers show cardiac rhythmicity indicating that
changes in blood pressure may act to modify sweat
gland activity (15). Solack et al. (16) showed that
local sweat rate was attenuated during application
of LBNP during resting. The postexercise increase
in ThSW, paralleled by a postexercise hypotension,
observed here is consistent with the findings of
Mack et al. (3). They reported a greater increase in
ThSW during exercise with baroreceptor unloading
by LBNP. The reversal of the postexercise
increase in ThSW with LBPP supports an important
role of baroreceptor modulation on postexercise
sweating. Furthermore, the observed parallel
response of ThVD and ThSW postexercise, with
and without the application of LBPP, supports an
important functional link between sweating and
active vasodilation.
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